Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Anees MA
    New Perspect Q, 1994;11(1):23-4.
    PMID: 15739295
    Matched MeSH terms: Genetic Engineering/ethics
  2. Shamsinar BA
    Med J Malaysia, 2000 Aug;55 Suppl B:62-4.
    PMID: 11125525
    Matched MeSH terms: Genetic Engineering*
  3. Asma MA, Vaishnavi J, Chan L
    JUMMEC, 2002;7:92-99.
    Euthanasia is one of the most controversial topics of the 21st century after cloning and genetic engineering. Has this issue arisen now due to changes in attitude and perception on life of the modem society? This project was undertaken to study the opinions of 2 selected groups of people and secondly, to highlight the legal, ethical and religious controversies on euthanasia. Two groups comprising medical undergraduates and medical personnel were given a questionnaire pertaining 10 his/her opinion and altitude towards euthanasia. The second part of the project was conducted via interviews. The overall opinion from 399 respondents showed that 67.91% are against the practice of euthanasia. Religion is a powerful force against it as Malaysians in general are God-fearing people. There should be proper guidelines explaining how a doctor should respond to patients or family members of patients who request for euthanasia to be performed. It is not legal in Malaysia, but the court has the inherent power to permit it should a particular case have substantial reasoning and evidence. In conclusion, the level of awareness on euthanasia among medical staff and undergraduates is satisfactory. However, most of them do not approve euthanasia in Malaysia.
    Matched MeSH terms: Genetic Engineering
  4. Cyranoski D
    Nature, 2008 May 22;453(7194):435.
    PMID: 18497781 DOI: 10.1038/453435a
    Matched MeSH terms: Genetic Engineering*
  5. Omidvar V, Siti Nor Akmar A, Marziah M, Maheran AA
    Plant Cell Rep, 2008 Sep;27(9):1451-9.
    PMID: 18563415 DOI: 10.1007/s00299-008-0565-2
    The promoter of the oil palm metallothionein-like gene (MT3-A) demonstrated mesocarp-specific activity in functional analysis using transient expression assay of reporter gene in bombarded oil palm tissue slices. In order to investigate the tissue-specific expression of polyhydroxybutyrate (PHB) biosynthetic pathway genes, a multi-gene construct carrying PHB genes fused to the oil palm MT3-A promoter was co-transferred with a construct carrying GFP reporter gene using microprojectile bombardment targeting the mesocarp and leaf tissues of the oil palm. Transcriptional analysis using RT-PCR revealed successful transcription of all the three phbA, phbB, and phbC genes in transiently transformed mesocarp but not in transiently transformed leaf tissues. Furthermore, all the three expected sizes of PHB-encoded protein products were only detected in transiently transformed mesocarp tissues on a silver stained polyacrylamide gel. Western blot analysis using polyclonal antibody specific for phbB product confirmed successful translation of phbB mRNA transcript into protein product. This study provided valuable information, supporting the future engineering of PHB-producing transgenic palms.
    Matched MeSH terms: Genetic Engineering/methods*
  6. Masani MY, Parveez GK, Izawati AM, Lan CP, Siti Nor Akmar A
    Plasmid, 2009 Nov;62(3):191-200.
    PMID: 19699761 DOI: 10.1016/j.plasmid.2009.08.002
    One of the targets in oil palm genetic engineering programme is the production of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV) in the oil palm leaf tissues. Production of PHB requires the use of phbA (beta-ketothiolase type A), phbB (acetoacetyl-CoA reductase) and phbC (PHB synthase) genes of Ralstonia eutropha, whereas bktB (beta-ketothiolase type B), phbB, phbC genes of R. eutropha and tdcB (threonine dehydratase) gene of Escherichia coli were used for PHBV production. Each of these genes was fused with a transit peptide (Tp) of oil palm acyl-carrier-protein (ACP) gene, driven by an oil palm leaf-specific promoter (LSP1) to genetically engineer the PHB/PHBV pathway to the plastids of the leaf tissues. In total, four transformation vectors, designated pLSP15 (PHB) and pLSP20 (PHBV), and pLSP13 (PHB) and pLSP23 (PHBV), were constructed for transformation in Arabidopsis thaliana and oil palm, respectively. The phosphinothricin acetyltransferase gene (bar) driven by CaMV35S promoter in pLSP15 and pLSP20, and ubiquitin promoter in pLSP13 and pLSP23 were used as the plant selectable markers. Matrix attachment region of tobacco (RB7MAR) was also included in the vectors to stabilize the transgene expression and to minimize silencing due to positional effect. Restriction digestion, PCR amplification and/or sequencing were carried out to ensure sequence integrity and orientation.
