Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Ibrahim S, Green RG, Dutton K, Abdul Rahim R
    ISA Trans, 2002 Jan;41(1):13-8.
    PMID: 12014798
    This paper describes a system using lensed optical fiber sensors that are arranged in the form of two orthogonal projections. The sensors are placed around a process vessel for upstream and downstream measurements. The purpose of the system is for on-line monitoring of particles and droplets being conveyed by a fluid. The lenses were constructed using a custom heating fixture. The fixture enables the lenses to be constructed with similar radii resulting in identical characteristics with minimum differences in transmitted intensity and emission angle. By collimating radiation from two halogen bulbs, radiation can be obtained by the sensors with radiation intensity related to the nature of the media. Each sensor interrogates a finite section of the measurement section. Each sensor provides a view. Parallel sensors provide a projection. Signal processing is carried out on the measured data in the time and frequency domains to investigate the latent information present in the flow signals.
    Matched MeSH terms: Fiber Optic Technology/instrumentation*; Fiber Optic Technology/methods
  2. Abu Hassan MR, Abu Bakar MH, Dambul K, Adikan FR
    Sensors (Basel), 2012;12(11):15820-6.
    PMID: 23202233 DOI: 10.3390/s121115820
    In this paper, we present the development and testing of an optical-based sensor for monitoring the corrosion of reinforcement rebar. The testing was carried out using an 80% etched-cladding Fibre Bragg grating sensor to monitor the production of corrosion waste in a localized region of the rebar. Progression of corrosion can be sensed by observing the reflected wavelength shift of the FBG sensor. With the presence of corrosion, the etched-FBG reflected spectrum was shifted by 1.0 nm. In addition, with an increase in fringe pattern and continuously, step-like drop in power of the Bragg reflected spectrum was also displayed.
    Matched MeSH terms: Fiber Optic Technology
  3. Al-Fakih EA, Osman NA, Eshraghi A, Adikan FR
    Sensors (Basel), 2013 Aug 12;13(8):10348-57.
    PMID: 23941909 DOI: 10.3390/s130810348
    This study presents the first investigation into the capability of fiber Bragg grating (FBG) sensors to measure interface pressure between the stump and the prosthetic sockets of a trans-tibial amputee. FBG element(s) were recoated with and embedded in a thin layer of epoxy material to form a sensing pad, which was in turn embedded in a silicone polymer material to form a pressure sensor. The sensor was tested in real time by inserting a heavy-duty balloon into the socket and inflating it by using an air compressor. This test was conducted to examine the sensitivity and repeatability of the sensor when subjected to pressure from the stump of the trans-tibial amputee and to mimic the actual environment of the amputee's Patellar Tendon (PT) bar. The sensor exhibited a sensitivity of 127 pm/N and a maximum FSO hysteresis of around ~0.09 in real-time operation. Very good reliability was achieved when the sensor was utilized for in situ measurements. This study may lead to smart FBG-based amputee stump/socket structures for pressure monitoring in amputee socket systems, which will result in better-designed prosthetic sockets that ensure improved patient satisfaction.
    Matched MeSH terms: Fiber Optic Technology/instrumentation*
  4. Rahman HA, Harun SW, Arof H, Irawati N, Musirin I, Ibrahim F, et al.
    J Biomed Opt, 2014 May;19(5):057009.
    PMID: 24839996 DOI: 10.1117/1.JBO.19.5.057009
    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
    Matched MeSH terms: Fiber Optic Technology/instrumentation; Fiber Optic Technology/methods*
  5. Islam MR, Ali MM, Lai MH, Lim KS, Ahmad H
    Sensors (Basel), 2014;14(4):7451-88.
    PMID: 24763250 DOI: 10.3390/s140407451
    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed.
    Matched MeSH terms: Fiber Optic Technology
  6. Yang HZ, Lim KS, Qiao XG, Chong WY, Cheong YK, Lim WH, et al.
    Opt Express, 2013 Jun 17;21(12):14808-15.
