Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Zainudin NA, Condon B, De Bruyne L, Van Poucke C, Bi Q, Li W, et al.
    Mol Plant Microbe Interact, 2015 Oct;28(10):1130-41.
    PMID: 26168137 DOI: 10.1094/MPMI-03-15-0068-R
    The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 is required for activation of nonribosomal peptide synthetases, including α-aminoadipate reductase (AAR) for lysine biosynthesis and polyketide synthases, enzymes that biosynthesize peptide and polyketide secondary metabolites, respectively. Deletion of the PPT1 gene, from the maize pathogen Cochliobolus heterostrophus and the rice pathogen Cochliobolus miyabeanus, yielded strains that were significantly reduced in virulence to their hosts. In addition, ppt1 mutants of C. heterostrophus race T and Cochliobolus victoriae were unable to biosynthesize the host-selective toxins (HST) T-toxin and victorin, respectively, as judged by bioassays. Interestingly, ppt1 mutants of C. miyabeanus were shown to produce tenfold higher levels of the sesterterpene-type non-HST ophiobolin A, as compared with the wild-type strain. The ppt1 strains of all species were also reduced in tolerance to oxidative stress and iron depletion; both phenotypes are associated with inability to produce extracellular siderophores biosynthesized by the nonribosomal peptide synthetase Nps6. Colony surfaces were hydrophilic, a trait previously associated with absence of C. heterostrophus Nps4. Mutants were decreased in asexual sporulation and C. heterostrophus strains were female-sterile in sexual crosses; the latter phenotype was observed previously with mutants lacking Nps2, which produces an intracellular siderophore. As expected, mutants were albino, since they cannot produce the polyketide melanin and were auxotrophic for lysine because they lack an AAR.
    Matched MeSH terms: Fungal Proteins/metabolism
  2. Jaafar NR, Littler D, Beddoe T, Rossjohn J, Illias RM, Mahadi NM, et al.
    Acta Crystallogr F Struct Biol Commun, 2016 11 01;72(Pt 11):831-839.
    PMID: 27827354
    Fuculose-1-phosphate aldolase (FucA) catalyses the reversible cleavage of L-fuculose 1-phosphate to dihydroxyacetone phosphate (DHAP) and L-lactaldehyde. This enzyme from mesophiles and thermophiles has been extensively studied; however, there is no report on this enzyme from a psychrophile. In this study, the gene encoding FucA from Glaciozyma antarctica PI12 (GaFucA) was cloned and the enzyme was overexpressed in Escherichia coli, purified and crystallized. The tetrameric structure of GaFucA was determined to 1.34 Å resolution. The overall architecture of GaFucA and its catalytically essential histidine triad are highly conserved among other fuculose aldolases. Comparisons of structural features between GaFucA and its mesophilic and thermophilic homologues revealed that the enzyme has typical psychrophilic attributes, indicated by the presence of a high number of nonpolar residues at the surface and a lower number of arginine residues.
    Matched MeSH terms: Fungal Proteins/metabolism
  3. Amri Saroukolaei S, Pei Pei C, Shokri H, Asadi F
    J Mycol Med, 2012 Jun;22(2):149-59.
    PMID: 23518017 DOI: 10.1016/j.mycmed.2012.01.002
    To compare the specific intracellular proteinase A activity in clinical isolates of Candida species isolated from Iranian and Malaysian patients, the blood and kidneys of mice infected by Candida cells isolated from these human patients.
    Matched MeSH terms: Fungal Proteins/metabolism
  4. Oslan SN, Salleh AB, Rahman RN, Basri M, Chor AL
    Acta Biochim. Pol., 2012;59(2):225-9.
    PMID: 22577620
    Yeasts are a convenient platform for many applications. They have been widely used as the expression hosts. There is a need to have a new yeast expression system to contribute the molecular cloning demands. Eight yeast isolates were screened from various environment sources and identified through ribosomal DNA (rDNA) Internal Transcribed Spacer (ITS). Full sequence of the rDNA ITS region for each isolate was BLASTed and phylogenetic study was constructed by using MEGA4. Among the isolates, isolate WB from 'ragi' (used to ferment carbohydrates) could be identified as a new species in order Saccharomycetales according to rDNA ITS region, morphology and biochemical tests. Isolate SO (from spoiled orange), RT (rotten tomato) and RG (different type of 'ragi') were identified as Pichia sp. Isolates R1 and R2, S4 and S5 (from the surrounding of a guava tree) were identified as Issatchenkia sp. and Hanseniaspora sp., respectively. Geneticin, 50 µg/mL, was determined to be the antibiotic marker for all isolates excepted for isolates RT and SO which used 500 µg/mL and 100 µg/mL Zeocin, respectively. Intra-extracellular proteins were screened for lipolytic activity at 30°C and 70°C. Thermostable lipase activity was detected in isolates RT and R1 with 0.6 U/mg and 0.1 U/mg, respectively. In conclusion, a new yeast-vector system for isolate WB can be developed by using phleomycin or geneticin as the drugs resistance marker. Moreover, strains RT and R1 can be investigated as a novel source of a thermostable lipase.
