Displaying publications 1 - 20 of 93 in total

Abstract:
Sort:
  1. Wu YL, Wang XH, Li YY, Hong HS, Li HY, Yin MD
    Huan Jing Ke Xue, 2009 Sep 15;30(9):2512-9.
    PMID: 19927796
    Polycyclic aromatic hydrocarbons (PAHs) in a sediment core collected from Langkawi Island of the Andaman Sea, Malaysia were determined by GC/MS, the vertical variations of concentration and distributions of PAHs were investigated. In combining with 210Pb-dating, the PAHs sedimentary record in the last 100 years was reconstructed and their possible sources were also discussed. The sigmaPAH concentration ranged from 13.2-60.1 ng x g(-1) in the whole sedimentary section (0-56 cm) with the dominant compounds of phenanthrene, naphthalene and perylene. The sediments contaminated to a lesser extent comparing with the surrounding waters. Before the 1920s, the concentrations of PAHs were considered to be the background level, which was implied from the natural inputs. The historical records of PAHs in the core showed that two distinct peaks which represented the input time of 1960s and 1980s, respectively, inferred that there were some relatively dramatically land-based inputs, and human activities leaded a clear impact to these waters during these periods. Furthermore, PAHs diagnostic ratios indicated that PAHs in the core sediments were mainly of pyrolytic origin (combustion), accompanied with minor petroleum origin. These were related with agriculture, industry, ocean import and export, and shipping activities in the surrounding regions. Meanwhile as the vital communication line, the marine transportation of the Strait of Malacca had influenced the environmental quality of the Andaman Sea. Meanwhile, based on the sedimentary record, PAHs concentrations were found to correlate positively with humanism activities and socioeconomic development (Gross Domestic Production) in the surrounding regions.
    Matched MeSH terms: Geologic Sediments/chemistry*
  2. Bong CH, Lau TL, Ghani AA
    Water Sci Technol, 2013;67(2):395-403.
    PMID: 23168641 DOI: 10.2166/wst.2012.580
    The current study aims to verify the existing equations for incipient motion for a rigid rectangular channel. Data from experimental work on incipient motion from a rectangular flume with two different widths, namely 0.3 and 0.6 m, were compared with the critical velocity value predicted by the equations of Novak & Nalluri and El-Zaemey. The equation by El-Zaemey performed better with an average discrepancy ratio value of 1.06 compared with the equation by Novak & Nalluri with an average discrepancy ratio value of 0.87. However, as the sediment deposit thickness increased, the equation by El-Zaemey became less accurate. A plot on the Shields Diagram using the experimental data had shown the significant effect of the sediment deposit thickness where, as the deposit becomes thicker, the dimensionless shear stress θ value also increased. A new equation had been proposed by incorporating the sediment deposit thickness. The new equation gave improved prediction with an average discrepancy ratio value of 1.02.
    Matched MeSH terms: Geologic Sediments/chemistry*
  3. Dalu T, Wasserman RJ, Magoro ML, Mwedzi T, Froneman PW, Weyl OLF
    Sci Total Environ, 2017 Dec 01;601-602:73-82.
    PMID: 28551541 DOI: 10.1016/j.scitotenv.2017.05.162
    This study explores diatom community dynamics in a highly modified semi-arid temperate region river system characterised by inconsistent river flow. Various water and sediment environmental variables were assessed using a multi-faceted analysis approach to determine the spatio-temporal drivers of benthic diatom communities in the river system. Overall, the diatom community was generally dominated by pollution tolerant species, reflecting the anthropogenic intensity and activities on the river system. Diatom community composition was found to be largely determined by water column chemistry variables particularly nutrient concentrations in comparison to sediment chemistry and physical variables. Strong seasonal diatom species composition was also observed and this was driven by strong seasonal variations in nutrient loads and metal concentrations, a result of the variable water flow across the two seasons. However, the greater temporal variation in communities was observed in the smaller systems with the mainstream river system being more homogenous over time. In addition, diatom community composition and environmental variables were found to be different and more pronounced between streams and mainstream sites, than between canals and streams. The study highlights the complex interaction between water column, sediment and physical variables in determining the diatom species composition in small river systems. It also highlights the importance of river flow inconsistency as an indirect variable that alters primary drivers such as nutrient concentrations in the water column and heavy metal levels in the sediment.
