Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Zawawi MS, Dharmapatni AA, Cantley MD, McHugh KP, Haynes DR, Crotti TN
    Biochem Biophys Res Commun, 2012 Oct 19;427(2):404-9.
    PMID: 23000414 DOI: 10.1016/j.bbrc.2012.09.077
    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.
    Matched MeSH terms: Membrane Glycoproteins/metabolism*
  2. Yap ML, Klose T, Urakami A, Hasan SS, Akahata W, Rossmann MG
    Proc Natl Acad Sci U S A, 2017 12 26;114(52):13703-13707.
    PMID: 29203665 DOI: 10.1073/pnas.1713166114
    Cleavage of the alphavirus precursor glycoprotein p62 into the E2 and E3 glycoproteins before assembly with the nucleocapsid is the key to producing fusion-competent mature spikes on alphaviruses. Here we present a cryo-EM, 6.8-Å resolution structure of an "immature" Chikungunya virus in which the cleavage site has been mutated to inhibit proteolysis. The spikes in the immature virus have a larger radius and are less compact than in the mature virus. Furthermore, domains B on the E2 glycoproteins have less freedom of movement in the immature virus, keeping the fusion loops protected under domain B. In addition, the nucleocapsid of the immature virus is more compact than in the mature virus, protecting a conserved ribosome-binding site in the capsid protein from exposure. These differences suggest that the posttranslational processing of the spikes and nucleocapsid is necessary to produce infectious virus.
    Matched MeSH terms: Glycoproteins/metabolism
  3. Wong YL, Anand R, Yuen KM, Mustafa WMW, Abraham MT, Tay KK, et al.
    Glycoconj J, 2021 02;38(1):1-11.
    PMID: 33547992 DOI: 10.1007/s10719-021-09973-z
    The prevalence of oral squamous cell carcinoma (OSCC) is high in South and Southeast Asia regions. Most OSCC patients are detected at advanced stages low 5-year survival rates. Aberrant expression of glycosylated proteins was found to be associated with malignant transformation and cancer progression. Hence, identification of cancer-associated glycoproteins could be used as potential biomarkers that are beneficial for diagnosis or clinical management of patients. This study aims to identify the differentially expressed glycoproteins using lectin-based glycoproteomics approaches. Serum samples of 40 patients with OSCC, 10 patients with oral potentially malignant disorder (OPMD), and 10 healthy individuals as control group were subjected to two-dimensional gel electrophoresis (2-DE) coupled with lectin Concanavalin A and Jacalin that specifically bind to N- and O-glycosylated proteins, respectively. Five differentially expressed N- and O-glycoproteins with various potential glycosylation sites were identified, namely N-glycosylated α1-antitrypsin (AAT), α2-HS-glycoprotein (AHSG), apolipoprotein A-I (APOA1), and haptoglobin (HP); as well as O-glycosylated AHSG and clusterin (CLU). Among them, AAT and APOA1 were further validated using enzyme-linked immunosorbent assay (ELISA) (n = 120). It was found that AAT and APOA1 are significantly upregulated in OSCC and these glycoproteins are independent risk factors of OSCC. The clinical utility of AAT and APOA1 as potential biomarkers of OSCC is needed for further evaluation.
    Matched MeSH terms: Glycoproteins/metabolism
  4. Warrier S, Marimuthu R, Sekhar S, Bhuvanalakshmi G, Arfuso F, Das AK, et al.
    Int J Biochem Cell Biol, 2016 06;75:104-11.
    PMID: 27063405 DOI: 10.1016/j.biocel.2016.04.002
    The extracellular ligand, Wnt, and its receptors are involved in sign al transduction and play an important role in axis formation and neural development. In neurodegenerative disorders such as Alzheimer's disease (AD), a decrease of the intracellular Wnt effector, β-catenin, has been linked to amyloid-β-peptide-induced neurotoxicity. Despite this knowledge, targeting Wnt inhibitors as potential biomarkers has not been explored, and harnessing Wnt activators as therapeutic candidates remains largely not investigated. A wide acting family of Wnt mediators, secreted frizzled-related proteins (sFRPs), has not been probed so far as molecular indicators of disease occurrence and progression of Alzheimer's. Unlike the effect of the Dickkopf (DKK) family of Wnt antagonists on AD, the sFRP molecules have a more pleiotropic impact on the Wnt signaling cascade and probably have a far-reaching involvement in neurodegeneration. The role of sFRPs has been poorly described in AD, and in this review, we analyze the present status of the role of sFRPs on neurodegeneration, their likely involvement, and potential implications in treatment modalities of AD. This information would provide valuable clues for the development of potential therapeutic targets for aberrant neurodegenerative disorders.