    PMID: 23787668 DOI: 10.1364/OE.21.014808
    We present a new theoretical model for the broadband reflection spectra of etched FBGs which includes the effects of axial contraction and stress-induced index change. The reflection spectra of the etched FBGs with several different taper profiles are simulated based on the proposed model. In our observation, decaying exponential profile produces a broadband reflection spectrum with good uniformity over the range of 1540-1560 nm. An etched FBG with similar taper profile is fabricated and the experimental result shows good agreement with the theoretical model.
    Matched MeSH terms: Fiber Optic Technology/instrumentation*
  7. Rahman HA, Che Ani AI, Harun SW, Yasin M, Apsari R, Ahmad H
    J Biomed Opt, 2012 Jul;17(7):071308.
    PMID: 22894469 DOI: 10.1117/1.JBO.17.7.071308
    The purpose of this study is to investigate the potential of intensity modulated fiber optic displacement sensor scanning system for the imaging of dental cavity. Here, we discuss our preliminary results in the imaging of cavities on various teeth surfaces, as well as measurement of the diameter of the cavities which are represented by drilled holes on the teeth surfaces. Based on the analysis of displacement measurement, the sensitivities and linear range for the molar, canine, hybrid composite resin, and acrylic surfaces are obtained at 0.09667 mV/mm and 0.45 mm; 0.775 mV/mm and 0.4 mm; 0.5109 mV/mm and 0.5 mm; and 0.25 mV/mm and 0.5 mm, respectively, with a good linearity of more than 99%. The results also show a clear distinction between the cavity and surrounding tooth region. The stability, simplicity of design, and low cost of fabrication make it suitable for restorative dentistry.
    Matched MeSH terms: Fiber Optic Technology/instrumentation*
  8. Lim KS, Jasim AA, Damanhuri SS, Harun SW, Rahman BM, Ahmad H
    Appl Opt, 2011 Oct 20;50(30):5912-6.
    PMID: 22015420 DOI: 10.1364/AO.50.005912
    Effects of immersing a microfiber knot resonator (MKR) in liquid solutions that have refractive indices close to that of silica are experimentally demonstrated and theoretically analyzed. Significant improvement in resonance extinction ratio within 2 to 10 dB was observed. To achieve a better understanding, a qualitative analysis of the coupling ratio and round-trip attenuation of the MKR is performed by using a curve-fitting method. It was observed that the coupling coefficient at the knot region increased when immersed in liquids. However, depending on the initial state of the coupling and the quantity of the increment in the coupling coefficient when immersed in a liquid, it is possible that the MKR may experience a deficit in the coupling parameter due to the sinusoidal relationship with the coupling coefficient.
    Matched MeSH terms: Fiber Optic Technology
  9. Shirazi MR, Harun SW, Biglary M, Ahmad H
    Opt Lett, 2008 Apr 15;33(8):770-2.
    PMID: 18414527
    A configuration for linear cavity Brillouin fiber laser (BFL) generation is demonstrated using a standard single-mode fiber, two optical circulators, a 3 dB coupler, and a 95/5 coupler to allow high efficiency. With a Brillouin pump (BP) power of 13 dBm, the laser peak power is 12.3 dB higher than a conventional linear cavity BFL at an upshifted wavelength of 0.086 nm from the BP wavelength. In addition, it is revealed that the BFL peak power can be higher than the transmitted BP peak power when the BP power exceeds the second Brillouin Stokes threshold power.
    Matched MeSH terms: Fiber Optic Technology
  10. Yaacob I, Harun Z, Ahmad Z
    Singapore Med J, 1991 Feb;32(1):26-8.
    PMID: 2017700
    Two hundred and ninety-three bronchoscopies were done for 285 patients (78% males, 22% females) at Hospital University Sains Malaysia between 1984 and 1988. The mean age was 56.4 years (range 13 to 90 years). 70.2% of patients underwent bronchoscopies to confirm or exclude the diagnosis of carcinoma of the bronchus, out of which 58% were confirmed to have bronchial carcinoma. 77% of the 98 patients with visible endobronchial tumours had biopsy specimens diagnostic of malignancy. Brushing and washing cytology increased the positive yield to 92%. The commonest histological type of bronchial carcinoma identified was squamous cell carcinoma (48.1%), followed by small cell carcinoma (27.1%), anaplastic/undifferentiated carcinoma (12.9%), adenocarcinoma (9.4%) and large cell carcinoma (2.4%). Bronchoscopy for the investigation of haemoptysis identified the commonest cause as 'bronchitis'. There were no complications noted in our series. Notable differences of our experience compared to that of the western series were the high percentage of bronchoscopy done for infective respiratory disorders and the younger age of our patients.