    Matched MeSH terms: Genetic Engineering
  7. Mustapha Bala Abubakar, Aini Ideris, AbdulRahman Omar, Mohd Hair Bejo
    MyJurnal
    Avian Influenza viruses belonging to the Orthomyxoviridae family are enveloped viruses with segmented negative sense RNA genome surrounded by a helical symmetry capsid. Influenza viruses, especially the highly pathogenic avian influenza virus (HPAI) such as H5 or H7 subtype are the most important pathogens for the poultry industry in recent times. The haemagglutinin protein and neuraminidase, serves as the target for the immune response of the host. Due to recurrent genetic reassortments between avian and human influenza viruses, global pandemics may emerge and the naive human immunity could not withstand pressure by the novel hybrid virus. The emergence of genetic engineering technology provided the industry with new methods of manufacturing diagnostics tools and vaccines. After extraction of RNA from the cell culture of strain influenza A/Chicken/Malaysia/2004(H5N1) of AIV, the viral RNA was converted to cDNA by a specific primer. The cDNA was amplified by the polymerase chain reaction (PCR) and analyzed
    by agarose gel electrophoresis. The intact PCR product of full length haemagglutinin gene was cloned in TO POTM TA Cloning vector. The full-length HA-encoding gene of H5N1 AIV was subcloned into a pPICZA vector. After successful ligation, the constructed plasmid was transformed into E.coli.Top10, Plasmid DNA from transformed bacteria was extracted in white colony and positive clones were confirmed by restriction digestion with Sacl and Not1 restriction enzymes, colony PCR screening and nucleotide sequencing. Construction of a recombinant pPICZA/H5HA plasmid containing the full length haemagglutinin gene was achieved as a first step
    towards the expression in Pichia pastoris.
    Matched MeSH terms: Genetic Engineering
  8. Lim SH, Jahanshiri F, Rahim RA, Sekawi Z, Yusoff K
    Lett Appl Microbiol, 2010 Dec;51(6):658-64.
    PMID: 20973806 DOI: 10.1111/j.1472-765X.2010.02950.x
    A system for displaying heterologous respiratory syncytial virus (RSV) glycoproteins on the surface of Lactococcus lactis NZ9000 was developed.
    Matched MeSH terms: Genetic Engineering
  9. Yong WT, Henry ES, Abdullah JO
    Trop Life Sci Res, 2010 Dec;21(2):115-30.
    PMID: 24575204
    Genetic engineering is a powerful tool for the improvement of plant traits. Despite reported successes in the plant kingdom, this technology has barely scratched the surface of the Melastomataceae family. Limited studies have led to some optimisation of parameters known to affect the transformation efficiency of these plants. The major finding of this study was to optimise the presence of selected enhancers [e.g., monosaccharides (D-glucose, D-galactose and D-fructose), tyrosine, aluminium chloride (AICI3) and ascorbic acid] to improve the transformation efficiency of Tibouchina semidecandra. Agrobacterium tumefaciens strain LBA4404 harbouring the disarmed plasmid pCAMBIA1304 was used to transform shoots and nodes of T. semidecandra. Different concentrations of the transformation enhancers were tested by using green fluorescent protein (GFP) as a reporter. The results obtained were based on the percentage of GFP expression, which was observed 14 days post-transformation. A combination of 120 μM galactose and 100 μM tyrosine supplemented with 600 μM AICI3 in the presence of 15 mg/l ascorbic acid gave the highest percentage of positive transformants for T. semidecandra shoots. Whereas 60 μM galactose and 50 μM tyrosine with 200 μM AICI3 in the presence of 15 mg/l ascorbic acid was optimum for T. semidecandra nodes. The presence of the hygromycin phosphotransferase II (hptII) transgene in the genomic DNA of putative T. semidecandra transformants was verified by PCR amplification with specific primers.
    Matched MeSH terms: Genetic Engineering
  10. Thau, Wilson Lym Yon, Henry, Erle Stanley, Janna Ong Abdullah
    Trop Life Sci Res, 2010;21(2):-.
