Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Ton LB, Neik TX, Batley J
    Genes (Basel), 2020 09 30;11(10).
    PMID: 33008008 DOI: 10.3390/genes11101161
    Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
    Matched MeSH terms: Genetic Engineering*
  2. Chakraborty C, Teoh SL, Das S
    Curr Drug Targets, 2017;18(14):1653-1663.
    PMID: 27231109 DOI: 10.2174/1389450117666160527142321
    BACKGROUND: The present era is fast experiencing rapid innovation in the genome-editing technology. CRISPR Cas9-mediated targeted genetic manipulation is an easy, cost-effective and scalable method. As a result, it can be used for a broad range of targeted genome engineering.

    OBJECTIVE: The main objective of the present review is to highlight the structural signature, classification, its mechanism and application from basic science to medicine and future challenges for this genome editing tool kit.

    RESULTS: The present review provides a brief description of the recent development of CRISPR-Cas9 genome editing technology. We discuss the paradigms shift for this next generation genome editing technology, CRISPR. The CRISPR structural significance, classification and its different applications are also being discussed. We portray the future challenges for this extraordinary genome in vivo editing tool. We also highlight the role of CRISPR genome editing in curing many diseases.

    CONCLUSION: Scientists and researchers are constantly looking one genome editing tool that is competent, simple and low-cost assembly of nucleases. It can target any particular site without any off-target mutations in the genome. The CRISPR-Cas9 has all of the above characteristics. The genome engineering technology may be a strong and inspiring technology meant for the next generation of drug development.

    Matched MeSH terms: Genetic Engineering/methods*
  3. Lim SH, Jahanshiri F, Rahim RA, Sekawi Z, Yusoff K
    Lett Appl Microbiol, 2010 Dec;51(6):658-64.
    PMID: 20973806 DOI: 10.1111/j.1472-765X.2010.02950.x
    A system for displaying heterologous respiratory syncytial virus (RSV) glycoproteins on the surface of Lactococcus lactis NZ9000 was developed.
    Matched MeSH terms: Genetic Engineering
  4. Cyranoski D
    Nature, 2008 May 22;453(7194):435.
    PMID: 18497781 DOI: 10.1038/453435a
    Matched MeSH terms: Genetic Engineering*
  5. Amin L, Jahi JM, Nor AR
    ScientificWorldJournal, 2013;2013:516742.
    PMID: 24381520 DOI: 10.1155/2013/516742
    Public acceptance of genetically modified (GM) foods has to be adequately addressed in order for their potential economic and social benefits to be realized. The objective of this paper is to assess the attitude of the Malaysian public toward GM foods (GM soybean and GM palm oil) and GM medicine (GM insulin). A survey was carried out using self-constructed multidimensional instrument measuring attitudes towards GM products. The respondents (n = 1017) were stratified according to stakeholders' groups in the Klang Valley region. Results of the survey show that the overall attitude of the Malaysian stakeholders towards GM products was cautious. Although they acknowledged the presence of moderate perceived benefits associated with GM products surveyed and were moderately encouraging of them, they were also moderately concerned about the risks and moral aspects of the three GM products as well as moderately accepting the risks. Attitudes towards GM products among the stakeholders were found to vary not according to the type of all GM applications but rather depend on the intricate relationships between the attitudinal factors and the type of gene transfers involved. Analyses of variance showed significant differences in the six dimensions of attitude towards GM products across stakeholders' groups.
    Matched MeSH terms: Genetic Engineering/adverse effects; Genetic Engineering/psychology*
  6. Osahor AN, Tan CY, Sim EU, Lee CW, Narayanan K
    Anal Biochem, 2014 Oct 1;462:26-8.
    PMID: 24929088 DOI: 10.1016/j.ab.2014.05.030
    When recombineering bacterial artificial chromosomes (BACs), it is common practice to design the ends of the donor molecule with 50 bp of homology specifying its insertion site. We demonstrate that desired recombinants can be produced using intermolecular homologies as short as 15 bp. Although the use of shorter donor end regions decreases total recombinants by several fold, the frequency of recombinants with correctly inserted donor molecules was high enough for easy detection by simple polymerase chain reaction (PCR) screening. This observation may have important implications for the design of oligonucleotides for recombineering, including significant cost savings, especially for high-throughput projects that use large quantities of primers.
