Displaying publications 1 - 20 of 107 in total

Abstract:
Sort:
  1. Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA
    Int J Nanomedicine, 2011;6:677-81.
    PMID: 21556342 DOI: 10.2147/IJN.S17669
    The application of "green" chemistry rules to nanoscience and nanotechnology is very important in the preparation of various nanomaterials. In this work, we successfully developed an eco-friendly chemistry method for preparing silver nanoparticles (Ag-NPs) in natural polymeric media. The colloidal Ag-NPs were synthesized in an aqueous solution using silver nitrate, gelatin, and glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag-NPs were studied at different reaction times. The ultraviolet-visible (UV-vis) spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The prepared samples were also characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The use of eco-friendly reagents, such as gelatin and glucose, provides green and economic attributes to this work.
    Matched MeSH terms: Green Chemistry Technology/methods*
  2. Govindaraj D, Rajan M, Munusamy MA, Alarfaj AA, Sadasivuni KK, Kumar SS
    Nanomedicine, 2017 Nov;13(8):2661-2669.
    PMID: 28800874 DOI: 10.1016/j.nano.2017.07.017
    Minerals substituted apatite (M-HA) nanoparticles were prepared by the precipitation of minerals and phosphate reactants in choline chloride-Thiourea (ChCl-TU) deep eutectic solvent (DESs) as a facile and green way approach. After preparation of nanoparticles (F-M-HA (F=Fresh solvent)), the DESs was recovered productively and reprocess for the preparation of R-M-HA nanoparticles (R=Recycle solvent).The functional groups, phase, surface texture and the elemental composition of the M-HA nanoparticles were evaluated by advance characterization methods. The physicochemical results of the current work authoritative the successful uses of the novel (ChCl-TU) DESs as eco-friendly recuperate and give the medium for the preparation of M-HA nanoparticles. Moreover, the as-synthesized both M-HA nanoparticles exhibit excellent biocompatibility, consisting of cell co-cultivation and cell adhesion, in vivo according to surgical implantation of Wistar rats.
    Matched MeSH terms: Green Chemistry Technology
  3. Sim EY, Wu TY
    J Sci Food Agric, 2010 Oct;90(13):2153-62.
    PMID: 20718020 DOI: 10.1002/jsfa.4127
    There is an urgent need globally to find alternative sustainable steps to treat municipal solid wastes (MSW) originated from mismanagement of urban wastes with increasing disposal cost. Furthermore, a conglomeration of ever-increasing population and consumerist lifestyle is contributing towards the generation of more MSW. In this context, vermicomposting offers excellent potential to promote safe, hygienic and sustainable management of biodegradable MSW. It has been demonstrated that, through vermicomposting, MSW such as city garbage, household and kitchen wastes, vegetable wastes, paper wastes, human faeces and others could be sustainably transformed into organic fertiliser or vermicompost that provides great benefits to agricultural soil and plants. Generally, earthworms are sensitive to their environment and require temperature, moisture content, pH and sometimes ventilation at proper levels for the optimum vermicomposting process. Apart from setting the optimum operational conditions for the vermicomposting process, other approaches such as pre-composting, inoculating micro-organisms into MSW and redesigning the conventional vermireactor could be introduced to further enhance the vermicomposting of MSW. Thus the present mini-review discusses the potential of introducing vermicomposting in MSW management, the benefits of vermicomposted MSW to plants, suggestions on how to enhance the vermicomposting of MSW as well as risk management in the vermicomposting of MSW.
    Matched MeSH terms: Green Chemistry Technology
  4. Then YY, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM, Chieng BW
    Int J Mol Sci, 2014;15(9):15344-57.
    PMID: 25177865 DOI: 10.3390/ijms150915344
    In this paper, superheated steam (SHS) was used as cost effective and green processing technique to modify oil palm mesocarp fiber (OPMF) for biocomposite applications. The purpose of this modification was to promote the adhesion between fiber and thermoplastic. The modification was carried out in a SHS oven at various temperature (200-230 °C) and time (30-120 min) under normal atmospheric pressure. The biocomposites from SHS-treated OPMFs and poly(butylene succinate) (PBS) at a weight ratio of 70:30 were prepared by melt blending technique. The mechanical properties and dimensional stability of the biocomposites were evaluated. This study showed that the SHS treatment increased the roughness of the fiber surface due to the removal of surface impurities and hemicellulose. The tensile, flexural and impact properties, as well as dimensional stability of the biocomposites were markedly enhanced by the presence of SHS-treated OPMF. Scanning electron microscopy analysis showed improvement of interfacial adhesion between PBS and SHS-treated OPMF. This work demonstrated that SHS could be used as an eco-friendly and sustainable processing method for modification of OPMF in biocomposite fabrication.