    Matched MeSH terms: Glycoproteins/metabolism*
  5. Tsutsui K, Osugi T, Son YL, Ubuka T
    Gen Comp Endocrinol, 2018 08 01;264:48-57.
    PMID: 28754274 DOI: 10.1016/j.ygcen.2017.07.024
    Neuropeptides that possess the Arg-Phe-NH2 motif at their C-termini (i.e., RFamide peptides) have been characterized in the nervous system of both invertebrates and vertebrates. In vertebrates, RFamide peptides make a family and consist of the groups of gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), kisspeptin (kiss1 and kiss2), and pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa). It now appears that these vertebrate RFamide peptides exert important neuroendocrine, behavioral, sensory, and autonomic functions. In 2000, GnIH was discovered as a novel hypothalamic RFamide peptide inhibiting gonadotropin release in quail. Subsequent studies have demonstrated that GnIH acts on the brain and pituitary to modulate reproductive physiology and behavior across vertebrates. To clarify the origin and evolution of GnIH, the existence of GnIH was investigated in agnathans, the most ancient lineage of vertebrates, and basal chordates, such as tunicates and cephalochordates (represented by amphioxus). This review first summarizes the structure and function of GnIH and other RFamide peptides, in particular NPFF having a similar C-terminal structure of GnIH, in vertebrates. Then, this review describes the evolutionary origin of GnIH based on the studies in agnathans and basal chordates.
    Matched MeSH terms: Glycoproteins/metabolism*
  6. Teo CH, Phon B, Parhar I
    PMID: 34566893 DOI: 10.3389/fendo.2021.728862
    Gonadotropin-inhibitory hormone (GnIH) was first discovered in the Japanese quail, and peptides with a C-terminal LPXRFamide sequence, the signature protein structure defining GnIH orthologs, are well conserved across vertebrate species, including fish, reptiles, amphibians, avians, and mammals. In the mammalian brain, three RFamide-related proteins (RFRP-1, RFRP-2, RFRP-3 = GnIH) have been identified as orthologs to the avian GnIH. GnIH is found primarily in the hypothalamus of all vertebrate species, while its receptors are distributed throughout the brain including the hypothalamus and the pituitary. The primary role of GnIH as an inhibitor of gonadotropin-releasing hormone (GnRH) and pituitary gonadotropin release is well conserved in mammalian and non-mammalian species. Circadian rhythmicity of GnIH, regulated by light and seasons, can influence reproductive activity, mating behavior, aggressive behavior, and feeding behavior. There is a potential link between circadian rhythms of GnIH, anxiety-like behavior, sleep, stress, and infertility. Therefore, in this review, we highlight the functions of GnIH in biological rhythms, social behaviors, and reproductive and non-reproductive activities across a variety of mammalian and non-mammalian vertebrate species.
    Matched MeSH terms: Glycoproteins/metabolism*
  7. Tan NH, Ponnudurai G, Chung MC
    Toxicon, 1997 Jun;35(6):979-84.
    PMID: 9241791
    The proteolytic specificity of rhodostoxin, the major hemorrhagin from Calloselasma rhodostoma (Malayan pit viper) venom was investigated using oxidized B-chain of bovine insulin as substrate. Six peptide bonds were cleaved: Ser9-Hist10, His10-Leu11, Ala14-Leu15, Tyr16-Leu17, Gly20-Glu21 and Phe24-Phe25. Deglycosylated rhodostoxin, however, cleaved primarily at Arg22-Gly23.
    Matched MeSH terms: Glycoproteins/metabolism*
  8. Taha M, Ismail NH, Imran S, Selvaraj M, Rashwan H, Farhanah FU, et al.
    Bioorg Chem, 2015 Aug;61:36-44.