    Matched MeSH terms: Fiber Optic Technology
  11. Qazi HH, bin Mohammad AB, Akram M
    Sensors (Basel), 2012 Nov 29;12(12):16522-56.
    PMID: 23443392 DOI: 10.3390/s121216522
    Optical chemical sensors have promoted escalating interest in the determination of various pollutants in the environment, which are creating toxicity and may cause serious health problems. This review paper focuses particularly on the recent progress and developments in this field; the working principles and basic classes of optical chemical sensors have been briefly described.
    Matched MeSH terms: Fiber Optic Technology
  12. Shaddad RQ, Mohammad AB, Al-Gailani SA, Al-Hetar AM
    ScientificWorldJournal, 2014;2014:170471.
    PMID: 24772009 DOI: 10.1155/2014/170471
    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.
    Matched MeSH terms: Fiber Optic Technology*
  13. Abass AK, Al-Mansoori MH, Jamaludin MZ, Abdullah F, Al-Mashhadani TF
    Appl Opt, 2013 Jun 1;52(16):3764-9.
    PMID: 23736332 DOI: 10.1364/AO.52.003764
    We experimentally investigate the performance of L-band multiwavelength Brillouin-Raman fiber laser (MBRFL) under forward and backward pumped environments utilizing a linear cavity. A short length of 1.18 km dispersion compensating fiber is used as a nonlinear gain medium for both Brillouin and Raman gain. Experimental results indicate that the gain in the copumped laser configuration is higher than the gain in the counterpumped configuration. A stable and constant number of Brillouin Stokes lines up to 23 Stokes, with channel spacing of 0.08 nm and more than 20 dB of optical signal to noise ratio, can be generated as well as tuning over 20 nm in the L-band region from 1570 to 1590 nm. The laser generating the Brillouin Stokes lines exhibits flat amplitude bandwidth and high average output power of 0.8 and 1.6 dBm for the copropagation and counterpropagation pumps, respectively. Moreover, the tuning range bandwidth of the MBRFL can be predicted from the oscillated Brillouin pump gain profile.
    Matched MeSH terms: Fiber Optic Technology
  14. Chong SS, Aziz AR, Harun SW, Arof H
    Sensors (Basel), 2014;14(9):15836-48.
    PMID: 25166498 DOI: 10.3390/s140915836
    In this study, the construction and test of tapered plastic optical fiber (POF) sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB) dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10(-4) and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing.
    Matched MeSH terms: Fiber Optic Technology/instrumentation*
  15. Taha BA, Ali N, Sapiee NM, Fadhel MM, Mat Yeh RM, Bachok NN, et al.
    Biosensors (Basel), 2021 Jul 27;11(8).
    PMID: 34436055 DOI: 10.3390/bios11080253
    Understanding environmental information is necessary for functions correlated with human activities to improve healthcare quality and reduce ecological risk. Tapered optical fibers reduce some limitations of such devices and can be considerably more responsive to fluorescence and absorption properties changes. Data have been collected from reliable sources such as Science Direct, IEEE Xplore, Scopus, Web of Science, PubMed, and Google Scholar. In this narrative review, we have summarized and analyzed eight classes of tapered-fiber forms: fiber Bragg grating (FBG), long-period fiber grating (LPFG), Mach-Zehnder interferometer (MZI), photonic crystals fiber (PCF), surface plasmonic resonance (SPR), multi-taper devices, fiber loop ring-down technology, and optical tweezers. We evaluated many issues to make an informed judgement about the viability of employing the best of these methods in optical sensors. The analysis of performance for tapered optical fibers depends on four mean parameters: taper length, sensitivity, wavelength scale, and waist diameter. Finally, we assess the most potent strategy that has the potential for medical and environmental applications.