    Matched MeSH terms: Fungal Proteins/metabolism
  5. Darah I, Sumathi G, Jain K, Lim SH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1682-90.
    PMID: 21947762 DOI: 10.1007/s12010-011-9387-8
    Agitation speed was found to influence the tannase production and fungal growth of Aspergillus niger FETL FT3. The optimal agitation speed was at 200 rpm which produced 1.41 U/ml tannase and 3.75 g/l of fungal growth. Lower or higher agitation speeds than 200 rpm produced lower enzyme production and fungal growth. Based on the SEM and TEM micrograph observation, there was a significant correlation between agitation speed and the morphology of the fungal mycelia. The results revealed an increase of the enzyme production with the change of the fungal growth morphology from filamentous to pelleted growth forms. However, the exposure to higher shear stress with an increasing agitation speed of the shaker also resulted in lower biomass yields as well as enzyme production.
    Matched MeSH terms: Fungal Proteins/metabolism*
  6. Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM
    Microb Cell Fact, 2011;10:94.
    PMID: 22050784 DOI: 10.1186/1475-2859-10-94
    Cold-adapted enzymes are proteins produced by psychrophilic organisms that display a high catalytic efficiency at extremely low temperatures. Chitin consists of the insoluble homopolysaccharide β-(1, 4)-linked N-acetylglucosamine, which is the second most abundant biopolymer found in nature. Chitinases (EC 3.2.1.14) play an important role in chitin recycling in nature. Biodegradation of chitin by the action of cold-adapted chitinases offers significant advantages in industrial applications such as the treatment of chitin-rich waste at low temperatures, the biocontrol of phytopathogens in cold environments and the biocontrol of microbial spoilage of refrigerated food.
    Matched MeSH terms: Fungal Proteins/metabolism
  7. Low CF, Chong PP, Yong PV, Lim CS, Ahmad Z, Othman F
    J Appl Microbiol, 2008 Dec;105(6):2169-77.
    PMID: 19120662 DOI: 10.1111/j.1365-2672.2008.03912.x
    The aims of the present study were to determine whether Allium sativum (garlic) extract has any effect on the morphology transformation of Candida albicans, and to investigate whether it could alter the gene expression level of SIR2, a morphogenetic control gene and SAP4, a gene encoding secreted aspartyl proteinase.
    Matched MeSH terms: Fungal Proteins/metabolism*
  8. Chan CL, Yew SM, Ngeow YF, Na SL, Lee KW, Hoh CC, et al.
    BMC Genomics, 2015 Nov 18;16:966.
    PMID: 26581579 DOI: 10.1186/s12864-015-2200-2
    BACKGROUND: Daldinia eschscholtzii is a wood-inhabiting fungus that causes wood decay under certain conditions. It has a broad host range and produces a large repertoire of potentially bioactive compounds. However, there is no extensive genome analysis on this fungal species.

    RESULTS: Two fungal isolates (UM 1400 and UM 1020) from human specimens were identified as Daldinia eschscholtzii by morphological features and ITS-based phylogenetic analysis. Both genomes were similar in size with 10,822 predicted genes in UM 1400 (35.8 Mb) and 11,120 predicted genes in UM 1020 (35.5 Mb). A total of 751 gene families were shared among both UM isolates, including gene families associated with fungus-host interactions. In the CAZyme comparative analysis, both genomes were found to contain arrays of CAZyme related to plant cell wall degradation. Genes encoding secreted peptidases were found in the genomes, which encode for the peptidases involved in the degradation of structural proteins in plant cell wall. In addition, arrays of secondary metabolite backbone genes were identified in both genomes, indicating of their potential to produce bioactive secondary metabolites. Both genomes also contained an abundance of gene encoding signaling components, with three proposed MAPK cascades involved in cell wall integrity, osmoregulation, and mating/filamentation. Besides genomic evidence for degrading capability, both isolates also harbored an array of genes encoding stress response proteins that are potentially significant for adaptation to living in the hostile environments.