    PMID: 26073618 DOI: 10.1016/j.bioorg.2015.05.010
    Twenty five 4, 6-dichlorobenzimidazole derivatives (1-25) have been synthesized and evaluated against β-glucuronidase inhibitory activity. The compounds which actively inhibit β-glucuronidase activity have IC50 values ranging between 4.48 and 46.12 μM and showing better than standard d-saccharic acid 1,4 lactone (IC50=48.4 ± 1.25 μM). Molecular docking provided potential clues to identify interactions between the active molecules and the enzyme which further led us to identify plausible binding mode of all the benzimidazole derivatives. This study confirmed that presence of hydrophilic moieties is crucial to inhibit the human β-glucuronidase.
    Matched MeSH terms: Glycoproteins/metabolism
  9. Soga T, Dalpatadu SL, Wong DW, Parhar IS
    Neuroscience, 2012 Aug 30;218:56-64.
    PMID: 22626647 DOI: 10.1016/j.neuroscience.2012.05.023
    Synthetic glucocorticoid (dexamethasone; DEX) treatment during the neonatal stage is known to affect reproductive activity. However, it is still unknown whether neonatal stress activates gonadotropin-inhibitory hormone (GnIH) synthesizing cells in the dorsomedial hypothalamus (DMH), which could have pronounced suppressive action on gonadotropin-releasing hormone (GnRH) neurons, leading to delayed pubertal onset. This study was designed to determine the effect of neonatal DEX (1.0mg/kg) exposure on reproductive maturation. Therefore, GnRH, GnIH and GnIH receptors, G-protein coupled receptors (GPR) 147 and GPR74 mRNA levels were measured using quantitative real-time PCR in female mice at postnatal (P) days 21, 30 and in estrus stage mice, aged between P45-50. DEX-treated females of P45-50 had delayed vaginal opening, and irregular estrus cycles and lower GnRH expression in the preoptic area (POA) when compared with age-matched controls. The expression levels of GPR147 and GPR74 mRNA in the POA increased significantly in DEX-treated female mice of P21 and P45-50 compared to controls. In addition, GPR147 and GPR74 mRNA expression was observed in laser captured single GnRH neurons in the POA. Although there was no difference in GnIH mRNA expression in the DMH, immunostained GnIH cell numbers in the DMH increased in DEX-treated females of P45-50 compared to controls. Taken together, the results show that the delayed pubertal onset could be due to the inhibition of GnRH gene expression after neonatal DEX treatment, which may be accounted for in part by the inhibitory signals from the up-regulated GnIH-GnIH receptor pathway to the POA.
    Matched MeSH terms: Glycoproteins/metabolism*
  10. Sinon SH, Rich AM, Parachuru VP, Firth FA, Milne T, Seymour GJ
    J Oral Pathol Med, 2016 Jan;45(1):28-34.
    PMID: 25865410 DOI: 10.1111/jop.12319
    The objective of this study was to investigate the expression of Toll-like receptors (TLR) and TLR-associated signalling pathway genes in oral lichen planus (OLP).
    Matched MeSH terms: Membrane Glycoproteins/metabolism
  11. Saeed MEM, Boulos JC, Elhaboub G, Rigano D, Saab A, Loizzo MR, et al.
    Phytomedicine, 2019 Sep;62:152945.
    PMID: 31132750 DOI: 10.1016/j.phymed.2019.152945
    BACKGROUND: Cucurbitacin E (CuE) is an oxygenated tetracyclic triterpenoid isolated from the fruits of Citrullus colocynthis (L.) Schrad.

    PURPOSE: This study outlines CuE's cytotoxic activity against drug-resistant tumor cell lines. Three members of ABC transporters superfamily, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and ABCB5 were investigated, whose overexpression in tumors is tightly linked to multidrug resistance. Further factors of drug resistance studied were the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR).

    METHODS: Cytotoxicity assays (resazurin assays) were used to investigate the activity of Citrullus colocynthis and CuE towards multidrug resistant cancer cells. Molecular docking (In silico) has been carried out to explore the CuE's mode of binding to ABC transporters (P-gp, BCRP and ABCB5). The visualization of doxorubicin uptake was done by a Spinning Disc Confocal Microscope. The assessment of proteins expression was done by western blotting analysis. COMPARE and hierarchical cluster analyses were applied to identify, which genes correlate with sensitivity or resistance to cucurbitacins (CuA, CuB, CuE, CuD, CuI, and CuK).

