Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Ong FB, Wan Ngah WZ, Top AG, Khalid BA, Shamaan NA
    Int. J. Biochem., 1994 Mar;26(3):397-402.
    PMID: 7910569
    1. The effects of alpha-tocopherol and gamma-tocotrienol on glutathione S-transferase (GST) and gamma-glutamyl transpeptidase (gamma-GT) activities in cultured hepatocytes prepared from rats treated with diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) were investigated. 2. Both the alpha-tocopherol and gamma-tocotrienol treated hepatocytes showed significantly higher (P < 0.05) GST activities than untreated hepatocytes prepared from the carcinogen treated rats in the first 3 days of culture. Treatment with alpha-tocopherol and gamma-tocotrienol generally resulted in a tendency to increase the GST activities above that in the untreated hepatocytes. 3. Treatment with high doses (125-250 microM) of alpha-tocopherol and low doses (12.5-25 microM) of gamma-tocotrienol generally resulted in a significant reduction in gamma-GT activities at 1-3 days. gamma-GT activities are reduced as the dose of alpha-tocopherol and gamma-tocotrienol are increased.
    Matched MeSH terms: Glutathione Transferase/metabolism*
  2. Shamaan NA, Kadir KA, Rahmat A, Ngah WZ
    Nutrition, 1998 12 3;14(11-12):846-52.
    PMID: 9834927
    The effects of vitamin C and aloe vera gel extract supplementation on induced hepatocarcinogenesis in male Sprague-Dawley rats (120-150 g) by diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) was investigated. The severity of the carcinogenesis process was determined by measuring gamma-glutamyl transpeptidase (GGT) and the placental form of glutathione S-transferase (GSTP) histochemically in situ and in plasma and liver fractions. In addition, plasma alkaline phosphatase (ALP) and liver microsomal uridine diphosphate glucuronyl transferase (UDPGT) activity were also determined. Administration of DEN/AAF caused an increase in the surface area and number of enzyme-positive foci (both GGT and GSTP) compared with control. Supplementation of vitamin C or aloe vera gel extract to the cancer-induced rats suppressed this increase significantly (P < 0.05; P < 0.001). Increases in liver UDPGT, GGT, and GSTP activities were also observed with cancer induction that were again suppressed with either vitamin C or aloe vera gel supplementation. Plasma GGT in the DEN/AAF rats were determined monthly for the duration of the experiment and found to be reduced as early as 1 mo with aloe vera gel supplementation and 2 mo with vitamin C supplementation. In conclusion, vitamin C and aloe vera gel extract supplementation were found to be able to reduce the severity of chemical hepatocarcinogenesis.
    Matched MeSH terms: Glutathione Transferase/metabolism
  3. Karami A, Christianus A, Ishak Z, Shamsuddin ZH, Masoumian M, Courtenay SC
    J Hazard Mater, 2012 May 15;215-216:108-14.
    PMID: 22417397 DOI: 10.1016/j.jhazmat.2012.02.038
    This study examined the potential of Pseudomonas aeruginosa abundance in the intestines of fish as an indicator of exposure to benzo[a]pyrene (BaP). P. aeruginosa populations were enumerated in juvenile African catfish (Clarias gariepinus) injected intramuscularly three days previous with 0, 10, 30, 40, 50 or 70mg/kg of BaP. Hepatic EROD and GST activities and biliary fluorescent aromatic compounds (FACs) 1-OH BaP, 3-OH BaP, 7,8-D BaP and BaP were quantified to investigate agreements between the new indicator and established fish biomarkers. The shape of bacterial population (logarithm of colony-forming unit) dose-response curve generally matched those of biliary FACs concentrations. Conversely, the EROD and GST dose-response curves were generally the mirror images of the bacterial population curve. Changes in intestinal P. aeruginosa population appear to be an indirect effect of BaP exposure because exposure to 0-100μg/ml BaP had no effect on P. aeruginosa populations grown on agar plates containing BaP. Using intestinal P. aeruginosa population of fish as a universal indicator of BaP pollution in aquatic environments is discussed.Conversely, the EROD and GST dose-response curves were generally the mirror images of the bacterial population curve.