    Matched MeSH terms: Genetic Engineering/methods*
  7. Abdullah, A.M., Hamidah, H., Alam, M.Z.
    MyJurnal
    Although one of the major users of flocculants are water and wastewater treatment industries, flocculants are also used in various food industries. The chemical flocculants are preferred widely in these industries due to low production cost and fast production ability. However, the negative effects of the chemical flocculants should not be neglected to gain the economic benefits only. Therefore, the researchers are working to discover efficient and economical flocculants from biological sources. Several attempts have been made and are still being made to extract or produce bioflocculants from natural sources such as plants, bacteria, fungi, yeast, algae, etc. The review revealed that significant amount of work have been done in the past, in search of bioflocculant. However, commercially viable bioflocculants are yet to be marketed widely. With the advent of new biotechnologies and advances in genetic engineering, the researchers are hopeful to discover or develop commercially viable, safe and environmentfriendly bioflocculants.
    Matched MeSH terms: Genetic Engineering
  8. Chen Q, Narayanan K
    Methods Mol Biol, 2015;1227:27-54.
    PMID: 25239740 DOI: 10.1007/978-1-4939-1652-8_2
    Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.
    Matched MeSH terms: Genetic Engineering/methods*
  9. Liew PS, Chen Q, Ng AWR, Chew YC, Ravin NV, Sim EUH, et al.
    Anal Biochem, 2019 10 15;583:113361.
    PMID: 31306622 DOI: 10.1016/j.ab.2019.113361
    Phage N15 protelomerase (TelN) cleaves double-stranded circular DNA containing a telomerase-occupancy-site (tos) and rejoins the resulting linear-ends to form closed-hairpin-telomeres in Escherichia coli (E. coli). Continued TelN expression is essential to support resolution of the linear structure. In mammalian cells, no enzyme with TelN-like activities has been found. In this work, we show that phage TelN, expressed transiently and stably in human and mouse cells, recapitulates its native activities in these exogenous environments. We found TelN to accurately resolve tos-DNA in vitro and in vivo within human and mouse cells into linear DNA-containing terminal telomeres that are resistant to RecBCD degradation, a hallmark of protelomerase processing. In stable cells, TelN activity was detectable for at least 60 days, which suggests the possibility of limited silencing of its expression. Correspondingly, linear plasmid containing a 100 kb human β-globin gene expressed for at least 120 h in non-β-globin-expressing mouse cells with TelN presence. Our results demonstrate TelN is able to cut and heal DNA as hairpin-telomeres within mammalian cells, providing a tool for creating novel structures by DNA resolution in these hosts. The TelN protelomerase may be useful for exploring novel technologies for genome interrogation and chromosome engineering.
    Matched MeSH terms: Genetic Engineering/methods
  10. Bakhtiar A, Chowdhury EH
    Asian J Pharm Sci, 2021 Mar;16(2):236-252.
    PMID: 33995617 DOI: 10.1016/j.ajps.2020.11.002
    Genetic intervention via the delivery of functional genes such as plasmid DNA (pDNA) and short-interfering RNA (siRNA) offers a great way to treat many single or multiple genetic defects effectively, including mammary carcinoma. Delivery of naked therapeutic genes or siRNAs is, however, short-lived due to biological clearance by scavenging nucleases and circulating monocytes. Low cellular internalization of negatively-charged nucleic acids further causes low transfection or silencing activity. Development of safe and effectual gene vectors is therefore undeniably crucial to the success of nucleic acid delivery. Inorganic nanoparticles have attracted considerable attention in the recent years due to their high loading capacity and encapsulation activity. Here we introduce strontium salt-based nanoparticles, namely, strontium sulfate, strontium sulfite and strontium fluoride as new inorganic nanocarriers. Generated strontium salt particles were found to be nanosized with high affinity towards negatively-charged pDNA and siRNA. Degradation of the particles was seen with a drop in pH, suggesting their capacity to respond to pH change and undergo dissolution at endosomal pH to release the genetic materials. While the particles are relatively nontoxic towards the cells, siRNA-loaded SrF2 and SrSO3 particles exerted superior transgene expression and knockdown activity of MAPK and AKT, leading to inhibition of their phosphorylation to a distinctive extent in both MCF-7 and 4T1 cells. Strontium salt nanoparticles have thus emerged as a promising tool for applications in cancer gene therapy.
