Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Kouhi M, Jayarama Reddy V, Ramakrishna S
    Appl Biochem Biotechnol, 2019 Jun;188(2):357-368.
    PMID: 30456599 DOI: 10.1007/s12010-018-2922-0
    Bioceramic nanoparticles with high specific surface area often tend to agglomerate in the polymer matrix, which results in undesirable mechanical properties of the composites and poor cell spreading and attachment. In the present work, bredigite (BR) nanoparticles were modified with an organosilane coupling agent, 3-glycidoxypropyltrimethoxysilane (GPTMS), to enhance its dispersibility in the polymer matrix. The polyhydroxybutyrate-co-hydroxyvaletare (PHBV) nanofibrous scaffolds containing either bredigite or GPTMS-modified bredigite (G-BR) nanoparticles were fabricated using electrospinning technique and characterized using scanning electron microscopy, transmission electron microscopy, and tensile strength. Results demonstrated that modification of bredigite was effective in enhancing nanoparticle dispersion in the PHBV matrix. PHBV/G-BR scaffold showed improved mechanical properties compared to PHBV and PHBV/BR, especially at the higher concentration of nanoparticles. In vitro bioactivity assay performed in the simulated body fluid (SBF) indicated that composite PHBV scaffolds were able to induce the formation of apatite deposits after incubation in SBF. From the results of in vitro biological assay, it is concluded that the synergetic effect of BR and GPTMS provided an enhanced hFob cells attachment and proliferation. The developed PHBV/G-BR nanofibrous scaffolds may be considered for application in bone tissue engineering.
    Matched MeSH terms: Epoxy Compounds
  2. Mahendran R, Lim SK, Ong KC, Chua KH, Chai HC
    Clin Exp Nephrol, 2021 Nov;25(11):1163-1172.
    PMID: 34254206 DOI: 10.1007/s10157-021-02111-x
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic kidney disorder that impairs renal functions progressively leading to kidney failure. The disease affects between 1:400 and 1:1000 ratio of the people worldwide. It is caused by the mutated PKD1 and PKD2 genes which encode for the defective polycystins. Polycystins mimic the receptor protein or protein channel and mediate aberrant cell signaling that causes cystic development in the renal parenchyma. The cystic development is driven by the increased cyclic AMP stimulating fluid secretion and infinite cell growth. In recent years, natural product-derived small molecules or drugs targeting specific signaling pathways have caught attention in the drug discovery discipline. The advantages of natural products over synthetic drugs enthusiast researchers to utilize the medicinal benefits in various diseases including ADPKD.

    CONCLUSION: Overall, this review discusses some of the previously studied and reported natural products and their mechanisms of action which may potentially be redirected into ADPKD.

    Matched MeSH terms: Epoxy Compounds/pharmacology
  3. Obón-Santacana M, Lujan-Barroso L, Travis RC, Freisling H, Ferrari P, Severi G, et al.
    Cancer Epidemiol Biomarkers Prev, 2016 Jan;25(1):127-34.
    PMID: 26598536 DOI: 10.1158/1055-9965.EPI-15-0822
    BACKGROUND: Acrylamide was classified as "probably carcinogenic to humans (group 2A)" by the International Agency for Research on Cancer. Epithelial ovarian cancer (EOC) is the fourth cause of cancer mortality in women. Five epidemiological studies have evaluated the association between EOC risk and dietary acrylamide intake assessed using food frequency questionnaires, and one nested case-control study evaluated hemoglobin adducts of acrylamide (HbAA) and its metabolite glycidamide (HbGA) and EOC risk; the results of these studies were inconsistent.

    METHODS: A nested case-control study in nonsmoking postmenopausal women (334 cases, 417 controls) was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Unconditional logistic regression models were used to estimate ORs and 95% confidence intervals (CI) for the association between HbAA, HbGA, HbAA+HbGA, and HbGA/HbAA and EOC and invasive serous EOC risk.