    Matched MeSH terms: Geologic Sediments/chemistry
  4. Adiana G, Juahir H, Joseph B, Shazili NAM
    Mar Pollut Bull, 2017 Oct 15;123(1-2):232-240.
    PMID: 28865793 DOI: 10.1016/j.marpolbul.2017.08.055
    The present study aims to define the possible sources that contribute to the level of Pb into the Brunei Bay, Borneo. The cluster analysis has classified the bay into the northern part with heavy and agriculture-related industries; the southern area with a moderate rural human settlement as well as the southwestern area with a more pristine environment and a low level of human settlement. The score plot of spatial discriminant analysis verified a significant influence of the river system toward the estuary, whereas the temporal discriminant analysis has discriminated the seasonal changes. In comparison to elsewhere, the stable Pb isotopic ratios in Brunei Bay showed a fingerprint similar to coal-related sources and of aerosol input. Briefly, even though Pb in the Brunei Bay ecosystem proved to be at a low level, the stable Pb isotopic ratios showed that human and industrial activities are slowly contributing Pb into the bay ecosystem.
    Matched MeSH terms: Geologic Sediments/chemistry
  5. Salam MA, Paul SC, Zain RAMM, Bhowmik S, Nath MR, Siddiqua SA, et al.
    PLoS One, 2020;15(10):e0241320.
    PMID: 33104734 DOI: 10.1371/journal.pone.0241320
    The rapid growth of industrial and agricultural activities in Malaysia are leading to the impairment of most of the rivers in recent years through realising various trace metals. This leads to toxicity, particularly when the toxic has entered the food chain. Perak River is one of the most dynamic rivers for the Malaysian population. Therefore, in consideration of the safety issue, this study was conducted to assess the concentration of such metals (Cd, Cu, Zn, Fe, and Pb) in the muscles of most widely consumed fish species (Barbonymus schwanenfeldii, Puntius bulum, Puntius daruphani, Hexanematichthys sagor, Channa striatus, Mystacoleucus marginatus, and Devario regina) from different locations of Perak River, Malaysia by employing inductively coupled plasma optical emission spectroscopy (ICP-OES). Among the trace metals, Fe and Cd were found to be the highest (29.33-148.01 μg/g) and lowest (0.16-0.49 μg/g) concentration in all of the studied species, respectively. Although the estimated daily intakes (μg/kg/day) of Cd (0.65-0.85), Fe (79.27-352.00) and Pb (0.95-12.17) were higher than their reference, the total target hazard quotients values suggested that the local residents would not experience any adverse health effects from its consumption. In contrast, the target cancer risk value suggested that all fish species posed a potential cancer risk due to Cd and cumulative cancer risk values, strongly implying that continuous consumption of studied fish species would cause cancer development to its consumers.
    Matched MeSH terms: Geologic Sediments/chemistry
  6. Hussain I, Syed JH, Kamal A, Iqbal M, Eqani SA, Bong CW, et al.
    Environ Monit Assess, 2016 Jun;188(6):378.
    PMID: 27234513 DOI: 10.1007/s10661-016-5359-3
    Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries. We observed a relatively high abundance of ∑16PAHs during the summer season (i.e. 554 ng g(-1)) versus that in the winter season (i.e. 361 ng g(-1)), with an overall abundance of two-, five- and six-ring PAH congeners. Results also revealed that the nitrate and phosphate contents in the sediments were closely associated with low molecular weight (LMW) and high molecular weight (HMW) PAHs, respectively. Source apportionment results showed that the combustion of fossil fuels appears to be the key source of PAHs in the study area. The risk quotient (RQ) values indicated that seven PAH congeners (i.e. phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene, chrysene and benzo(a)anthracene) could pose serious threats to the aquatic life of the riverine ecosystem in Pakistan.
    Matched MeSH terms: Geologic Sediments/chemistry*
  7. Kusin FM, Rahman MS, Madzin Z, Jusop S, Mohamat-Yusuff F, Ariffin M, et al.
    Environ Sci Pollut Res Int, 2017 Jan;24(2):1306-1321.