    Matched MeSH terms: Genetic Engineering
  11. Mustapha Bala Abubakar, Aini Ideris, AbdulRahman Omar, Mohd Hair Bejo
    MyJurnal
    Avian Influenza viruses belonging to the Orthomyxoviridae family are enveloped viruses with segmented negative sense RNA genome surrounded by a helical symmetry capsid. Influenza viruses, especially the highly pathogenic avian influenza virus (HPAI) such as H5 or H7 subtype are the most important pathogens for the poultry industry in recent times. The haemagglutinin protein and neuraminidase, serves as the target for the immune response of the host. Due to recurrent genetic reassortments between avian and human influenza viruses, global pandemics may emerge and the naive human immunity could not withstand pressure by the novel hybrid virus. The emergence of genetic engineering technology provided the industry with new methods of manufacturing diagnostics tools and vaccines. After extraction of RNA from the cell culture of strain influenza A/Chicken/Malaysia/2004(H5N1) of AIV, the viral RNA was converted to cDNA by a specific primer. The cDNA was amplified by the polymerase chain reaction (PCR) and analyzed
    by agarose gel electrophoresis. The intact PCR product of full length haemagglutinin gene was cloned in TO POTM TA Cloning vector. The full-length HA-encoding gene of H5N1 AIV was subcloned into a pPICZA vector. After successful ligation, the constructed plasmid was transformed into E.coli.Top10, Plasmid DNA from transformed bacteria was extracted in white colony and positive clones were confirmed by restriction digestion with Sacl and Not1 restriction enzymes, colony PCR screening and nucleotide sequencing. Construction of a recombinant pPICZA/H5HA plasmid containing the full length haemagglutinin gene was achieved as a first step
    towards the expression in Pichia pastoris.
    Matched MeSH terms: Genetic Engineering
  12. Raftari M, Ghafourian S, Bakar FA
    J Dairy Res, 2013 Nov;80(4):490-5.
    PMID: 24063299 DOI: 10.1017/S0022029913000435
    The dairy industry uses lipase extensively for hydrolysis of milk fat. Lipase is used in the modification of the fatty acid chain length, to enhance the flavours of various chesses. Therefore finding the unlimited source of lipase is a concern of dairy industry. Due to the importance of lipase, this study was an attempt to express the lipase from Burkholderia cepacia in Lactococcus lactis. To achieve this, a gene associated with lipase transport was amplified and subcloned in inducible pNZ8148 vector, and subsequently transformed into Lc. lactis NZ9000. The enzyme assay as well as SDS-PAGE and western blotting were carried out to analysis the recombinant lipase expression. Nucleotide sequencing of the DNA insert from the clone revealed that the lipase activity corresponded to an open reading frame consisting of 1092 bp coding for a 37·5-kDa size protein. Blue colour colonies on nile blue sulphate agar and sharp band on 37·5-kD size on SDS-PAGE and western blotting results confirm the successful expression of lipase by Lc. lactis. The protein assay also showed high expression, approximately 152·2 μg/ml.h, of lipase by recombinant Lc. lactis. The results indicate that Lc. lactis has high potential to overproduce the recombinant lipase which can be used commercially for industrially purposes.
    Matched MeSH terms: Genetic Engineering
  13. Fakiruddin KS, Ghazalli N, Lim MN, Zakaria Z, Abdullah S
    Int J Mol Sci, 2018 07 27;19(8).
    PMID: 30060445 DOI: 10.3390/ijms19082188
    Tapping into the ability of engineered mesenchymal stem cells (MSCs) to mobilise into the tumour has expanded the scope of cancer treatment. Engineered MSCs expressing tumour necrosis factor (TNF)-related apoptosis inducing ligand (MSC-TRAIL) could serve as a platform for an efficient and targeted form of therapy. However, the presence of cancer stem cells (CSCs) that are resistant to TRAIL and apoptosis may represent a challenge for effective treatment. Nonetheless, with the discovery of small molecular inhibitors that could target CSCs and tumour signalling pathways, a higher efficacy of MSC-TRAIL mediated tumour inhibition can be achieved. This might pave the way for a more effective form of combined therapy, which leads to a better treatment outcome. In this review, we first discuss the tumour-homing capacity of MSCs, its effect in tumour tropism, the different approach behind genetically-engineered MSCs, and the efficacy and safety of each agent delivered by these MSCs. Then, we focus on how sensitisation of CSCs and tumours using small molecular inhibitors can increase the effect of these cells to either TRAIL or MSC-TRAIL mediated inhibition. In the conclusion, we address a few questions and safety concerns regarding the utilization of engineered MSCs for future treatment in patients.
    Matched MeSH terms: Genetic Engineering
  14. Kannan M, Ismail I, Bunawan H
    Viruses, 2018 09 13;10(9).