    Matched MeSH terms: Green Chemistry Technology/methods
  5. Bukhari SN, Jantan I, Masand VH, Mahajan DT, Sher M, Naeem-ul-Hassan M, et al.
    Eur J Med Chem, 2014 Aug 18;83:355-65.
    PMID: 24980117 DOI: 10.1016/j.ejmech.2014.06.034
    A series of novel carbonyl compounds was synthesized by a simple, eco-friendly and efficient method. These compounds were screened for anti-oxidant activity, in vitro cytotoxicity and for inhibitory activity for acetylcholinesterase and butyrylcholinesterase. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. Among them, compound 14 exhibited strong free radical scavenging activity (18.39 μM) while six compounds (1, 3, 4, 13, 14, and 19) were found to be the most protective against Aβ-induced neuronal cell death in PC12 cells. Compounds 4 and 14, containing N-methyl-4-piperidone linker, showed high acetylcholinesterase inhibitory activity as compared to reference drug donepezil. Molecular docking and QSAR (Quantitative Structure-Activity Relationship) studies were also carried out to determine the structural features that are responsible for the acetylcholinesterase and butyrylcholinesterase inhibitory activity.
    Matched MeSH terms: Green Chemistry Technology
  6. Tajdidzadeh M, Azmi BZ, Yunus WM, Talib ZA, Sadrolhosseini AR, Karimzadeh K, et al.
    ScientificWorldJournal, 2014;2014:324921.
    PMID: 25295298 DOI: 10.1155/2014/324921
    The particle size, morphology, and stability of Ag-NPs were investigated in the present study. A Q-Switched Nd: YAG pulsed laser (λ = 532 nm, 360 mJ/pulse) was used for ablation of a pure Ag plate for 30 min to prepare Ag-NPs in the organic compound such as ethylene glycol (EG) and biopolymer such as chitosan. The media (EG, chitosan) permitted the making of NPs with well dispersed and average size of Ag-NPs in EG is about 22 nm and in chitosan is about 10 nm in spherical form. Particle size, morphology, and stability of NPs were compared with distilled water as a reference. The stability of the samples was studied by measuring UV-visible absorption spectra of samples after one month. The result indicated that the formation efficiency of NPs in chitosan was higher than other media and NPs in chitosan solution were more stable than other media during one month storage. This method for synthesis of silver NPs could be as a green method due to its environmentally friendly nature.
    Matched MeSH terms: Green Chemistry Technology/methods*
  7. Loo YY, Chieng BW, Nishibuchi M, Radu S
    Int J Nanomedicine, 2012;7:4263-7.
    PMID: 22904632 DOI: 10.2147/IJN.S33344
    The development of the biological synthesis of nanoparticles using microorganisms or plant extracts plays an important role in the field of nanotechnology as it is environmentally friendly and does not involve any harmful chemicals. In this study, the synthesis of silver nanoparticles using the leaves extract of Chinese tea from Camellia sinensis is reported. The synthesized nanoparticles were characterized using UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis shows that the synthesized silver nanoparticles are of face-centered cubic structure. Well-dispersed silver nanoparticles with an approximate size of 4 nm were observed in the TEM image. The application of the green synthesized nanoparticles can be used in many fields such as cosmetics, foods, and medicine.
    Matched MeSH terms: Green Chemistry Technology
  8. Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):1173-1180.
    PMID: 30942109 DOI: 10.1080/21691401.2018.1549064
    Cervical cancer is the third most common highest mortality in women worldwide. The use of standard chemotherapeutic drugs against cervical cancer patients received several side effects. Therefore, we focused phytoconsituents-mediated synthesis of gold nanoparticles (AuNPs) considered as greatest attention in the treatment of cervical cancer. In this present study, we reported that green synthesis of AuNPs by using with Alternanthera Sessilis aqueous extract. Synthesis of AuNPs were characterized by UV visible spectroscopy, energy dispersive X-ray (EDX), selected area diffraction pattern (SAED), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM) and atomic force microscope. Synthesized AuNPs confirmed by the UV absorption maximum at 535 and crystal structure of gold AuNPs was further confirmed by EDX and SAED. TEM and atomic force microscopy images show the size and morphological distribution of nanoparticles. FTIR analysis was confirmed the hydroxyl groups, amine and alkaline groups of biomolecules are present in the AuNPs. Moreover, AuNPs induce cytotoxicity in cervical cancer cells and also induce apoptosis through modulating intrinsic apoptotic mechanisms in cervical cancer cells. This green synthesis of AuNPs from Alternanthera sessilis approach was easy, large scaled up and eco-friendly.