    PMID: 27771881 DOI: 10.1007/s11356-016-7814-7
    Recent bauxite mining activities in the vicinity of Kuantan, Pahang, have been associated with apparent environmental quality degradation and have raised environmental concerns among the public. This study was carried out to evaluate the overall ecological impacts on water and sediment quality from the bauxite mining activities. Water and sediment samples were collected at seven sampling locations within the bauxite mining areas between June and December 2015. The water samples were analyzed for water quality index (WQI) and distribution of major and trace element geochemistry. Sediment samples were evaluated based on geochemical indices, i.e., the enrichment factor (EF) and geoaccumulation index (I geo). Potential ecological risk index was estimated to assess the degree to which sediments of the mine-impacted areas have been contaminated with heavy metals. The results showed that WQIs of some locations were classified as slightly polluted and contained metal contents exceeding the recommended guideline values. The EFs indicated minimal to moderate enrichment of metals (Pb, Cu, Zn, Mn, As, Cd, Cr, Ni, Co, and Sr) in the sediments. I geo showed slightly to partially polluted sediments with respect to As at some locations. The potential ecological risk index (RI) showed that As posed the highest potential ecological risk with RI of 52.35-60.92 at two locations, while other locations indicated low risk. The findings from this study have demonstrated the impact of recent bauxite mining activities, which might be of importance to the local communities and relevant authorities to initiate immediate rehabilitation phase of the impacted area.
    Matched MeSH terms: Geologic Sediments/chemistry*
  8. Said KS, Shuhaimi-Othman M, Ahmad AK
    Pak J Biol Sci, 2012 May 15;15(10):459-68.
    PMID: 24187900
    A study of water quality parameters (temperature, conductivity, total dissolved solid, dissolved oxygen, pH and water hardness) in Titiwangsa Lake was conducted in January, April, July and October 2010. The water quality parameters were tested and recorded at different sampling stations chosen randomly using hydrolab data sonde 4 and surveyor 4 a water quality multi probe (USA). Six metals i.e., cadmium, chromium, lead, nickel, zinc and copper were determined in five different compartments of the lake namely water, total suspended solids, plankton, sediment and fish. The metals concentration were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS), perkin elmer elan, model 9000. The water quality parameters were compared with National Water Quality Standard (NWQS Malaysia) while metal concentrations were compared with Malaysian and international standards. The study shows that water quality parameters are of class 2. This condition is suitable for recreational activities where body contact is allowed and suitable for sensitive fishing activities. Furthermore, metal concentrations were found to be lower than the international standards, therefore toxic effects for these metals would be rarely observed and the adverse effects to aquatic organisms would not frequently occur.
    Matched MeSH terms: Geologic Sediments/chemistry
  9. Said KS, Shuhaimi-Othman M, Ahmad AK
    Pak J Biol Sci, 2012 May 01;15(9):437-47.
    PMID: 24163953
    A study of water quality parameters (temperature, conductivity, total dissolved solid, dissolved oxygen, pH and water hardness) in Ampang Hilir Lake was conducted in January, April, July and October 2010. The water quality parameters were tested and recorded at different sampling stations chosen randomly using Hydrolab Data Sonde 4 and Surveyor 4 a water quality multi probe (USA). Six metals which were cadmium, chromium, lead, nickel, zinc and copper were determined in five different compartments of the lake namely water, total suspended solids, plankton, sediment and fish. The metals concentration were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS), Perkin Elmer Elan, model 9000.The water quality parameters were compared with National Water Quality Standard (NWQS Malaysia) while metal concentrations were compared with Malaysian and international standards. The study shows that water quality parameters are of class 2. This condition is suitable for recreational activities where body contact is allowed and suitable for sensitive fishing activities. Furthermore, metal concentrations were found to be lower than the international standards, therefore toxic effects for these metals would be rarely observed and the adverse effects to aquatic organisms would not frequently occur.
    Matched MeSH terms: Geologic Sediments/chemistry
  10. Ong MC, Yong JC, Shaari H, Joseph B, Shazili NAM, Pradit S, et al.
    Environ Geochem Health, 2023 Jun;45(6):3777-3787.