    RESULTS: Multidrug-resistant cells overexpressing P-gp or BCRP were cross-resistant to CuE. By contrast, TP53 knock-out cells were sensitive to CuE. Remarkably, resistant cells transfected with oncogenic ΔEGFR or ABCB5 were hypersensitive (collateral sensitive) to CuE. In silico analyses demonstrated that CuE is a substrate for P-gp and BCRP. Immunoblot analyses highlighted that CuE targeted EGFR and silenced its downstream signaling cascades. The most striking result that emerged from the doxorubicin uptake by ABCB5 overexpressing cells is that CuE is an effective inhibitor for ABCB5 transporter when compared with verapamil. The COMPARE analyses of transcriptome-wide expression profiles of tumor cell lines of the NCI identified common genes involved in cell cycle regulation, cellular adhesion and intracellular communication for different cucurbitacins.

    CONCLUSION: CuE represents a potential therapeutic candidate for the treatment of certain types of refractory tumors. To best of our knowledge, this is the first time to identify CuE and verapamil as inhibitors for ABCB5 transporter.

    Matched MeSH terms: P-Glycoproteins/metabolism
  12. Rivers C, Idris J, Scott H, Rogers M, Lee YB, Gaunt J, et al.
    BMC Biol, 2015 Dec 22;13:111.
    PMID: 26694817 DOI: 10.1186/s12915-015-0220-7
    BACKGROUND: SAFB1 is a RNA binding protein implicated in the regulation of multiple cellular processes such as the regulation of transcription, stress response, DNA repair and RNA processing. To gain further insight into SAFB1 function we used iCLIP and mapped its interaction with RNA on a genome wide level.

    RESULTS: iCLIP analysis found SAFB1 binding was enriched, specifically in exons, ncRNAs, 3' and 5' untranslated regions. SAFB1 was found to recognise a purine-rich GAAGA motif with the highest frequency and it is therefore likely to bind core AGA, GAA, or AAG motifs. Confirmatory RT-PCR experiments showed that the expression of coding and non-coding genes with SAFB1 cross-link sites was altered by SAFB1 knockdown. For example, we found that the isoform-specific expression of neural cell adhesion molecule (NCAM1) and ASTN2 was influenced by SAFB1 and that the processing of miR-19a from the miR-17-92 cluster was regulated by SAFB1. These data suggest SAFB1 may influence alternative splicing and, using an NCAM1 minigene, we showed that SAFB1 knockdown altered the expression of two of the three NCAM1 alternative spliced isoforms. However, when the AGA, GAA, and AAG motifs were mutated, SAFB1 knockdown no longer mediated a decrease in the NCAM1 9-10 alternative spliced form. To further investigate the association of SAFB1 with splicing we used exon array analysis and found SAFB1 knockdown mediated the statistically significant up- and downregulation of alternative exons. Further analysis using RNAmotifs to investigate the frequency of association between the motif pairs (AGA followed by AGA, GAA or AAG) and alternative spliced exons found there was a highly significant correlation with downregulated exons. Together, our data suggest SAFB1 will play an important physiological role in the central nervous system regulating synaptic function. We found that SAFB1 regulates dendritic spine density in hippocampal neurons and hence provide empirical evidence supporting this conclusion.

    CONCLUSIONS: iCLIP showed that SAFB1 has previously uncharacterised specific RNA binding properties that help coordinate the isoform-specific expression of coding and non-coding genes. These genes regulate splicing, axonal and synaptic function, and are associated with neuropsychiatric disease, suggesting that SAFB1 is an important regulator of key neuronal processes.

    Matched MeSH terms: Glycoproteins/metabolism
  13. Phang WM, Tan AA, Gopinath SC, Hashim OH, Kiew LV, Chen Y
    Int J Med Sci, 2016;13(5):330-9.