    Matched MeSH terms: Glutathione Transferase/metabolism
  4. Koriem KM, Arbid MS, Emam KR
    Environ Toxicol Pharmacol, 2014 Jul;38(1):14-23.
    PMID: 24860957 DOI: 10.1016/j.etap.2014.04.029
    Octylphenol (OP) is one of ubiquitous pollutants in the environment. It belongs to endocrine-disrupting chemicals (EDC). It is used in many industrial and agricultural products. Pectin is a family of complex polysaccharides that function as a hydrating agent and cementing material for the cellulose network. The aim of this study was to evaluate the therapeutic effect of pectin in kidney dysfunction, oxidative stress and apoptosis induced by OP exposure. Thirty-two male albino rats were divided into four equal groups; group 1 control was injected intraperitoneally (i.p) with saline [1 ml/kg body weight (bwt)], groups 2, 3 & 4 were injected i.p with OP (50 mg/kg bwt) three days/week over two weeks period where groups 3 & 4 were injected i.p with pectin (25 or 50 mg/kg bwt) three days/week over three weeks period. The results of the present study revealed that OP significantly decreased glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT), reduced glutathione (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) levels while increased significantly lipid peroxidation (MDA), nitric oxide (NO) and protein carbonyls (PC) levels in the kidney tissues. On the other hand, OP increased serum urea and creatinine. Furthermore, OP increased significantly serum uric acid but decreased significantly the kidney weight. Moreover, OP decreased p53 expression while increased bcl-2 expression in the kidney tissue. The treatment with either dose of pectin to OP-exposed rats restores all the above parameters to approach the normal values where pectin at higher dose was more effective than lower one. These results were supported by histopathological investigations. In conclusion, pectin has antioxidant and anti-apoptotic activities in kidney toxicity induced by OP and the effect was dose-dependent.
    Matched MeSH terms: Glutathione Transferase/metabolism
  5. Karami A, Christianus A, Ishak Z, Syed MA, Courtenay SC
    Ecotoxicol Environ Saf, 2011 Sep;74(6):1558-66.
    PMID: 21636131 DOI: 10.1016/j.ecoenv.2011.05.012
    This study investigated the dose-dependent and time-course effects of intramuscular (i.m.) and intraperitoneal (i.p.) injection of benzo[a]pyrene (BaP) on the biomarkers EROD activity, GST activity, concentrations of BaP metabolites in bile, and visceral fat deposits (Lipid Somatic Index, LSI) in African catfish (Clarias gariepinus). Intraperitoneal injection resulted in 4.5 times higher accumulation of total selected biliary FACs than i.m. injection. Hepatic GST activities were inhibited by BaP via both injection methods. Dose-response relationships between BaP injection and both biliary FAC concentrations and hepatic GST activities were linear in the i.p. injected group but nonlinear in the i.m. injected fish. Hepatic EROD activity and LSI were not significantly affected by BaP exposure by either injection route. We conclude that i.p. is a more effective route of exposure than i.m. for future ecotoxicological studies of PAH exposure in C. gariepinus.
    Matched MeSH terms: Glutathione Transferase/metabolism
  6. Taufek NM, Aspani F, Muin H, Raji AA, Razak SA, Alias Z
    Fish Physiol Biochem, 2016 Aug;42(4):1143-55.
    PMID: 26886132 DOI: 10.1007/s10695-016-0204-8
    This study was conducted to investigate the growth performance, biomarkers of oxidative stress, catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) as well as the haematological response of African catfish after being fed with fish feed containing different levels of cricket meal. The juvenile fish were assigned to three different treatments with isonitrogenous (35 %) and isoenergetic (19 kJ g(-1)) diets containing 100 % cricket meal (100 % CM), 75 % cricket meal (75 % CM), and 100 % fishmeal (100 % FM) as control groups for 7 weeks. The results indicated that a diet containing 100 % CM and 75 % CM improved growth performance in terms of body weight gain and specific growth rate, when compared to 100 % FM. The feed conversion ratio (FCR) and protein efficiency ratio (PER) did not differ significantly between all diets, but reduced FCR and increased PER were observed with a higher inclusion of cricket meal. A haematological examination of fish demonstrated no significant difference of red blood cells in all diets and white blood cells showed a significantly higher value in fishmeal-fed fish. On the other hand, haemoglobin and haematocrit significantly increased with increasing amounts of cricket meal in the diet. Antioxidant activity of CAT was higher in the 100 % CM group compared to fish fed other diets, whereas GST and SOD showed increasing trends with a higher incorporation of cricket, although insignificant differences were observed between all diets. These results suggest that cricket meal could be an alternative to fishmeal as a protein source in the African catfish diet.