    RESULTS: No overall associations were observed between biomarkers of acrylamide exposure analyzed in quintiles and EOC risk; however, positive associations were observed between some middle quintiles of HbGA and HbAA+HbGA. Elevated but nonstatistically significant ORs for serous EOC were observed for HbGA and HbAA+HbGA (ORQ5vsQ1, 1.91; 95% CI, 0.96-3.81 and ORQ5vsQ1, 1.90; 95% CI, 0.94-3.83, respectively); however, no linear dose-response trends were observed.

    CONCLUSION: This EPIC nested case-control study failed to observe a clear association between biomarkers of acrylamide exposure and the risk of EOC or invasive serous EOC.

    IMPACT: It is unlikely that dietary acrylamide exposure increases ovarian cancer risk; however, additional studies with larger sample size should be performed to exclude any possible association with EOC risk.

    Matched MeSH terms: Epoxy Compounds/metabolism*; Epoxy Compounds/chemistry
  4. Karim AA, Sufha EH, Zaidul IS
    J Agric Food Chem, 2008 Nov 26;56(22):10901-7.
    PMID: 18975963 DOI: 10.1021/jf8015442
    The effect of enzymatic pretreatment on the degree of corn and mung bean starch derivatization by propylene oxide was investigated. The starch was enzymatically treated in the granular state with a mixture of fungal alpha-amylase and glucoamylase at 35 degrees C for 16 h and then chemically modified to produce enzyme-hydrolyzed-hydroxypropyl (HP) starch. Partial enzyme hydrolysis of starch in the granular state appeared to enhance the subsequent hydroxypropylation, as judged from the significant increase in the molar substitution. A variable degree of granule modification was obtained after enzyme hydrolysis, and one of the determinants of the modification degree appeared to be the presence of natural pores in the granules. Enzyme-hydrolyzed-HP starch exhibited significantly different functional properties compared to hydroxypropyl starch prepared from untreated (native) starch. It is evident that the dual modification of starch using this approach provides a range of functional properties that can be customized for specific applications.
    Matched MeSH terms: Epoxy Compounds/metabolism
  5. Obón-Santacana M, Lujan-Barroso L, Freisling H, Cadeau C, Fagherazzi G, Boutron-Ruault MC, et al.
    Eur J Nutr, 2017 Apr;56(3):1157-1168.
    PMID: 26850269 DOI: 10.1007/s00394-016-1165-5
    PURPOSE: Acrylamide was classified as 'probably carcinogenic' to humans in 1994 by the International Agency for Research on Cancer. In 2002, public health concern increased when acrylamide was identified in starchy, plant-based foods, processed at high temperatures. The purpose of this study was to identify which food groups and lifestyle variables were determinants of hemoglobin adduct concentrations of acrylamide (HbAA) and glycidamide (HbGA) in 801 non-smoking postmenopausal women from eight countries in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

    METHODS: Biomarkers of internal exposure were measured in red blood cells (collected at baseline) by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) . In this cross-sectional analysis, four dependent variables were evaluated: HbAA, HbGA, sum of total adducts (HbAA + HbGA), and their ratio (HbGA/HbAA). Simple and multiple regression analyses were used to identify determinants of the four outcome variables. All dependent variables (except HbGA/HbAA) and all independent variables were log-transformed (log2) to improve normality. Median (25th-75th percentile) HbAA and HbGA adduct levels were 41.3 (32.8-53.1) pmol/g Hb and 34.2 (25.4-46.9) pmol/g Hb, respectively.

    RESULTS: The main food group determinants of HbAA, HbGA, and HbAA + HbGA were biscuits, crackers, and dry cakes. Alcohol intake and body mass index were identified as the principal determinants of HbGA/HbAA. The total percent variation in HbAA, HbGA, HbAA + HbGA, and HbGA/HbAA explained in this study was 30, 26, 29, and 13 %, respectively.