    PMID: 36574138 DOI: 10.1007/s10653-022-01456-w
    Brunei Bay is a unique ecosystem which offers a vast biodiversity. This study was carried out to define the source of metals in the surface sediment of Brunei Bay to ensure the bay's health. The secondary data were analysed using chemometrics analysis to verify the possible factors that influence metals distribution in Brunei Bay sediment. Samples were collected several times during 2013 to 2014 using Ponar grab at 16 stations within the bay. Samples were then dried, pre-treated, digested and analysed using Inductively Coupled Plasma Mass Spectrometry (ICPMS) in the laboratory. Overall, the mean concentration of metal, sediment pH and clay fraction were significantly changed during different sampling periods, as the changes were presumed affected by seasonal changes. The Pearson correlation has pointed that metals were dominantly derived by natural input; however, the total organic carbon was proven to be derived by anthropogenic sources. Moreover, the principal component analysis has verified that the distribution of metals in the bay's sediment was dominantly influenced by natural processes. However, the utilization and manipulation of marine resources are slightly affecting the bay's ecosystem which may deteriorate the ecosystem health soon.
    Matched MeSH terms: Geologic Sediments/chemistry
  11. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E
    J Hazard Mater, 2011 Aug 15;192(1):402-10.
    PMID: 21684080 DOI: 10.1016/j.jhazmat.2011.05.039
    The sequential extraction procedure proposed by the European Standard, Measurements and Testing (SM&T) program, formerly the Community Bureau of Reference (BCR), was applied for partitioning of heavy metals (HMs) in river sediments collected along the course of Sungai Buloh and the Straits of Malacca in Selangor, Malaysia. Eight elements (V, Pb, Cd, Cr, Co, Ni, Cu and Zn) from seven stations (S1-S7) and at different depths were analyzed using the modified BCR Sequential Extraction Procedure (SEP) in combination with ICP-MS to obtain the metal distribution patterns in this region. The results showed that heavy metal contaminations at S2 and S3 was more severe than at other sampling sites, especially for Zn, Cu, Ni and Pb. Nevertheless, the element concentrations from top to bottom layers decreased predominantly. The samples from the Straits of Malacca (S4-S7) the highest contamination factors obtained were for Co, Zn and Pb while the lowest were found for V and Cr, similar to Sungai Buloh sediments. The sediments showed a low risk for V, Cr, Cu and Pb with RAC values of less than 10%, but medium risk for Co, Zn (except S3), Cd at S1 and S2 and Ni at S1, S3 and S5. Zn at S3 and Cd at S3-S7 showed high risk to our sediment samples. There is not any element of very high risk conditions in the selected samples.
    Matched MeSH terms: Geologic Sediments/chemistry*
  12. Gantayat RR, Mohan Viswanathan P, Ramasamy N, Sabarathinam C
    Environ Sci Pollut Res Int, 2023 Aug;30(40):92692-92719.
    PMID: 37495801 DOI: 10.1007/s11356-023-28596-5
    A comprehensive geochemical study was conducted in the Sibuti River estuary by considering water, suspended solids (SS), and sediment samples from 36 stations during southwest monsoon (SWM) and northeast monsoon (NEM). In this study, the distribution of in situ parameters, major ions, nutrients, trace metals, and isotopes (δD, δ18O) were analyzed in water samples, whereas sediments and SS were studied for trace metals. The distribution revealed that suspended solids were the major carrier of Cd, Zn, and Mn, whereas sediments worked as a major source of Co, Cr, Ba, Se, Cu, and Pb. Na-Cl water type and ion exchange dominated the lower part of the estuary during both seasons. However, the mixed mechanism of Ca-Cl, Ca-Mg-Cl, and higher weathering indicated reverse ion exchange in the intermediate and upper parts of the estuary. Isotopic signatures of δD and δ18O in estuarine water indicate that the precipitation over the Limbang area dominates during SWM, whereas higher evaporation was confirmed during NEM. The factor analysis revealed that seawater influence in the estuary majority controlled the water chemistry irrespective of seasons. Major ions were mainly regulated by the tidal influence during the low flow time of the river (SWM), whereas the mixing mechanism of weathering and seawater controlled the concentrations during NEM. Nutrients such as NO3, SO42-, NH3, and NH4+ mainly originated from the agricultural fields and nitrification along with ammonification were responsible for the recycling of such nutrients. Trace metals except Cd were found to be geogenic in nature and originating mainly from the oxidation of pyrites present in the sandstone and mudstones of the Sibuti Formation. Redox condition was catalyzed by microorganisms near the river mouth, whereas Al-oxyhydroxides and Fe-oxyhydroxides complexes in the intermediate and upper part under oxygenated conditions controlled the absorption of metals. Overall, the estuary was found to be absorptive in nature due to ideal pH conditions and was confirmed by the saturation index (SI) of minerals.