    Matched MeSH terms: Glutathione Transferase/metabolism
  7. Tan GM, Lim HJ, Yeow TC, Movahed E, Looi CY, Gupta R, et al.
    Proteomics, 2016 05;16(9):1347-60.
    PMID: 27134121 DOI: 10.1002/pmic.201500219
    Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography-tandem mass spectrometry (LC-MS(3) ) analysis. C. trachomatis (serovar D, MOI 1)-infected HeLa-229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis-infected HeLa-229 cells indicate complex host-pathogen interactions at early phase of chlamydial infection.
    Matched MeSH terms: Glutathione Transferase/metabolism
  8. Abdull Razis AF, Noor NM
    Asian Pac J Cancer Prev, 2013;14(7):4235-8.
    PMID: 23991982
    Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 μM) for 24 hours. Glucoraphanin at higher concentration (25 μM) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 μM. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen- metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.
    Matched MeSH terms: Glutathione Transferase/metabolism*
  9. Marniemi J, Parkki MG
    Biochem Pharmacol, 1975 Sep 01;24(17):1569-72.
    PMID: 9
    Matched MeSH terms: Glutathione Transferase/metabolism*
  10. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Pasupathi T
    Food Chem Toxicol, 2010 Oct;48(10):2688-94.
    PMID: 20600524 DOI: 10.1016/j.fct.2010.06.041
    Several environmental toxins with toxic effects to the bone marrow have been identified. Pathology associated with lead intoxication is due to the cellular damage mediated by free radicals. In the current study, we examined the effect of Etlingera elatior extract on lead-induced changes in the oxidative biomarkers and histology of bone marrow of rats. Sprague-Dawley rats were exposed to 500 ppm lead acetate in their drinking water for 14 days. E. elatior extract was treated orally (100mg/kg body weight) in combination with, or after lead acetate treatment. The results showed that there was a significant increase in lipid hydroperoxide, protein carbonyl content and a significant decrease in total antioxidants, super oxide dismutase, glutathione peroxidase and glutathione--S-transferase in bone marrow after lead acetate exposure. Treatment with E. elatior decreased lipid hydroperoxides and protein carbonyl contents and significantly increased total antioxidants and antioxidant enzymes. Treatments with E. elatior extract also reduced, lead-induced histopathological damage in bone marrow. In conclusion, these data suggest that E. elatior has a powerful antioxidant effect, and it protects the lead acetate-induced bone marrow oxidative damage in rats.
    Matched MeSH terms: Glutathione Transferase/metabolism
  11. Einstein JW, Mustafa MR, Nishigaki I, Rajkapoor B, Moh MA
    Methods Find Exp Clin Pharmacol, 2008 Oct;30(8):599-605.
    PMID: 19088944 DOI: 10.1358/mf.2008.30.8.1268401
    The protective effect of methanol extracts of Cassia fistula (flowers, leaves and bark) was examined in vitro in human umbilical vein endothelial cells (HUVEC) against toxicity induced by glycated protein (GFBS) in vitro. The experiments consisted of eight groups of HUVEC with five flasks in each group. Group I was treated with 15% FBS, group II with GFBS (70 microM) alone, and the other six groups were treated with GFBS plus 25 and 50 microg of each of the three types of C. fistula extracts. After 72 h of incubation, cells were collected and tested for lipid peroxidation, antioxidant enzyme activities and glutathione S-transferase (GST). The protective effect of C. fistula extracts against GFBS-induced cytotoxicity was examined in HUVEC by using trypan blue exclusion and MTT assays. Results showed that HUVEC incubated with GFBS alone showed a significant (P < 0.001) elevation of lipid peroxidation accompanied by depletion of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione reductase (GR), in addition to decreased cytosolic GST. Treatment of HUVEC with C. fistula extracts at a concentration of 25 and 50 microg significantly decreased lipid peroxidation and normalized the activities of the antioxidant enzymes and GST levels in a concentration-dependent manner. Morphological changes of HUVEC were compared with respective controls; in addition, the C. fistula extracts increased the viability of HUVEC damaged by GFBS. A protective effect of C. fistula extracts on HUVEC against GFBS-induced toxicity suggested a potential beneficial effect of the extract in preventing diabetic angiopathies.