    PMID: 27226773 DOI: 10.7150/ijms.14341
    Breast cancer is one of the most common cancers that affect women globally and accounts for ~23% of all cancers diagnosed in women. Breast cancer is also one of the leading causes of death primarily due to late stage diagnoses and a lack of effective treatments. Therefore, discovering protein expression biomarkers is mandatory for early detection and thus, critical for successful therapy. Two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis followed by mass spectrometry were applied to identify potential biomarkers in the secretions of a murine mammary carcinoma cell line. Comparisons of the protein profiles of the murine 4T1 mammary carcinoma cell line and a normal murine MM3MG mammary cell line indicated that cadherin-1 (CDH), collagenase 3 (MMP-13), Viral envelope protein G7e (VEP), Gag protein (GAG) and Hypothetical protein LOC433182 (LOC) were uniquely expressed by the 4T1 cells, and pigment epithelium-derived factor (PEDF) was exclusively secreted by the MM3MG cells. Further analysis by a lectin-based study revealed that aberrant O-glycosylated CDH, N-glycosylated MMP-13 and LOC were present in the 4T1 medium. These differentially expressed N- and O-linked glycoprotein candidates, which were identified by combining lectin-based analysis with 2D-E, could serve as potential diagnostic and prognostic markers for breast cancer.
    Matched MeSH terms: Glycoproteins/metabolism*
  14. Nordin N, Jalil J, Jantan I, Murad S
    Pharm Biol, 2012 Mar;50(3):284-90.
    PMID: 22103812 DOI: 10.3109/13880209.2011.602416
    Enicosanthellum pulchrum (King) Heusden (Annonaceae) is a coniferous tree that is confined to mountain forests. The chemical constituents of this species have been studied previously; however, its biological activity has never been investigated before and is reported here for the first time.
    Matched MeSH terms: Platelet Membrane Glycoproteins/metabolism
  15. Nordin N, Salama SM, Golbabapour S, Hajrezaie M, Hassandarvish P, Kamalidehghan B, et al.
    PLoS One, 2014;9(11):e111925.
    PMID: 25379712 DOI: 10.1371/journal.pone.0111925
    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2-7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4-7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol.
    Matched MeSH terms: Glycoproteins/metabolism
  16. Ng HF, Chin KF, Chan KG, Ngeow YF
    Genome, 2015 Jun;58(6):315-21.
    PMID: 26284904 DOI: 10.1139/gen-2015-0028
    suPLAUR is the transcript variant that encodes the soluble form of the urokinase plasminogen activator surface receptor (suPLAUR). This soluble protein has been shown to enhance leukocyte migration and adhesion, and its circulatory level is increased in inflammatory states. In this pilot study, we used RNA-Seq to examine the splicing pattern of PLAUR in omental adipose tissues from obese and lean individuals. Of the three transcript variants of the PLAUR gene, only the proportion of suPLAUR (transcript variant 2) increases in obesity. After removing the effects of gender and age, the expression of suPLAUR is positively correlated with body mass index. This observation was validated using RT-qPCR with an independent cohort of samples. Additionally, in our RNA-Seq differential expression analysis, we also observed, in obese adipose tissues, an up-regulation of genes encoding other proteins involved in the process of chemotaxis and leukocyte adhesion; of particular interest is the integrin beta 2 (ITGB2) that is known to interact with suPLAUR in leukocyte adhesion. These findings suggest an important role for suPLAUR in the recruitment of immune cells to obese adipose tissue, in the pathogenesis of obesity.
    Matched MeSH terms: Membrane Glycoproteins/metabolism
  17. Nazarbahjat N, Kadir FA, Ariffin A, Abdulla MA, Abdullah Z, Yehye WA
    PLoS One, 2016;11(6):e0156022.
    PMID: 27272221 DOI: 10.1371/journal.pone.0156022
    A series of new 2-(ethylthio)benzohydrazone derivatives (1-6) were prepared and characterised by IR, 1H NMR, and 13C NMR spectroscopy and mass spectrometry. The newly prepared compounds were screened for their in vitro antioxidant activities using free radical scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Among them, most powerful antioxidant, compound 1 has been selected in order to illustrate anti-ulcer effect on ethanol-induced gastric mucosal lesions in rats. Four groups of Sprague Dawley rats were respectively treated with 10% Tween 20 as ulcer control group, 20 mg/kg omeprazole as reference group, 50 mg/kg and 100 mg/kg compound 1 as experimental animals. Macroscopically, ulcer control group showed extensive hemorrhagic lesions of gastric mucosa compared with omeprazole or compound 1. Rats pre-treated with compound 1 showed increased in gastric pH and gastric mucus. Histologically, ulcer control group showed severe damage to gastric mucosa with edema and leucocytes infiltration of submucosal layer. In immunohistochemical analysis, rats which were pre-treated with compound 1 showed up-regulation of HSP70 and down-regulation of Bax proteins. In conclusion, the gastroprotective effect of compound 1 may be due to its antioxidant activity, and/or due to up-regulation of HSP70 and down-regulation of Bax protein in stained tissue section.