    MyJurnal
    Genetic engineering is a powerful tool for the improvement of plant traits. Despite reported successes in the plant kingdom, this technology has barely scratched the surface of the Melastomataceae family. Limited studies have led to some optimisation of parameters known to affect the transformation efficiency of these plants. The major finding of this study was to optimise the presence of selected enhancers [e.g., monosaccharides (D-glucose, D-galactose and D-fructose), tyrosine, aluminium chloride (AICI3) and ascorbic
    acid] to improve the transformation efficiency of Tibouchina semidecandra. Agrobacterium tumefaciens strain LBA4404 harbouring the disarmed plasmid pCAMBIA1304 was used to transform shoots and nodes of T. semidecandra. Different concentrations of the transformation enhancers were tested by using green fluorescent protein (GFP) as a reporter. The results obtained were based on the percentage of GFP expression, which was observed 14 days post-transformation. A combination of 120 µM galactose and 100
    µM tyrosine supplemented with 600 µM AICI3 in the presence of 15 mg/l ascorbic acid gave the highest percentage of positive transformants for T. semidecandra shoots. Whereas 60 µM galactose and 50 µM tyrosine with 200 µM AICI3 in the presence of 15 mg/l ascorbic acid was optimum for T. semidecandra nodes. The presence of the hygromycin phosphotransferase II (hptII) transgene in the genomic DNA of putative
    T. semidecandra transformants was verified by PCR amplification with specific primers.
    Matched MeSH terms: Genetic Engineering
  11. Solihu AK, Ambali AR
    Sci Eng Ethics, 2011 Mar;17(1):133-47.
    PMID: 19937149 DOI: 10.1007/s11948-009-9185-7
    The goal of responsible engineers is the creation of useful and safe technological products and commitment to public health, while respecting the autonomy of the clients and the public. Because engineers often face moral dilemma to resolve such issues, different engineers have chosen different course of actions depending on their respective moral value orientations. Islam provides a value-based mechanism rooted in the Maqasid al-Shari'ah (the objectives of Islamic law). This mechanism prioritizes some values over others and could help resolve the moral dilemmas faced in engineering. This paper introduces the Islamic interpretive-evaluative maxims to two core issues in engineering ethics: genetically modified foods and whistleblowing. The study aims primarily to provide problem-solving maxims within the Maqasid al-Shari'ah matrix through which such moral dilemmas in science and engineering could be studied and resolved.
    Matched MeSH terms: Genetic Engineering/ethics
  12. Lau NS, Tsuge T, Sudesh K
    Appl Microbiol Biotechnol, 2011 Mar;89(5):1599-609.
    PMID: 21279348 DOI: 10.1007/s00253-011-3097-6
    Burkholderia sp. synthase has been shown to polymerize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate, and 3-hydroxy-4-pentenoic acid monomers. This study was carried out to evaluate the ability of Burkholderia sp. USM (JCM 15050) and its transformant harboring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae to incorporate the newly reported 3-hydroxy-4-methylvalerate (3H4MV) monomer. Various culture parameters such as concentrations of nutrient rich medium, fructose and 4-methylvaleric acid as well as harvesting time were manipulated to produce P(3HB-co-3H4MV) with different 3H4MV compositions. The structural properties of PHA containing 3H4MV monomer were investigated by using nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). The relative intensities of the bands at 1,183 and 1,228 cm⁻¹ in the FTIR spectra enabled the rapid detection and differentiation of P(3HB-co-3H4MV) from other types of PHA. In addition, the presence of 3H4MV units in the copolymer was found to considerably lower the melting temperature and enthalpy of fusion values compared with poly(3-hydroxybutyrate) (P(3HB)). The copolymer exhibited higher thermo-degradation temperature but similar molecular weight and polydispersity compared with P(3HB).
    Matched MeSH terms: Genetic Engineering
  13. Mohamed MS, Wei LZ, Ariff AB
    Recent Pat Biotechnol, 2011 Aug;5(2):95-107.
    PMID: 21707527
    High cell density cultivation of microalgae via heterotrophic growth mechanism could effectively address the issues of low productivity and operational constraints presently affecting the solar driven biodiesel production. This paper reviews the progress made so far in the development of commercial-scale heterotrophic microalgae cultivation processes. The review also discusses on patentable concepts and innovations disclosed in the past four years with regards to new approaches to microalgal cultivation technique, improvisation on the process flow designs to economically produced biodiesel and genetic manipulation to confer desirable traits leading to much valued high lipid-bearing microalgae strains.
    Matched MeSH terms: Genetic Engineering/methods*
  14. Rasouli M, Ahmad Z, Omar AR, Allaudin ZN
    BMC Biotechnol, 2011 Nov 03;11:99.