    Matched MeSH terms: Fiber Optic Technology*
  16. Mohd Zulfakar Mazlan, Shamsul Kamalrujan Hassan, Laila Abd Mukmin, Mohd Hasyizan Hassan, Huda Zainal Abiddin, Irfan Mohamad, et al.
    MyJurnal
    Giant haemangioma of the tongue is a disease which can
    obstruct the oropharyngeal airway and is presented with
    obstructive symptoms. Due to its vascularity, inserting
    laryngoscope for intubation can cause high risks, such as
    inducing bleeding. Hypoxia and excessive bleeding must be
    anticipated while securing the airway. We present a case of
    novel usage of dexmedetomidine as a conscious sedation agent
    for awake fibre optic intubation in a 9-year-old child with
    obstructive symptoms secondary to a huge tongue
    haemangioma, who was presented for interventional
    sclerotherapy of the lesion.
    Matched MeSH terms: Fiber Optic Technology
  17. Abd H, Din NM, Al-Mansoori MH, Abdullah F, Fadhil HA
    ScientificWorldJournal, 2014;2014:243795.
    PMID: 24883364 DOI: 10.1155/2014/243795
    A new approach to suppressing the four-wave mixing (FWM) crosstalk by using the pairing combinations of differently linear-polarized optical signals was investigated. The simulation was conducted using a four-channel system, and the total data rate was 40 Gb/s. A comparative study on the suppression of FWM for existing and suggested techniques was conducted by varying the input power from 2 dBm to 14 dBm. The robustness of the proposed technique was examined with two types of optical fiber, namely, single-mode fiber (SMF) and dispersion-shifted fiber (DSF). The FWM power drastically reduced to less than -68 and -25 dBm at an input power of 14 dBm, when the polarization technique was conducted for SMF and DSF, respectively. With the conventional method, the FWM powers were, respectively, -56 and -20 dBm. The system performance greatly improved with the proposed polarization approach, where the bit error rates (BERs) at the first channel were 2.57 × 10(-40) and 3.47 × 10(-29) at received powers of -4.90 and -13.84 dBm for SMF and DSF, respectively.
    Matched MeSH terms: Fiber Optic Technology/methods*
  18. Ng BH, Ban Yu-Lin A, Low HJ, Faisal M
    BMJ Case Rep, 2020 Aug 25;13(8).
    PMID: 32843453 DOI: 10.1136/bcr-2020-235316
    Endobronchial hamartoma is a rare tumour. We report a 65-year-old woman with a history of recurrent pneumonia. Bronchoscopy revealed a 1 cm endobronchial mass obstructing the left upper lobe bronchus. Histopathological examination was consistent with a pulmonary hamartoma. This lesion was successfully debulked endoscopically with the use of a flexible cryoprobe without any complications. This case highlights both the importance of investigating recurrent pneumonia and the usefulness of endoscopic recanalisation in an obstructed segmental bronchus.
    Matched MeSH terms: Fiber Optic Technology
  19. Hazura Haroon, Abdul Aziz Abu Mansor, Hanim Abdul Razak, Siti Khadijah Idris, Anis Suhaila Mohd Zain, Fauziyah Salehuddin
    MyJurnal
    An investigation of bending loss characteristics of a Polymer Optical Fiber is presented experimentally. Loss of optical power in an optical fiber due to bending has been investigated for a wavelength of 650 nm. Variations of bending loss with different lengths have been measured, with a number of radii of curvature. Bending Loss equations for short length POF is proposed, which shows the dependence of bending loss on the curvature radii. The equations can be an initial reference or aid in predicting the loss contributes by the polymer optical fiber.
    Matched MeSH terms: Fiber Optic Technology
  20. Chong SS, Aziz AR, Harun SW
    Sensors (Basel), 2013 Jul 05;13(7):8640-68.
    PMID: 23881131 DOI: 10.3390/s130708640
    Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising.
    Matched MeSH terms: Fiber Optic Technology/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links