    CONCLUSIONS: Our genomic studies provide further information for the biological understanding of the D. eschscholtzii and suggest that these wood-decaying fungi are also equipped for adaptation to adverse environments in the human host.

    Matched MeSH terms: Fungal Proteins/metabolism
  9. Ejike UC, Chan CJ, Okechukwu PN, Lim RLH
    Crit Rev Biotechnol, 2020 Dec;40(8):1172-1190.
    PMID: 32854547 DOI: 10.1080/07388551.2020.1808581
    Fungal immunomodulatory proteins (FIPs) are fascinating small and heat-stable bioactive proteins in a distinct protein family due to similarities in their structures and sequences. They are found in fungi, including the fruiting bodies producing fungi comprised of culinary and medicinal mushrooms. Structurally, most FIPs exist as homodimers; each subunit consisting of an N-terminal α-helix dimerization and a C-terminal fibronectin III domain. Increasing numbers of identified FIPs from either different or same fungal species clearly indicates the growing research interests into its medicinal properties which include immunomodulatory, anti-inflammation, anti-allergy, and anticancer. Most FIPs increased IFN-γ production in peripheral blood mononuclear cells, potentially exerting immunomodulatory and anti-inflammatory effects by inhibiting overproduction of T helper-2 (Th2) cytokines common in an allergy reaction. Recently, FIP from Ganoderma microsporum (FIP-gmi) was shown to promote neurite outgrowth for potential therapeutic applications in neuro-disorders. This review discussed FIPs' structural and protein characteristics, their recombinant protein production for functional studies, and the recent advances in their development and applications as pharmaceutics and functional foods.
    Matched MeSH terms: Fungal Proteins/metabolism*
  10. De Bruyne L, Van Poucke C, Di Mavungu DJ, Zainudin NA, Vanhaecke L, De Vleesschauwer D, et al.
    Mol Plant Pathol, 2016 Aug;17(6):805-17.
    PMID: 26456797 DOI: 10.1111/mpp.12329
    Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non-ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra-high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem-quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild-type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin-insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development.
    Matched MeSH terms: Fungal Proteins/metabolism
  11. Yong HY, Bakar FD, Illias RM, Mahadi NM, Murad AM
    Braz J Microbiol, 2013 Dec;44(4):1241-50.
    PMID: 24688518
    The mitogen-activated protein (MAP) kinase pathways has been implicated in the pathogenicity of various pathogenic fungi and plays important roles in regulating pathogenicity-related morphogenesis. This work describes the isolation and characterization of MAP kinase gene, Cgl-SLT2, from Colletotrichum gloeosporioides. A DNA sequence, including 1,633 bp of Cgl-SLT2 open-reading frame and its promoter and terminator regions, was isolated via DNA walking and cloned. To analyze gene function, a gene disruption cassette containing hygromycin-resistant gene was constructed, and Cgl-SLT2 was inactivated via gene deletion. Analysis on Cgl-slt2 mutant revealed a defect in vegetative growth and sporulation as compared to the wild-type strain. When grown under nutrient-limiting conditions, hyperbranched hyphal morphology was observed in the mutant. Conidia induction for germination on rubber wax-coated hard surfaces revealed no differences in the percentage of conidial germination between the wild-type and Cgl-slt2 mutant. However, the percentage of appressorium formation in the mutant was greatly reduced. Bipolar germination in the mutant was higher than in the wild-type at 8-h post-induction. A pathogenicity assay revealed that the mutant was unable to infect either wounded or unwounded mangoes. These results suggest that the Cgl-SLT2 MAP kinase is required for C. gloeosporioides conidiation, polarized growth, appressorium formation and pathogenicity.
    Matched MeSH terms: Fungal Proteins/metabolism*
  12. Rafiqul IS, Sakinah AM, Zularisam AW
    Biotechnol Lett, 2015 Jan;37(1):191-6.
    PMID: 25214231 DOI: 10.1007/s10529-014-1672-5
    Xylose reductase (XR) is an oxidoreductase having potential applications in the production of various specialty products, mainly xylitol. It is important to screen for compounds that can decrease XR activity and consequently can decrease xylitol production. We have identified the byproducts in the hemicellulosic hydrolysate that inhibit XR from Candida tropicalis and measured their effects. XR inhibitory activities of byproducts, glucose, acetic acid, arabinose, lignin-degradation products (LDPs), furfural and hydroxymethylfurfural (HMF), were evaluated by measuring the MIC and IC50 values. XR activity was 11.2 U/ml. Acetic acid, LDPs, furfural and HMF significantly inhibited XR with IC50 values of 11, 6.4, 2.3 and 0.4 g/l, respectively. This is the first report on the inhibitory activities of several byproducts for XR.