    CONCLUSIONS: Dietary and lifestyle factors explain a moderate proportion of acrylamide adduct variation in non-smoking postmenopausal women from the EPIC cohort.

    Matched MeSH terms: Epoxy Compounds/blood*
  6. Cheah WY, Show PL, Ng IS, Lin GY, Chiu CY, Chang YK
    Int J Biol Macromol, 2019 Apr 01;126:569-577.
    PMID: 30584947 DOI: 10.1016/j.ijbiomac.2018.12.193
    The electrospinning PAN nanofiber membrane (P-CN) was hydrolysed to convert carboxylic groups as reaction sites and covalently graft chitosan molecule. The chitosan derivatives with quaternary ammonium groups exerted greater efficiency against bacteria as compared to pure chitosan. Hence, the chitosan modified membrane (P-CS), can be functionalized with quaternary amine (i.e., glycidyl trimethyl ammonium chloride, GTMAC) to form quaternized chitosan nanofiber membrane (designated as P-HTCC) under various conditions (acidic, neutral, and alkaline). N-quaternized derivatives of chitosan modified membrane (N-HTCC) showed 72% and 60% degree of quaternization (DQ) under acidic and neutral conditions, respectively. Under alkaline condition, additional quaternization of N, O-HTCC via its amino and hydroxyl groups, has improved up to 90% DQ of the chitosan. The antibacterial activity of the quaternized chitosan modified membrane prepared from acetic acid medium is stronger than that prepared from water and alkaline media. Also, antibacterial activity of quaternized chitosan is stronger than chitosan modified membrane against E. coli. The microbiological assessments showed that the water-stable P-HTCC nanofiber membrane under modification in acidic medium exerted antibacterial activity up to 99.95% against E. coli. Therefore, the P-HTCC membrane exhibited high potential to be integrated into microfiltration membrane to effectively disinfect E. coli.
    Matched MeSH terms: Epoxy Compounds
  7. Sawitri DR, Mulyono P, Rochmadi, Hisyam A, Budiman A
    J Oleo Sci, 2020 Oct 07;69(10):1297-1305.
    PMID: 32908088 DOI: 10.5650/jos.ess20034
    Oleic acid is a mono-unsaturated fatty acid that can be found abundantly in various vegetable oils and potentially attractive to be used as raw material for epoxide chemical. In-situ epoxidation of oleic acid was conducted in batch reactor using peroxy-formic at 30-60°C. Pseudo-steady-state-hypothesis (PSSH) was applied to develop the kinetic model. Heterogeneous liquid-liquid system was chosen and four models which emphasized on the ring opening agent (ROA) and reversibility of the epoxidation reaction were proposed. It has been suggested that reversible model is well suited to represent the experimental data. Activation energy obtained from Arrhenius equation is in the range of 40-195 kJ/mol.
    Matched MeSH terms: Epoxy Compounds
  8. Aujara KM, Chieng BW, Ibrahim NA, Zainuddin N, Thevy Ratnam C
    Int J Mol Sci, 2019 Apr 18;20(8).
    PMID: 31003413 DOI: 10.3390/ijms20081910
    Gamma-ray radiation was used as a clean and easy method for turning the physicochemical properties of graphene oxide (GO) in this study. Silane functionalized-GO were synthesized by chemically grafting 3-aminopropyltriethoxysilane (APTES) and 3-glycidyloxypropyltrimethoxysilane (GPTES) onto GO surface using gamma-ray irradiation. This established non-contact process is used to create a reductive medium which is deemed simpler, purer and less harmful compared conventional chemical reduction. The resulting functionalized-GO were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), and Raman spectroscopy. The chemical interaction of silane with the GO surface was confirmed by FT-IR. X-ray diffraction reveals the change in the crystalline phases was due to surface functionalization. Surface defects of the GO due to the introduction of silane mioties was revealed by Raman spectroscopy. Thermogravimetric analysis of the functionalized-GO exhibits a multiple peaks in the temperature range of 200-650 °C which corresponds to the degradation of chemically grafted silane on the GO surface.