    PMID: 22047106 DOI: 10.1186/1472-6750-11-99
    BACKGROUND: Diabetes mellitus is a complicated disease with a pathophysiology that includes hyperinsulinemia, hyperglycemia and other metabolic impairments leading to many clinical complications. It is necessary to develop appropriate treatments to manage the disease and reduce possible acute and chronic side effects. The advent of gene therapy has generated excitement in the medical world for the possible application of gene therapy in the treatment of diabetes. The glucagon-like peptide-1 (GLP-1) promoter, which is recognised by gut L-cells, is an appealing candidate for gene therapy purposes. The specific properties of L-cells suggest that L-cells and the GLP-1 promoter would be useful for diabetes therapy approaches.

    RESULTS: In this study, L-cells were isolated from a primary intestinal cell line to create suitable target cells for insulin expression studies. The isolated cells displayed L-cell properties and were therefore used as an L-cell surrogate. Next, the isolated L-cells were transfected with the recombinant plasmid consisting of an insulin gene located downstream of the GLP-1 promoter. The secretion tests revealed that an increase in glucose concentration from 5 mM to 25 mM induced insulin gene expression in the L-cells by 2.7-fold. Furthermore, L-cells quickly responded to the glucose stimulation; the amount of insulin protein increased 2-fold in the first 30 minutes and then reached a plateau after 90 minutes.

    CONCLUSION: Our data showed that L-cells efficiently produced the mature insulin protein. In addition, the insulin protein secretion was positively regulated with glucose induction. In conclusion, GLP-1 promoter and L-cell could be potential candidates for diabetes gene therapy agents.

    Matched MeSH terms: Genetic Engineering/methods*
  15. Mahdavi F, Sariah M, Maziah M
    Appl Biochem Biotechnol, 2012 Feb;166(4):1008-19.
    PMID: 22183565 DOI: 10.1007/s12010-011-9489-3
    The possibility of controlling Fusarium wilt--caused by Fusarium oxysporum sp. cubensec (race 4)--was investigated by genetic engineering of banana plants for constitutive expression of rice thaumatin-like protein (tlp) gene. Transgene was introduced to cauliflower-like bodies' cluster, induced from meristemic parts of male inflorescences, using particle bombardment with plasmid carrying a rice tlp gene driving by the CaMV 35S promoter. Hygromycin B was used as the selection reagent. The presence and integration of rice tlp gene in genomic DNA confirmed by PCR and Southern blot analyses. RT-PCR revealed the expression of transgene in leaf and root tissues in transformants. Bioassay of transgenic banana plants challenged with Fusarium wilt pathogen showed that expression of TLP enhanced resistance to F. oxysporum sp. cubensec (race 4) compared to control plants.
    Matched MeSH terms: Genetic Engineering
  16. Ahmad Z, Rasouli M, Azman AZ, Omar AR
    BMC Biotechnol, 2012 Sep 19;12:64.
    PMID: 22989329 DOI: 10.1186/1472-6750-12-64
    BACKGROUND: Gene therapy could provide an effective treatment of diabetes. Previous studies have investigated the potential for several cell and tissue types to produce mature and active insulin. Gut K and L-cells could be potential candidate hosts for gene therapy because of their special features.

    RESULTS: In this study, we isolated gut K and L-cells to compare the potential of both cell types to produce insulin when exposed to similar conditions. The isolated pure K and L-cells were transfected with recombinant plasmids encoding insulin and with specific promoters for K or L-cells. Insulin expression was studied in response to glucose or meat hydrolysate. We found that glucose and meat hydrolysate efficiently induced insulin secretion from K and L-cells. However, the effects of meat hydrolysate on insulin secretion were more potent in both cells compared with glucose. Results of enzyme-linked immunosorbent assays showed that L-cells secreted more insulin compared with K-cells regardless of the stimulator, although this difference was not statistically significant.

    CONCLUSION: The responses of K and L-cells to stimulation with glucose or meat hydrolysate were generally comparable. Therefore, both K and L-cells show similar potential to be used as surrogate cells for insulin gene expression in vitro. The potential use of these cells for diabetic gene therapy warrants further investigation.

    Matched MeSH terms: Genetic Engineering
  17. Umar KM, Abdulkarim SM, Radu S, Abdul Hamid A, Saari N
    ScientificWorldJournal, 2012;2012:529031.