    Matched MeSH terms: Fungal Proteins/metabolism*
  13. Mohamad Ansor N, Abdullah N, Aminudin N
    PMID: 24093919 DOI: 10.1186/1472-6882-13-256
    Ganoderma lucidum has been purported as a potent remedy in the treatment and prevention of several ailments, including hypertension. This study aimed to explore the anti-ACE potential of protein fractions from the mycelia of G. lucidum.
    Matched MeSH terms: Fungal Proteins/metabolism
  14. Lau BF, Aminudin N, Abdullah N
    J Microbiol Methods, 2011 Oct;87(1):56-63.
    PMID: 21801760 DOI: 10.1016/j.mimet.2011.07.005
    Mushrooms are considered as important source of biologically active compounds which include low-molecular-mass protein/peptides (LMMP). In this study, we attempted to profile the LMMP from Lignosus rhinocerus, a wild medicinal mushroom, grown by static cultures (SC) and in stirred tank reactor (STR). Crude water extract (CWE) and protein fractions were profiled using H50 ProteinChip® arrays and SELDI-TOF-MS. Three protein peaks of 5.8, 6.9 and 9.1 kDa were found to be common to spectra of L. rhinocerus CWE from both culture conditions. Partial protein purification has resulted in detection of more peaks in the spectra of protein fractions. For protein fractions of L. rhinocerus cultured in STR, most peaks were observed in the range of 3-8 kDa whereas some peaks with molecular mass up to 14.3 kDa were noted in spectra of protein fractions from SC. Our results have demonstrated the optimization of profiling method using SELDI-TOF-MS for fungal LMMP.
    Matched MeSH terms: Fungal Proteins/metabolism*
  15. Shah SH, Kar RK, Asmawi AA, Rahman MB, Murad AM, Mahadi NM, et al.
    PLoS One, 2012;7(11):e49788.
    PMID: 23209600 DOI: 10.1371/journal.pone.0049788
    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.
    Matched MeSH terms: Fungal Proteins/metabolism
  16. Lim CS, Wong WF, Rosli R, Ng KP, Seow HF, Chong PP
    J Basic Microbiol, 2009 Dec;49(6):579-83.
    PMID: 19810039 DOI: 10.1002/jobm.200900035
    Candida albicans is capable of undergoing yeast-hypha transition to attain pathogenicity in humans. In this study, we investigated the differential expression of CaSIR2 via quantitative real-time PCR (qPCR), during yeast-hypha transition with and without the presence of 2-dodecanol. SIR2 transcript levels were found to be significantly enhanced after hyphal induction as compared to the yeast form. This study found that 2-dodecanol is able to inhibit hyphal development and block SIR2 up-regulation, even in hyphal-inducing growth conditions. We suggest that SIR2 may be involved in Candida albicans quorum-sensing and serum-induced yeast-hyphae transition via the Ras1-cAMP-Efg1 signalling cascade.
    Matched MeSH terms: Fungal Proteins/metabolism*
  17. Lian W, Li D, Zhang L, Wang W, Faiza M, Tan CP, et al.
    Enzyme Microb Technol, 2018 Oct;117:56-63.
    PMID: 30037552 DOI: 10.1016/j.enzmictec.2018.06.007
    Conjugated linoleic acid (CLA)-rich triacylglycerols (TAG) have received significant attention owing to their health promoting properties. In this study, CLA-rich TAG were successfully synthesized by an immobilized mutant lipase (MAS1-H108A)-catalyzed esterification of CLA-rich fatty acids and glycerol under vacuum. MAS1-H108A was first immobilized onto ECR1030 resin. Results showed that the lipase/support ratio of 41 mg/g was suitable for the immobilization and the thermostability of immobilized MAS1-H108A was greatly enhanced. Subsequently, the immobilized MAS1-H108A was employed for the synthesis of CLA-rich TAG and 95.21% TAG with 69.19% CLA was obtained under the optimized conditions. The TAG content (95.21%) obtained by immobilized MAS1-H108A is the reported highest value thus far, which was significantly higher than that (9.26%) obtained by Novozym 435 under the same conditions. Although the TAG content comparable to the results obtained in this study could also be obtained by Novozym 435, the used enzyme amount is approximately 5-fold of the immobilized MAS1-H108A. Additionally, the immobilized MAS1-H108A exhibited excellent recyclability during esterification retaining 95.11% of its initial activity after 10 batches. Overall, such immobilized mutant lipase with superior esterification activity and recyclability has the potential to be used in oils and fats industry.