    Matched MeSH terms: Epoxy Compounds
  9. Adryana Izzati Adnan, noorhidayah977@uitm.edu.my, Nur Ain Nabilah Ash’ari
    MyJurnal
    A series of ten 5-arylidene Meldrum’s acid derivatives had been synthesised in excellent yield via Knoevenagel condensation. This method does not require catalyst, or any further purification. Isopropylidene malonate (2,2-dimethyl-1,3-dioxane-4,6-dione), also known as Meldrum’s acid, is utilised as a core skeleton for various kind of reactions. Meldrum’s acid has features of a peculiar ring- opening sequences based on nucleophile-sensitive carbonyl functional groups at C-4 and C-6, which has made it possible for useful synthetic transformations, as well as its high acidity of methylene hydrogen at carbon position C-5. Hence, it allows the compound to be a flexible reagent for further reaction to prepare other derivatives. Therefore, Meldrum’s acid derivatives showed high potential of biological functions, such as antibacterial, antimalarial and antioxidant activities due to the olefinic linkage which played an important role in the enhancement of antimalarial activity. Furthermore, when arylidene Meldrum’s acid transformed to epoxide, the compound showed losses of antimalarial behaviour. Additionally, this compound has unique molecules due to the high acidity of methylene hydrogen at the carbon-5 position to initiate various reactions with different functional groups. In this research, Meldrum’s acid, 3 and ten its 5-arylidene derivatives (4a-e) and (5a-e) were synthesised by using two short and efficient reaction steps. The first step involved the condensation of malonic acid, 1 with acetone, 2 in acetic anhydride and acid via one-pot reaction to give Meldrum’s acid, 3 in 50% overall yield. Having Meldrum’s acid in hand, the reaction was proceeded with the Knoevenagel condensation reaction by using various functional groups, such as aryl aldehydes and aryl amines. All the synthesised compounds were characterised by using 1H and 13C spectroscopy.
    Matched MeSH terms: Epoxy Compounds
  10. Shaarani FW, Bou JJ
    Sci Total Environ, 2017 Nov 15;598:931-936.
    PMID: 28458211 DOI: 10.1016/j.scitotenv.2017.04.184
    Although carbon dioxide (CO2) is well known as one of the major green-house gases, it is also an economical C1 resource. Thus, CO2has been regarded as an appealing starting material for the synthesis of polymers, like polycarbonates by the reaction with epoxides. Herein the reaction between natural epoxidized soybean oil (ESO), propylene oxide (PO) and CO2under high pressure (4.0MPa) with the presence of Co-Zn double metal cyanide (Co-Zn DMC) catalyst was studied. Temperature and reaction time were varied accordingly and the products obtained were characterized by FTIR, GPC and1H NMR. The results obtained indicate the formation of polycarbonates in the samples collected with yields vary from 60 to 85%. The number average molecular weight (Mn) of the resultant polymer prepared at reaction temperature of 80°C and reaction time of 6h can reach up to 6498g/mol.
    Matched MeSH terms: Epoxy Compounds
  11. Lin YK, Show PL, Yap YJ, Ariff A, Annuar MSBM, Lai OM, et al.
    Front Chem, 2018;6:448.
    PMID: 30345267 DOI: 10.3389/fchem.2018.00448
    An extractive bioconversion conducted on soluble starch with cyclodextrin glycosyltransferase (CGTase) enzyme in ethylene oxide-propylene oxide (EOPO)/potassium phosphates liquid biphasic system (LBS) to extract gamma-cyclodextrin (γ-CD) was examined. A range of EOPO (with potassium phosphates) molecular weights was screen to investigate the effect of the latter on the partioning efficency of CGTase and γ-CD. The results show that the optimal top phase γ-CD yield (74.4%) was reached in 35.0% (w/w) EOPO 970 and 10.0% (w/w) potassium phosphate with 2.0% (w/w) sodium chloride. A theoretical explanation for the effect of NaCl on γ-CD was also presented. After a 2 h bioconversion process, a total of 0.87 mg/mL concentration of γ-CD was produced in the EOPO/ phosphates LBS top phase. After the extraction of top phase from LBS, four continuous repetitive batches were successfully conducted with relative CGTase activity of 1.00, 0.86, 0.45, and 0.40 respectively.