    Matched MeSH terms: Glutathione Transferase/metabolism
  12. Harun Z, Ghazali AR
    Asian Pac J Cancer Prev, 2012;13(12):6403-7.
    PMID: 23464466
    Detoxifying enzymes are present in most epithelial cells of the human gastrointestinal tract where they protect against xenobiotics which may cause cancer. Induction of examples such as glutathione S-transferase (GST) and its thiol conjugate, glutathione (GSH) as well as NAD(P)H: quinoneoxidoreductase (NQO1) facilitate the excretion of carcinogens and thus preventing colon carcinogenesis. Pterostilbene, an analogue of resveratrol, has demonstrated numerous pharmacological activities linked with chemoprevention. This study was conducted to investigate the potential of pterostilbene as a chemopreventive agent using the HT-29 colon cancer cell line to study the modulation of GST and NQO1 activities as well as the GSH level. Initially, our group, established the optimum dose of 24 hours pterostilbene treatment using MTT assays. Then, effects of pterostilbene (0-50 μM) on GST and NQO1 activity and GSH levels were determined using GST, NQO1 and Ellman assays, respectively. MTT assay of pterostilbene (0-100 μM) showed no cytotoxicity toward the HT-29 cell line. Treatment increased GST activity in the cell line significantly (p<0.05) at 12.5 and 25.0 μM. In addition, treatment at 50 μM increased the GSH level significantly (p<0.05). Pterostilbene also enhanced NQO1 activity significantly (p<0.05) at 12.5 μM and 50 μM. Hence, pterostilbene is a potential chemopreventive agent capable of modulation of detoxifiying enzyme levels in HT-29 cells.
    Matched MeSH terms: Glutathione Transferase/metabolism
  13. Sani HA, Rahmat A, Ismail M, Rosli R, Endrini S
    Asia Pac J Clin Nutr, 2004;13(4):396-400.
    PMID: 15563447
    The objective of this study was to determine the anti cancer effects of red spinach (Amaranthus gangeticus Linn) in vitro and in vivo. For in vitro study, microtitration cytotoxic assay was done using 3-(4,5-dimethylthiazol-2-il)-2,5-diphenil tetrazolium bromide (MTT) kit assay. Results showed that aqueous extract of A gangeticus inhibited the proliferation of liver cancer cell line (HepG2) and breast cancer cell line (MCF-7). The IC(50) values were 93.8 mu g/ml and 98.8 mu g/ml for HepG2 and MCF-7, respectively. The inhibitory effect was also observed in colon cancer cell line (Caco-2), but a lower percentage compared to HepG2 and MCF-7. For normal cell line (Chang Liver), there was no inhibitory effect. In the in vivo study, hepatocarcinogenesis was monitored in rats according to Solt and Farber (1976) without partial hepatectomy. Assay of tumour marker enzymes such as glutathione S-transferase (GST), gamma-glutamyl transpeptidase (GGT), uridyl diphosphoglucuronyl transferase (UDPGT) and alkaline phosphatase (ALP) were carried out to determine the severity of hepatocarcinogenesis. The result found that supplementation of 5%, 7.5% and 10% of A. gangeticus aqueous extract to normal rats did not show any significant difference towards normal control (P <0.05). The exposure of the rats to chemical carcinogens diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) showed a significant increase in specific enzyme activity of GGT, GST, UDPGT and ALP compared to normal control (P <0.05). However, it was found that the supplementation of A. gangeticus aqueous extract in 5%, 7.5% and 10% to cancer-induced rats could inhibit the activity of all tumour marker enzymes especially at 10% (P <0.05). Supplementation of anti cancer drug glycyrrhizin at suggested dose (0.005%) did not show any suppressive effect towards cancer control (P <0.05). In conclusion, A. gangeticus showed anticancer potential in in vitro and in vivo studies.