    Matched MeSH terms: Fungal Proteins/metabolism*
  18. El-Boulifi N, Ashari SE, Serrano M, Aracil J, Martínez M
    Enzyme Microb Technol, 2014 Feb 5;55:128-32.
    PMID: 24411455 DOI: 10.1016/j.enzmictec.2013.10.009
    The aim of this work was the synthesis of a novel hydroxyl-fatty acid derivative of kojic acid rich in kojic acid monoricinoleate (KMR) which can be widely used in the cosmetic and food industry. The synthesis of KMR was carried out by lipase-catalysed esterification of ricinoleic and kojic acids in solvent-free system. Three immobilized lipases were tested and the best KMR yields were attained with Lipozyme TL IM and Novozym 435. Since Lipozyme TL IM is the cheapest, it was selected to optimize the reaction conditions. The optimal reaction conditions were 80 °C for the temperature, 1:1 for the alcohol/acid molar ratio, 600 rpm for stirring speed and 7.8% for the catalyst concentration. Under these conditions, the reaction was scaled up in a 5×10⁻³ m³ stirred tank reactor. ¹H-¹³C HMBC-NMR showed that the primary hydroxyl group of kojic acid was regioselectively esterified. The KMR has more lipophilicity than kojic acid and showed antioxidant activity that improves the oxidation stability of biodiesel.
    Matched MeSH terms: Fungal Proteins/metabolism
  19. Lok B, Adam MAA, Kamal LZM, Chukwudi NA, Sandai R, Sandai D
    Med Mycol, 2021 Feb 04;59(2):115-125.
    PMID: 32944760 DOI: 10.1093/mmy/myaa080
    Candida albicans is a commensal yeast commonly found on the skin and in the body. However, in immunocompromised individuals, the fungi could cause local and systemic infections. The carbon source available plays an important role in the establishment of C. albicans infections. The fungi's ability to assimilate a variety of carbon sources plays a vital role in its colonization, and by extension, its fitness and pathogenicity, as it often inhabits niches that are glucose-limited but rich in alternative carbon sources. A difference in carbon sources affect the growth and mating of C. albicans, which contributes to its pathogenicity as proliferation helps the fungi colonize its environment. The carbon source also affects its metabolism and signaling pathways, which are integral parts of the fungi's fitness and pathogenicity. As a big percentage of the carbon assimilated by C. albicans goes to cell wall biogenesis, the availability of different carbon sources will result in cell walls with variations in rigidity, adhesion, and surface hydrophobicity. In addition to the biofilm formation of the fungi, the carbon source also influences whether the fungi grow in yeast- or mycelial-form. Both forms play different roles in C. albicans's infection process. A better understanding of the role of the carbon sources in C. albicans's pathogenicity would contribute to more effective treatment solutions for fungal infections.
    Matched MeSH terms: Fungal Proteins/metabolism
  20. Mohamad Nor N, Hashim NHF, Quay DHX, Mahadi NM, Illias RM, Abu Bakar FD, et al.
    Int J Biol Macromol, 2020 Feb 01;144:231-241.
    PMID: 31843615 DOI: 10.1016/j.ijbiomac.2019.12.099
    Genome data mining of the Antarctic yeast, Glaciozyma antarctica PI12 revealed an expansin-like protein encoding sequence (GaEXLX1). The GaEXLX1 protein is 24.8 kDa with a high alkaline pI of 9.81. Homology modeling of GaEXLX1 showed complete D1 and D2 domains of a conventional expansin. The protein exhibited 36% sequence similarity to Clavibacter michiganensis EXLX1 (PDB: 4JCW). Subsequently, a recombinant GaEXLX1 protein was produced using Escherichia coli expression system. Incubation with Avicel, filter paper and cotton fiber showed that the protein can disrupt the surface of crystalline and pure cellulose, suggesting a cell wall modification activity usually exhibited by expansin-like proteins. Binding assays displayed that GaEXLX1 can bind to polymeric substrates, including those postulated to be present in the sea ice ecosystem such as crab chitin and moss lichenan. GaEXLX1 may assist in the recognition and loosening of these substrates in the sea ice prior to hydrolysis by other extracellular enzymes. Similar loosening mechanism to classical expansin-like protein has been postulated for this psychrophilic protein based on several conserved residues of GaEXLX1 involved in binding interaction identified by docking analyses.
    Matched MeSH terms: Fungal Proteins/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links