    Matched MeSH terms: Geologic Sediments/chemistry
  13. Saha M, Togo A, Mizukawa K, Murakami M, Takada H, Zakaria MP, et al.
    Mar Pollut Bull, 2009 Feb;58(2):189-200.
    PMID: 19117577 DOI: 10.1016/j.marpolbul.2008.04.049
    We collected surface sediment samples from 174 locations in India, Indonesia, Malaysia, Thailand, Vietnam, Cambodia, Laos, and the Philippines and analyzed them for polycyclic aromatic hydrocarbons (PAHs) and hopanes. PAHs were widely distributed in the sediments, with comparatively higher concentrations in urban areas (Sigma PAHs: approximately 1000 to approximately 100,000 ng/g-dry) than in rural areas ( approximately 10 to approximately 100g-dry), indicating large sources of PAHs in urban areas. To distinguish petrogenic and pyrogenic sources of PAHs, we calculated the ratios of alkyl PAHs to parent PAHs: methylphenanthrenes to phenanthrene (MP/P), methylpyrenes+methylfluoranthenes to pyrene+fluoranthene (MPy/Py), and methylchrysenes+methylbenz[a]anthracenes to chrysene+benz[a]anthracene (MC/C). Analysis of source materials (crude oil, automobile exhaust, and coal and wood combustion products) gave thresholds of MP/P=0.4, MPy/Py=0.5, and MC/C=1.0 for exclusive combustion origin. All the combustion product samples had the ratios of alkyl PAHs to parent PAHs below these threshold values. Contributions of petrogenic and pyrogenic sources to the sedimentary PAHs were uneven among the homologs: the phenanthrene series had a greater petrogenic contribution, whereas the chrysene series had a greater pyrogenic contribution. All the Indian sediments showed a strong pyrogenic signature with MP/P approximately 0.5, MPy/Py approximately 0.1, and MC/C approximately 0.2, together with depletion of hopanes indicating intensive inputs of combustion products of coal and/or wood, probably due to the heavy dependence on these fuels as sources of energy. In contrast, sedimentary PAHs from all other tropical Asian cities were abundant in alkylated PAHs with MP/P approximately 1-4, MPy/Py approximately 0.3-1, and MC/C approximately 0.2-1.0, suggesting a ubiquitous input of petrogenic PAHs. Petrogenic contributions to PAH homologs varied among the countries: largest in Malaysia whereas inferior in Laos. The higher abundance of alkylated PAHs together with constant hopane profiles suggests widespread inputs of automobile-derived petrogenic PAHs to Asian waters.
    Matched MeSH terms: Geologic Sediments/chemistry*
  14. Kwan CS, Takada H, Mizukawa K, Saha M, Rinawati, Santiago EC
    Mar Pollut Bull, 2013 Nov 15;76(1-2):95-105.
    PMID: 24120227 DOI: 10.1016/j.marpolbul.2013.09.023
    Polybrominated diphenyl ethers (PBDEs) were measured in surface sediment samples collected from urban canals or rivers in Lao PDR, Cambodia, Vietnam, India, Indonesia, Thailand, the Philippines, Malaysia and Japan. The total PBDE concentrations in the sediments ranged from 0.83 to 3140 ng/g dry wt. BDE-209 was predominant, ranging from 43% to 97% of total PBDEs, followed by nona-BDEs and some detectable concentrations of BDEs 47, 49, 99, 100, 153, 154 and 183. Sedimentary PBDE levels in Malaysia, Cambodia, the Philippines and Thailand were generally higher than those reported for highly industrialized countries. Spatial distribution of PBDEs indicated that inland sources may impact coastal areas. The presence of BDE congeners which are not contained in technical mixtures and the higher proportions of nona-BDEs relative to BDE-209 in the sediments were identified as indicators of debromination. BDE-209 was possibly debrominated under anaerobic conditions in some of the sediment samples.