    Matched MeSH terms: Glutathione Transferase/metabolism
  14. Wan Hasan WN, Kwak MK, Makpol S, Wan Ngah WZ, Mohd Yusof YA
    PMID: 24559113 DOI: 10.1186/1472-6882-14-72
    Nuclear factor-erythroid 2 p45 related factor 2 (Nrf2) is a primary transcription factor, protecting cells from oxidative stress by regulating a number of antioxidants and phase II detoxifying enzymes. Dietary components such as sulforaphane in broccoli and quercetin in onions have been shown to be inducers of Nrf2. Piper betle (PB) grows well in tropical climate and the leaves are used in a number of traditional remedies for the treatment of stomach ailments and infections among Asians. The aim of this study was to elucidate the effect of Piper betle (PB) leaves extract in Nrf2 signaling pathway by using 2 types of cells; mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) and Nrf2 knockout (N0) mice.
    Matched MeSH terms: Glutathione Transferase/metabolism
  15. Shamaan NA, Yunus I, Mahbut H, Wan Ngah WZ
    Comp. Biochem. Physiol., B, 1991;100(2):259-63.
    PMID: 1799968
    1. Glutathione transferases from the liver, lung and kidney tissues of the buffalo (Bubalus bubalis) and the Kedah-Kelantan cattle (Bos indicus) were partially purified by ammonium sulphate precipitation and Sephadex G-75 gel filtration. 2. Liver tissue contains the highest enzyme activity when compared to the lung and kidney tissues. 3. The activity in cattle is higher than that in the buffalo. 4. Isoelectric focusing separates the activities into the acidic, near neutral and basic fractions. 5. The focused patterns are different for each of the tissues and in each of the species investigated.
    Matched MeSH terms: Glutathione Transferase/metabolism
  16. Vignesvaran K, Alias Z
    Arch Insect Biochem Physiol, 2016 Jul;92(3):210-21.
    PMID: 27075600 DOI: 10.1002/arch.21332
    Drosophila melanogaster glutathione S-transferase D3 (DmGSTD3) has a shorter amino acid sequence as compared to other GSTs known in the fruit flies. This is due to the 15 amino acid N-terminal truncation in which normally active amino acid residue is located. The work has made use of homology modeling to visualize the arrangement of amino acid side chains in the glutathione (GSH) substrate cavity. The identified amino acids were then replaced with amino acids without functional groups in the side chains and the mutants were analyzed kinetically. Homology modeling revealed that the side chains of Y89 and Y97 were shown facing toward the substrate cavity proposing their possible role in catalyzing the conjugation. Y97A and Y89A GSH gave large changes in Km (twofold increase), Vmax (fivefold reduction), and Kcat /Km values for GSH suggesting their significant role in the conjugation reaction. The replacement at either positions has not affected the affinity of the enzyme toward 1-chloro-2,4-dinitrobenzene as no significant change in values of Kmax was observed. The replacement, however, had significantly reduced the catalytic efficiency of both mutants with (Kcat /Km )(GSH) and (Kcat /Km )(CDNB) of eight- and twofold reduction. The recombinant DmGSTD3 has shown no activity toward 1,2-dichloro-4-nitrobenzene, 2,4-hexadienal, 2,4-heptadienal, p-nitrobenzyl chloride, ethacrynic acid, and sulfobromophthalein. Therefore, it was evident that DmGSTD3 has made use of distal amino acids Y97 and Y89 for GSH conjugation.
    Matched MeSH terms: Glutathione Transferase/metabolism
  17. Sultan MT, Butt MS, Karim R, Ahmed W, Kaka U, Ahmad S, et al.
    PMID: 26385559 DOI: 10.1186/s12906-015-0853-7
    Nigella sativa is an important component of several traditional herbal preparations in various countries. It finds its applications in improving overall health and boosting immunity. The current study evaluated the role of fixed and essential oil of Nigella sativa against potassium bromate induced oxidative stress with special reference to modulation of glutathione redox enzymes and myeloperoxidase.