    Matched MeSH terms: Epoxy Compounds
  12. Salehabadi A, Bakar MA, Bakar NHHA
    Materials (Basel), 2014 Jun 13;7(6):4508-4523.
    PMID: 28788689 DOI: 10.3390/ma7064508
    Multi-component nanohybrids comprising of organo-modified montmorillonite (MMT) and immiscible biopolymer blends of poly(3-hydroxybutyrate) (PHB) and epoxidized natural rubber (ENR-50) were prepared by solvent casting technique. The one and three dimensional morphology of PHB/ENR-50/MMT systems were studied using Polarizing Optical Microscopy (POM) and Scanning Electron Microscopy (SEM). Differential scanning calorimetry (DSC) technique was used to evaluate the thermal properties of the nanohybrids. The melting temperature (Tm) and enthalpy of melting (ΔHm) of PHB decrease with respect to the increase in ENR-50 as well as MMT content. The non-isothermal decomposition of the nanohybrids was studied using thermogravimetric (TG-DTG) analysis. FTIR-ATR spectra supported ring opening of the epoxide group via reaction with carboxyl group of PHB and amines of organic modifier. The reaction mechanism towards the formation of the nanohybrids is proposed.
    Matched MeSH terms: Epoxy Compounds
  13. Lee HS, Park JH, Singh JK, Ismail MA
    Materials (Basel), 2016 Sep 03;9(9).
    PMID: 28773875 DOI: 10.3390/ma9090753
    Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance-a mixture of Cr3+ enriched with Cr₂O₃ and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.
    Matched MeSH terms: Epoxy Compounds
  14. Aw YY, Yeoh CK, Idris MA, Teh PL, Hamzah KA, Sazali SA
    Materials (Basel), 2018 Mar 22;11(4).
    PMID: 29565286 DOI: 10.3390/ma11040466
    Fused deposition modelling (FDM) has been widely used in medical appliances, automobile, aircraft and aerospace, household appliances, toys, and many other fields. The ease of processing, low cost and high flexibility of FDM technique are strong advantages compared to other techniques for thermoelectric polymer composite fabrication. This research work focuses on the effect of two crucial printing parameters (infill density and printing pattern) on the tensile, dynamic mechanical, and thermoelectric properties of conductive acrylonitrile butadiene styrene/zinc oxide (CABS/ZnO composites fabricated by FDM technique. Results revealed significant improvement in tensile strength and Young's modulus, with a decrease in elongation at break with infill density. Improvement in dynamic storage modulus was observed when infill density changed from 50% to 100%. However, the loss modulus and damping factor reduced gradually. The increase of thermal conductivity was relatively smaller compared to the improvement of electrical conductivity and Seebeck coefficient, therefore, the calculated figure of merit (ZT) value increased with infill density. Line pattern performed better than rectilinear, especially in tensile properties and electrical conductivity. From the results obtained, FDM-fabricated CABS/ZnO showed much potential as a promising candidate for thermoelectric application.
    Matched MeSH terms: Epoxy Compounds
  15. Abdulhameed AS, Wu R, Musa SA, Agha HM, ALOthman ZA, Jawad AH, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128267.