    Matched MeSH terms: Geologic Sediments/chemistry*
  15. Dalu T, Wasserman RJ, Wu Q, Froneman WP, Weyl OLF
    Environ Sci Pollut Res Int, 2018 Jan;25(3):2842-2852.
    PMID: 29143261 DOI: 10.1007/s11356-017-0728-1
    The effect of metals on environmental health is well documented and monitoring these and other pollutants is considered an important part of environmental management. Developing countries are yet to fully appreciate the direct impacts of pollution on aquatic ecosystems and as such, information on pollution dynamics is scant. Here, we assessed the temporal and spatial dynamics of stream sediment metal and nutrient concentrations using contaminant indices (e.g. enrichment factors, pollution load and toxic risk indices) in an arid temperate environment over the wet and dry seasons. The mean sediment nutrient, organic matter and metal concentration were highest during the dry season, with high values being observed for the urban environment. Sediment contaminant assessment scores indicated that during the wet season, the sediment quality was acceptable, but not so during the dry season. The dry season had low to moderate levels of enrichment for metals B, Cu, Cr, Fe, Mg, K and Zn. Overall, applying the sediment pollution load index highlighted poor quality river sediment along the length of the river. Toxic risk index indicated that most sites posed no toxic risk. The results of this study highlighted that river discharge plays a major role in structuring temporal differences in sediment quality. It was also evident that infrastructure degradation was likely contributing to the observed state of the river quality. The study contributes to our understanding of pollution dynamics in arid temperate landscapes where vast temporal differences in base flow characterise the riverscape. Such information is further useful for contrasting sediment pollution dynamics in aquatic environments with other climatic regions.
    Matched MeSH terms: Geologic Sediments/chemistry*
  16. Manap N, Voulvoulis N
    Sci Total Environ, 2014 Oct 15;496:607-623.
    PMID: 25108801 DOI: 10.1016/j.scitotenv.2014.07.009
    The aim of this study was to develop a risk-based decision-making framework for the selection of sediment dredging option. Descriptions using case studies of the newly integrated, holistic and staged framework were followed. The first stage utilized the historical dredging monitoring data and the contamination level in media data into Ecological Risk Assessment phases, which have been altered for benefits in cost, time and simplicity. How Multi-Criteria Decision Analysis (MCDA) can be used to analyze and prioritize dredging areas based on environmental, socio-economic and managerial criteria was described for the next stage. The results from MCDA will be integrated into Ecological Risk Assessment to characterize the degree of contamination in the prioritized areas. The last stage was later described using these findings and analyzed using MCDA, in order to identify the best sediment dredging option, accounting for the economic, environmental and technical aspects of dredging, which is beneficial for dredging and sediment management industries.
    Matched MeSH terms: Geologic Sediments/chemistry
  17. Mirsadeghi SA, Zakari MP, Yap CK, Shahbazi A
    J Environ Sci (China), 2011;23(2):336-45.
    PMID: 21517010
    The concentration of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) present in the sediment and water of Peninsular Malaysia as well as in the cockle Anadara granosa was investigated. Samples were extracted and analysed with gas chromatography-mass spectrometry. The concentrations of total carcinogenic polycyclic aromatic hydrocarbons (t-PAHs) were measured between 0.80 +/- 0.04 to 162.96 +/- 14.74 ng/g wet weight (ww) in sediment, between 21.85 +/- 2.18 to 76.2 +/- 10.82 ng/L in water samples and between 3.34 +/- 0.77 to 46.85 +/- 5.50 ng/g ww in the cockle tissue. The risk assessment of probable human carcinogens in the Group B2 PAHs was calculated and assessed in accordance with the standards of the United States Environmental Protection Agency (US EPA). Case I in the toxicity assessment analysed the cancer risk to consumers of Malaysian blood cockle. Case II assessed the risk of cancer from exposure to PAHs from multiple pathways. The average cancer risk of case I and case II were found to be classifiable as unsafe according to the US EPA standard. The cancer risk due to c-PAHs acquired by the ingestion of blood cockle was (8.82 +/- 0.54) x 10-6 to (2.67 +/- 0.06) x 10(-2), higher than the US EPA risk management criterion. The non-cancer risks associated with multiple pathways in Kuala Gula, Kuala Juru and Kuala Perlis were higher than the U.S. EPA safe level, but the non-cancer risk for eating blood cockle was below the level of U.S. EPA concern.