    Matched MeSH terms: Glycoproteins/metabolism
  18. Moharam BA, Jantan I, Jalil J, Shaari K
    Molecules, 2010 Nov 03;15(11):7840-8.
    PMID: 21060292 DOI: 10.3390/molecules15117840
    Phylligenine, together with quebrachitol, stigmasterol and two aporphine alkaloids--oxoputerine and liriodenine--were isolated from the twigs of Mitrephora vulpina C.E.C. Fisch. They were evaluated for their ability to inhibit platelet activating factor (PAF) receptor binding to rabbit platelets using 3H-PAF as a ligand and their antiplatelet aggregation effect in human whole blood induced by arachidonic acid (AA), collagen and adenosine diphosphate (ADP). Of all the compounds tested, phylligenin and quebrachitol exhibited potent and concentration-dependent inhibitory effects on PAF receptor binding, with IC(50) values of 13.1 and 42.2 µM, respectively. The IC(50) value of phylligenin was comparable to that of cedrol (10.2 µM), a potent PAF antagonist. Phylligenin also showed strong dose-dependent inhibitory activity on platelet aggregation induced by AA and ADP.
    Matched MeSH terms: Platelet Membrane Glycoproteins/metabolism*
  19. Mohammed JN, Wan Dagang WRZ
    World J Microbiol Biotechnol, 2019 Jul 22;35(8):121.
    PMID: 31332590 DOI: 10.1007/s11274-019-2696-8
    The economics of bioflocculant production is coupled with the use of a low-cost substrate at appropriate culture conditions. The use of a waste substrate for this purpose offers an additional treatment measure to mitigate environmental pollution. We investigated the growth of Aspergillus flavus and its bioflocculant yield using chicken viscera hydrolysate as the sole media. The effects of culture conditions including time, pH, shaker speed, temperature and inoculum size on bioflocculant production were all investigated and optimised through response surface method based on the central component design (CCD) package of Design Expert. Next, the purified bioflocculant was physically and chemically characterised. Under optimised culture conditions (incubation time 72 h, pH 7, shaker speed 150 rpm, temperature 35 °C and inoculum 4%), 6.75 g/L yield of crude bioflocculant was recorded. The bioflocculant activity was mostly distributed in the cell-free supernatant with optimum efficiency of 91.8% at a dose of 4 mL/100 mL Kaolin suspension. The purified bioflocculant was a glycoprotein consisting of 23.46% protein and 74.5% sugar, including 46% neutral sugar and 2.01% uronic acid. The X-ray photoelectron spectroscopy fundamental analysis of the purified bioflocculant indicated that the mass proportion of C, O and N, were 63.46%, 27.87% and 8.86%, respectively. The bioflocculant is mainly composed of carbonyl, amino, hydroxyl, and amide functional groups. This study for the first time indicates a high potential of bioflocculant yield from chicken viscera at the appropriate culture conditions.
    Matched MeSH terms: Glycoproteins/metabolism
  20. Lim SB, Chua CT, Hashim OH
    J Immunol Methods, 1997 Dec 01;209(2):177-86.
    PMID: 9461333
    A mannose-binding lectin, termed champedak lectin-M, was isolated from an extract of the crude seeds of champedak (Artocarpus integer). On gel filtration chromatography, the lectin eluted in a single peak at elution volumes corresponding to 64 kDa. SDS-PAGE showed the mannose-binding lectin to be composed of 16.8 kDa polypeptides with some of the polypeptides being disulphide-linked to give dimers. When tested with all isotypes of immunoglobulins, champedak lectin-M demonstrated a selective strong interaction with human IgE and IgM, and a weak interaction with IgA2. The binding interactions of lectin-M were metal ion independent. The lectin was also shown to interact with horseradish peroxidase, ovalbumin, porcine thyroglobulin, human alpha1-acid glycoprotein, transferrin and alpha1-antitrypsin. It demonstrated a binding preference to Man alpha 1-3Man ligands in comparison to Man alpha 1-6Man or Man alpha 1-2Man.
    Matched MeSH terms: Glycoproteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links