    PMID: 22645428 DOI: 10.1100/2012/529031
    A mimicked biosynthetic pathway of catechin metabolite genes from C. sinensis, consisting of flavanone 3 hydroxylase (F3H), dihydroflavonol reductase (DFR), and leucoanthocyanidin reductase (LCR), was designed and arranged in two sets of constructs: (a) single promoter in front of F3H and ribosome-binding sequences both in front of DFR and LCR; (b) three different promoters with each in the front of the three genes and ribosome-binding sequences at appropriate positions. Recombinant E. coli BL (DE3) harbouring the constructs were cultivated for 65 h at 26 °C in M9 medium consisting of 40 g/L glucose, 1 mM IPTG, and 3 mM eriodictyol. Compounds produced were extracted in ethyl acetate in alkaline conditions after 1 h at room temperature and identified by HPLC. Two of the four major catechins, namely, (-)-epicatechin (0.01) and (-)-epicatechin gallate (0.36 mg/L), and two other types ((+)-catechin hydrate (0.13 mg/L) and (-)-catechin gallate (0.04 mg/L)) were successfully produced.
    Matched MeSH terms: Genetic Engineering/methods
  18. Chong WC, Basir R, Fei YM
    Asian Pac J Trop Med, 2013 Feb;6(2):85-94.
    PMID: 23339908 DOI: 10.1016/S1995-7645(13)60001-2
    Malaria is an intra-cellular parasitic protozoon responsible for millions of deaths annually. Host and parasite genetic factors are crucial in affecting susceptibility to malaria and progression of the disease. Recent increased deployment of vector controls and new artemisinin combination therapies have dramatically reduced the mortality and morbidity of malaria worldwide. However, the gradual emergence of parasite and mosquito resistance has raised alarm regarding the effectiveness of current artemisinin-based therapies. In this review, mechanisms of anti-malarial drug resistance in the Plasmodium parasite and new genetically engineered tools of research priorities are discussed. The complexity of the parasite lifecycle demands novel interventions to achieve global eradication. However, turning laboratory discovered transgenic interventions into functional products entails multiple experimental phases in addition to ethical and safety hurdles. Uncertainty over the regulatory status and public acceptance further discourage the implementation of genetically modified organisms.
    Matched MeSH terms: Genetic Engineering/methods*
  19. Rasouli M, Allaudin ZN, Omar AR, Ahmad Z
    Curr Gene Ther, 2013 Aug;13(4):229-39.
    PMID: 23721205 DOI: 10.2174/15665232113139990002
    Poorly controlled diabetes mellitus can result in serious complications. Gene therapy is increasingly being considered as an alternative approach to treat diabetes, because of its ability to induce physiological insulin secretion and it allows patients to escape insulin injections. The properties of gut K and L-cells, including glucose sensitivity, the ability to process insulin and a regulated secretion pathway support their use as surrogate β-cells. Previous in vitro studies have provided sufficient evidence supporting the use of these cells for gene therapy studies. Therefore, we examined the ability of K and L-cells to produce insulin in diabetic mice. Chitosan nanoparticles were used to transfer the insulin gene into intestinal cells via oral administration. The efficiency of chitosan as a gene vehicle was investigated through the use of reporter gene. Insulin mRNA and protein expression levels were measured by RT-PCR and ELISA, respectively. Blood glucose testing revealed that this treatment reduced glucose levels in diabetic mice. The decrease in blood glucose level in the first week of treatment was greater in mice with K-cell specific insulin expression compared with mice with L-cell-specific insulin expression. These results indicate that inducing insulin secretion in K-cells conferred a quicker response to gene therapy.
    Matched MeSH terms: Genetic Engineering*
  20. Raftari M, Ghafourian S, Bakar FA
    J Dairy Res, 2013 Nov;80(4):490-5.
    PMID: 24063299 DOI: 10.1017/S0022029913000435
    The dairy industry uses lipase extensively for hydrolysis of milk fat. Lipase is used in the modification of the fatty acid chain length, to enhance the flavours of various chesses. Therefore finding the unlimited source of lipase is a concern of dairy industry. Due to the importance of lipase, this study was an attempt to express the lipase from Burkholderia cepacia in Lactococcus lactis. To achieve this, a gene associated with lipase transport was amplified and subcloned in inducible pNZ8148 vector, and subsequently transformed into Lc. lactis NZ9000. The enzyme assay as well as SDS-PAGE and western blotting were carried out to analysis the recombinant lipase expression. Nucleotide sequencing of the DNA insert from the clone revealed that the lipase activity corresponded to an open reading frame consisting of 1092 bp coding for a 37·5-kDa size protein. Blue colour colonies on nile blue sulphate agar and sharp band on 37·5-kD size on SDS-PAGE and western blotting results confirm the successful expression of lipase by Lc. lactis. The protein assay also showed high expression, approximately 152·2 μg/ml.h, of lipase by recombinant Lc. lactis. The results indicate that Lc. lactis has high potential to overproduce the recombinant lipase which can be used commercially for industrially purposes.
    Matched MeSH terms: Genetic Engineering
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links