    PMID: 37992917 DOI: 10.1016/j.ijbiomac.2023.128267
    In this study, chitosan/nano SiO2 (CTS/NS) was chemically modified with bisphenol A diglycidyl ether (BADGE) cross-linker-assisted hydrothermal process to create an effective adsorbent, CTS-BADGE/NS, for the removal of reactive orange 16 (RO16) dye from aquatic systems. Box-Behnken design (BBD) was used to optimize the adsorption process by varying the adsorbent dose (0.02-0.1 g/100 mL), pH (4-10), and time (20-360 min). The adsorption isotherm results indicated that the Langmuir model fits the experimental data well, suggesting that the adsorption process involves a monolayer formation of RO16 on the surface of CTS-BADGE/NS. The kinetic modeling of RO16 adsorption by CTS-BADGE/NS demonstrated that the pseudo-first-order model fits the adsorption data. CTS-BADGE/NS achieved an adsorption capacity of 97.8 mg/g for RO16 dye at optimum desirability functions of dosage 0.099 g/100 mL, solution pH of 4.44, and temperature of 25 °C. Overall, the π-π electron donor-acceptor system significantly improved the adsorption performance of the CTS-BADGE/NS. The results of the regeneration investigation demonstrate that the CTS-BADGE/NS exhibits effective adsorption of RO16, even after undergoing five consecutive cycles. The results of this study suggest that the developed CTS-BADGE/NS composite can be a promising adsorbent for water purification applications.
    Matched MeSH terms: Epoxy Compounds
  16. Amid M, Manap Y, Zohdi NK
    Molecules, 2014 May 22;19(5):6635-50.
    PMID: 24858097 DOI: 10.3390/molecules19056635
    The purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus) peel for the first time was investigated using a novel aqueous two-phase system (ATPS) consisting of a thermo-separating copolymer and an organic solvent. The effectiveness of different parameters such as molecular weight of the thermo-separating ethylene oxide-propylene oxide (EOPO) copolymer and type and concentration of organic solvent on the partitioning behavior of amylase was investigated. In addition, the effects of phase components, volume ratio (VR), pH and crude load of purification factor and yield of amylase were evaluated to achieve the optimum partition conditions of the enzyme. In the novel ATPS method, the enzyme was satisfactorily partitioned into the polymer-rich top phase in the system composed of 30% (w/w) EOPO 2500 and 15% (w/w) 2-propanol, at a volume ratio of 1.94 and with a crude load scale of 25% (w/w) at pH 5.0. Recovery and recycling of components was also measured in each successive step of the ATPS process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 96.6% and copolymer was also recovered and recycled at a rate above 97%, making the method was more economical than the traditional ATPS method.
    Matched MeSH terms: Epoxy Compounds/chemistry
  17. Silverajah VS, Ibrahim NA, Zainuddin N, Yunus WM, Hassan HA
    Molecules, 2012 Oct 08;17(10):11729-47.
    PMID: 23044711 DOI: 10.3390/molecules171011729
    Poly(lactic acid) (PLA) is known to be a useful material in substituting the conventional petroleum-based polymer used in packaging, due to its biodegradability and high mechanical strength. Despite the excellent properties of PLA, low flexibility has limited the application of this material. Thus, epoxidized palm olein (EPO) was incorporated into PLA at different loadings (1, 2, 3, 4 and 5 wt%) through the melt blending technique and the product was characterized. The addition of EPO resulted in a decrease in glass transition temperature and an increase of elongation-at-break, which indicates an increase in the PLA chain mobility. PLA/EPO blends also exhibited higher thermal stability than neat PLA. Further, the PLA/1 wt% EPO blend showed enhancement in the tensile, flexural and impact properties. This is due to improved interaction in the blend producing good compatible morphologies, which can be revealed by Scanning Electron Microscopy (SEM) analysis. Therefore, PLA can be efficiently plasticized by EPO and the feasibility of its use as flexible film for food packaging should be considered.
    Matched MeSH terms: Epoxy Compounds/chemistry*
  18. Giita Silverajah VS, Ibrahim NA, Yunus WM, Hassan HA, Woei CB
    Int J Mol Sci, 2012;13(5):5878-98.