    Matched MeSH terms: Glutathione Transferase/metabolism
  18. Wang Z, Huang S, Jia C, Liu J, Zhang J, Xu B, et al.
    Plant Cell Rep, 2013 Sep;32(9):1373-80.
    PMID: 23652818 DOI: 10.1007/s00299-013-1449-7
    KEY MESSAGE: Three tau class MaGSTs responded to abiotic stress, MaGSTF1 and MaGSTL1 responded to signaling molecules, they may play an important role in the growth of banana plantlet. Glutathione S-transferases (GST) are multifunctional detoxification enzymes that participate in a variety of cellular processes, including stress responses. In this study, we report the molecular characteristics of five GST genes (MaGSTU1, MaGSTU2, MaGSTU3, MaGSTF1 and MaGSTL1) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these GSTs range from 23.4 to 27.7 kDa and their pIs are acidic. At the amino acid level, they share high sequence similarity with GSTs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaGSTs also have high similarity to GSTs of other plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. In addition, their expression is regulated by various stress conditions, including exposure to signaling molecules, cold, salinity, drought and Fusarium oxysporum f specialis(f. Sp) cubense Tropical Race 4 (Foc TR4) infection. The expression of the tau class MaGSTs (MaGSTU1, MaGSTU2 and MaGSTU3) mainly responded to cold, salinity and drought while MaGSTF1 and MaGSTL1 expressions were upregulated by signaling molecules. Our findings suggest that MaGSTs play a key role in both development and abiotic stress responses.
    Matched MeSH terms: Glutathione Transferase/metabolism*
  19. Abdull Razis AF, Konsue N, Ioannides C
    Mol Nutr Food Res, 2018 09;62(18):e1700916.
    PMID: 29288567 DOI: 10.1002/mnfr.201700916
    The potential of isothiocyanates to antagonize the carcinogenicity of structurally diverse chemicals has been established in animals. A feasible mechanism of action involves protecting DNA by reducing the availability of the genotoxic metabolites of chemical carcinogens by either inhibiting their generation and/or stimulating their detoxification. In vivo as well as in vitro studies conducted in rat/human primary hepatocytes and precision-cut tissue slices have revealed that isothiocyanates can impair cytochrome P450 activity, including the CYP1 family which is the most active in the bioactivation of carcinogens, by virtue of being mechanism-based inactivators. The aromatic phenethyl isothiocyanate is the most effective of those studied, whereas aliphatic isothiocyanates such as sulforaphane and erucin necessitate high doses in order to manifest such effects that may not always be achievable through the diet. In all systems studied, isothiocyanates are strong inducers of detoxification enzyme systems including quinone reductase, glutathione S-transferase, epoxide hydrolase, and UDP-glucuronosyl transferase. Indeed, in smokers phenethyl isothiocyanate intake increases the urinary excretion of inactive mercapturate metabolites of toxic chemicals present in tobacco. Glucosinolates, the precursors of isothiocyanates, have also the potential to upregulate detoxification enzyme systems, but their contribution to the cancer chemoprevention linked to cruciferous vegetable consumption remains to be evaluated.
    Matched MeSH terms: Glutathione Transferase/metabolism
  20. Shamaan NA, Hamidah R, Jeffries J, Hashim AJ, Wan Ngah WZ
    PMID: 8097444
    1. Toxicity evaluations of DDT, lindane, abate and carbaryl were carried out in the larvae of two wild Aedes aegypti strains from Kuala Lumpur and Klang. The Kuala Lumpur strain was more susceptible to the insecticides than the Klang strain. 2. The lethal toxicity time was also determined. The insecticides were found to take a longer time to exert their effect in the Klang strain as compared to the Kuala Lumpur strain. 3. Carboxylesterase activity was determined to be higher in the Kuala Lumpur strain, but glutathione transferase activities were higher in the Klang strain.
    Matched MeSH terms: Glutathione Transferase/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links