    Matched MeSH terms: Geologic Sediments/chemistry*
  18. Mohajeri L, Abdul Aziz H, Ali Zahed M, Mohajeri S, Mohamed Kutty SR, Hasnain Isa M
    Water Sci Technol, 2011;63(4):618-26.
    PMID: 21330705 DOI: 10.2166/wst.2011.211
    Central composite design (CCD) and response surface methodology (RSM) were employed to optimize four important variables, i.e. amounts of oil, bacterial inoculum, nitrogen and phosphorus, for the removal of selected n-alkanes during bioremediation of weathered crude oil in coastal sediments using laboratory bioreactors over a 60 day experimentation period. The reactors contained 1 kg soil with different oil, microorganisms and nutrients concentrations. The F Value of 26.89 and the probability value (P < 0.0001) demonstrated significance of the regression model. For crude oil concentration of 2, 16 and 30 g per kg sediments and under optimized conditions, n-alkanes removal was 97.38, 93.14 and 90.21% respectively. Natural attenuation removed 30.07, 25.92 and 23.09% n-alkanes from 2, 16 and 30 g oil/kg sediments respectively. Excessive nutrients addition was found to inhibit bioremediation.
    Matched MeSH terms: Geologic Sediments/chemistry
  19. Shuhaimi-Othman M, Pascoe D, Borgmann U, Norwood WP
    Environ Monit Assess, 2006 Jun;117(1-3):27-44.
    PMID: 16917696
    Hyalella azteca (Crustacea: Amphipoda), water and sediments from 12 circum-neutral lakes between Sudbury and North Bay in Ontario, Canada were sampled in August 1998 and analyzed for 10 metals including Cu, Zn, Cd, Ni, Pb, Co, Mo, V, Ba and Ti. Statistical analyses showed that concentrations of the metals in H. azteca, water and sediment differed significantly (ANOVA, P<0.05) among lakes (except for Zn and Pb in H. azteca and Mo in water). There was a trend of declining metal concentration, especially for Cu, Ni and Co (in water, Hyalella and sediment), with distance from the smelters indicating the reduced impact of atmospheric pollution. Metal concentrations of lakes (water) in the Sudbury area were found to be lower compared to data from the 1970s and 1980s indicating an improvement in water quality. Metal concentrations in field-collected amphipods compared favorably with those measured in the laboratory in animals exposed to deep-water sediments, provided metal concentrations were not extremely low (e.g., Pb) and that water chemistry differences (e.g., pH) were taken into account for some metals (especially Cd). In general bioaccumulation of metals in H. azteca was predicted better from surface water than from sediment total metal.
    Matched MeSH terms: Geologic Sediments/chemistry*
  20. Elias MS, Ibrahim S, Samuding K, Kantasamy N, Rahman SA, Hashim A
    Appl Radiat Isot, 2019 Sep;151:116-123.
    PMID: 31174051 DOI: 10.1016/j.apradiso.2019.05.038
    A study was carried out to determine the concentrations of rare earth elements (REEs) in Linggi river sediments collected from 113 sampling locations. The sediment analysis was performed by Neutron activation analysis (NAA) and Inductively coupled plasma - mass spectrometry (ICP-MS). The results of Linggi river sediment were normalized to "recent" reference shale values. The means of total concentrations of REEs (ΣREE), light REEs (ΣLREE) and heavy REEs (ΣHREE) in Linggi sediment were 241.2, 219.2, and 22.0 mg/kg, respectively, which indicates enrichment compared to ΣREE, ΣLREE and ΣHREE reference shale values. Results obtained from enrichment factors (EF) show no enrichment to moderate enrichment of Linggi sediments, indicating the sources of REEs pollution originated from natural and land-based activities. A similar pattern was observed by comparing the REEs values of Linggi sediments to other references shale values. Ce (δCe) and Eu (δEu) anomalies indicate Linggi sediments showed positive anomaly of Ce whilst negative anomaly of Eu.
    Matched MeSH terms: Geologic Sediments/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links