    PMID: 22754338 DOI: 10.3390/ijms13055878
    In this work, poly(lactic acid) (PLA) a fully biodegradable thermoplastic polymer matrix was melt blended with three different epoxidized palm oil (EPO). The aim of this research was to enhance the flexibility, mechanical and thermal properties of PLA. The blends were prepared at various EPO contents of 1, 2, 3, 4 and 5 wt% and characterized. The SEM analysis evidenced successful modification on the neat PLA brittle morphology. Tensile tests indicate that the addition of 1 wt% EPO is sufficient to improve the strength and flexibility compared to neat PLA. Additionally, the flexural and impact properties were also enhanced. Further, DSC analysis showed that the addition of EPO results in a decrease in T(g), which implies an increase in the PLA chain mobility. In the presence of 1 wt% EPO, TGA results revealed significant increase in the thermal stability by 27%. Among the three EPOs used, EPO(3) showed the best mechanical and thermal properties compared to the other EPO's, with an optimum loading of 1 wt%. Conclusively, EPO showed a promising outcome to overcome the brittleness and improve the overall properties of neat PLA, thus can be considered as a potential plasticizer.
    Matched MeSH terms: Epoxy Compounds/chemistry*
  19. Chieng BW, Ibrahim NA, Yunus WM, Hussein MZ, Giita Silverajah VS
    Int J Mol Sci, 2012;13(9):10920-34.
    PMID: 23109829 DOI: 10.3390/ijms130910920
    Graphene nanoplatelet (xGnP) was investigated as a novel reinforcement filler in mechanical properties for poly(lactic acid) (PLA)/epoxidized palm oil (EPO) blend. PLA/EPO/xGnP green nanocomposites were successfully prepared by melt blending method. PLA/EPO reinforced with xGnP resulted in an increase of up to 26.5% and 60.6% in the tensile strength and elongation at break of the nanocomposites respectively, compared to PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. However, incorporation of xGnP has no effect on the flexural strength and modulus. Impact strength of PLA/5 wt% EPO improved by 73.6% with the presence of 0.5 wt% xGnP loading. Mechanical properties of PLA were greatly improved by the addition of a small amount of graphene nanoplatelets (<1 wt%).
    Matched MeSH terms: Epoxy Compounds/chemistry
  20. Abd Razak RA, Ahmad Tarmizi AH, Abdul Hammid AN, Kuntom A, Ismail IS, Sanny M
    PMID: 31437078 DOI: 10.1080/19440049.2019.1654139
    This study was conducted to investigate on the effect of different sampling regions of palm-refined oils and fats on the 2- and 3-monochloropropanediol fatty acid esters (MCPDE) and glycidol fatty acid esters (GE) levels. The American Oil Chemists' Society (AOCS) Official Method Cd 29a-13 on the determination of MCPDE and GE in edible oils and fats by acid transesterification was successfully verified and optimised, with slight modification using 7890A Agilent GC system equipped with 5975C quadrupole detector. The determined limits of detection (LOD) for MCPDE were 0.02 mg kg-1 and 0.05 mg kg-1 for GE. The method performance has showed good recovery between 80% and 120% for all pertinent compounds with seven replicates assayed in three separate days. Round robin test with two European laboratories, i.e. Eurofins and SGS, has shown compliance results with those of the present study. Among the sampling regions, only one refinery located in the central region of Malaysia showed a significant increment of the MCPDE and GE levels after refining process. The GE level averaging at 2.5 mg kg-1 was slightly higher than that of 3-MCPDE averaging at 1.3 mg kg-1. Both esters were preferentially partitioned into the liquid phase rather than the solid phase after fractionation. However, the overall results exhibited no direct correlation between the esters content and the different sampling locations of the palm oil products in Malaysia. Analysis of total chlorine content also displayed significant variations between sampling locations which clearly show its effect on the chlorine content in the CPO samples.
    Matched MeSH terms: Epoxy Compounds/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links