    PMID: 30217014 DOI: 10.3390/v10090492
    Maize dwarf mosaic virus (MDMV) is a serious maize pathogen, epidemic worldwide, and one of the most common virus diseases for monocotyledonous plants, causing up to 70% loss in corn yield globally since 1960. MDMV belongs to the genus Potyvirus (Potyviridae) and was first identified in 1964 in Illinois in corn and Johnsongrass. MDMV is a single stranded positive sense RNA virus and is transmitted in a non-persistent manner by several aphid species. MDMV is amongst the most important virus diseases in maize worldwide. This review will discuss its genome, transmission, symptomatology, diagnosis and management. Particular emphasis will be given to the current state of knowledge on the diagnosis and control of MDMV, due to its importance in reducing the impact of maize dwarf mosaic disease, to produce an enhanced quality and quantity of maize.
    Matched MeSH terms: Genetic Engineering
  15. Law YH
    Science, 2021 Mar 26;371(6536):1302-1305.
    PMID: 33766870 DOI: 10.1126/science.371.6536.1302
    Matched MeSH terms: Genetic Engineering
  16. Rasouli M, Allaudin ZN, Omar AR, Ahmad Z
    Curr Gene Ther, 2013 Aug;13(4):229-39.
    PMID: 23721205 DOI: 10.2174/15665232113139990002
    Poorly controlled diabetes mellitus can result in serious complications. Gene therapy is increasingly being considered as an alternative approach to treat diabetes, because of its ability to induce physiological insulin secretion and it allows patients to escape insulin injections. The properties of gut K and L-cells, including glucose sensitivity, the ability to process insulin and a regulated secretion pathway support their use as surrogate β-cells. Previous in vitro studies have provided sufficient evidence supporting the use of these cells for gene therapy studies. Therefore, we examined the ability of K and L-cells to produce insulin in diabetic mice. Chitosan nanoparticles were used to transfer the insulin gene into intestinal cells via oral administration. The efficiency of chitosan as a gene vehicle was investigated through the use of reporter gene. Insulin mRNA and protein expression levels were measured by RT-PCR and ELISA, respectively. Blood glucose testing revealed that this treatment reduced glucose levels in diabetic mice. The decrease in blood glucose level in the first week of treatment was greater in mice with K-cell specific insulin expression compared with mice with L-cell-specific insulin expression. These results indicate that inducing insulin secretion in K-cells conferred a quicker response to gene therapy.
    Matched MeSH terms: Genetic Engineering*
  17. Anees MA
    New Perspect Q, 1994;11(1):23-4.
    PMID: 15739295
    Matched MeSH terms: Genetic Engineering/ethics
  18. Koh CP, Bahirvani AG, Wang CQ, Yokomizo T, Ng CEL, Du L, et al.
    Gene, 2023 Jan 30;851:147049.
    PMID: 36384171 DOI: 10.1016/j.gene.2022.147049
    A cis-regulatory genetic element which targets gene expression to stem cells, termed stem cell enhancer, serves as a molecular handle for stem cell-specific genetic engineering. Here we show the generation and characterization of a tamoxifen-inducible CreERT2 transgenic (Tg) mouse employing previously identified hematopoietic stem cell (HSC) enhancer for Runx1, eR1 (+24 m). Kinetic analysis of labeled cells after tamoxifen injection and transplantation assays revealed that eR1-driven CreERT2 activity marks dormant adult HSCs which slowly but steadily contribute to unperturbed hematopoiesis. Fetal and child HSCs that are uniformly or intermediately active were also efficiently targeted. Notably, a gene ablation at distinct developmental stages, enabled by this system, resulted in different phenotypes. Similarly, an oncogenic Kras induction at distinct ages caused different spectrums of malignant diseases. These results demonstrate that the eR1-CreERT2 Tg mouse serves as a powerful resource for the analyses of both normal and malignant HSCs at all developmental stages.
    Matched MeSH terms: Genetic Engineering
  19. Mohamed MS, Wei LZ, Ariff AB
    Recent Pat Biotechnol, 2011 Aug;5(2):95-107.
    PMID: 21707527
    High cell density cultivation of microalgae via heterotrophic growth mechanism could effectively address the issues of low productivity and operational constraints presently affecting the solar driven biodiesel production. This paper reviews the progress made so far in the development of commercial-scale heterotrophic microalgae cultivation processes. The review also discusses on patentable concepts and innovations disclosed in the past four years with regards to new approaches to microalgal cultivation technique, improvisation on the process flow designs to economically produced biodiesel and genetic manipulation to confer desirable traits leading to much valued high lipid-bearing microalgae strains.
    Matched MeSH terms: Genetic Engineering/methods*
  20. Yeo CC, Abu Bakar F, Chan WT, Espinosa M, Harikrishna JA
    Toxins (Basel), 2016 Feb 19;8(2):49.
    PMID: 26907343 DOI: 10.3390/toxins8020049
    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.
    Matched MeSH terms: Genetic Engineering
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links