    Matched MeSH terms: Green Chemistry Technology
  9. Thung WE, Ong SA, Ho LN, Wong YS, Ridwan F, Oon YL, et al.
    J Environ Sci (China), 2018 Apr;66:295-300.
    PMID: 29628097 DOI: 10.1016/j.jes.2017.05.010
    This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand (COD) reduction and power generation, including the increase of KCl concentration (MFC1) and COD concentration (MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC. Despite the COD reduction was up to 96%, the power output remained constrained.
    Matched MeSH terms: Green Chemistry Technology/methods*
  10. Ahmad AL, Oh PC, Abd Shukor SR
    Biotechnol Adv, 2009 May-Jun;27(3):286-96.
    PMID: 19500550 DOI: 10.1016/j.biotechadv.2009.01.003
    Over the past decade, L-homophenylalanine is extensively used in the pharmaceutical industry as a precursor for production of angiotensin-converting enzyme (ACE) inhibitor, which possesses significant clinical application in the management of hypertension and congestive heart failure (CHF). A number of chemical methods have been reported thus far for the synthesis of L-homophenylalanine. However, chemical methods generally suffer from process complexity, high cost, and environmental pollution. On the other hand, enantiomerically pure L-homophenylalanine can be obtained elegantly and efficiently by employing biocatalytic methods, where it appears to be the most attractive process in terms of potential industrial applications, green chemistry and sustainability. Herein we review the biocatalytic synthesis of vital L-homophenylalanine as potentially useful intermediate in the production of pharmaceutical drugs in environmentally friendly conditions, using membrane bioreactor for sustainable biotransformation process. One envisages the future prospects of developing an integrated membrane bioreactor system with improved performance for L-homophenylalanine production.
    Matched MeSH terms: Green Chemistry Technology/methods*
  11. Chia SR, Show PL, Phang SM, Ling TC, Ong HC
    J Biosci Bioeng, 2018 Aug;126(2):220-225.
    PMID: 29673988 DOI: 10.1016/j.jbiosc.2018.02.015
    In this present study, alcohol/salt liquid biphasic system was used to extract phlorotannin from brown macroalgae. Liquid biphasic system is a new green technology that integrated with various processes into one-step, by concentrating, separating and purifying the bioproduct in a unit operation. The solvent used is non-toxic and there is potential for solvent recovery which is beneficial to the environment. Phlorotannin is a bioactive compound that has gained much attention due to its health beneficial effect. Therefore, the isolation of phlorotannin is lucrative as it contains various biological activities that are capable to be utilised into food and pharmaceutical application. By using 2-propanol/ammonium sulphate system, the highest recovery of phlorotannin was 76.1% and 91.67% with purification factor of 2.49 and 1.59 from Padina australis and Sargassum binderi, respectively. A recycling study was performed and the salt phase of system was recycled where maximum salt recovery of 41.04% and 72.39% could be obtained from systems containing P. australis and S. binderi, respectively. Similar recovery of phlorotannin was observed after performing two cycles of the system, this concludes that the system has good recyclability and eco-friendly.
    Matched MeSH terms: Green Chemistry Technology/methods*
  12. Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, et al.
    Sci Rep, 2018 Jul 13;8(1):10617.
    PMID: 30006510 DOI: 10.1038/s41598-018-28880-2
    The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.
    Matched MeSH terms: Green Chemistry Technology
  13. Ghorbani P, Soltani M, Homayouni-Tabrizi M, Namvar F, Azizi S, Mohammad R, et al.
    Molecules, 2015;20(7):12946-58.
    PMID: 26193248 DOI: 10.3390/molecules200712946
    The development of reliable and ecofriendly approaches for the production of nanomaterials is a significant aspect of nanotechnology nowadays. One of the most important methods, which shows enormous potential, is based on the green synthesis of nanoparticles using plant extract. In this paper, we aimed to develop a rapid, environmentally friendly process for the synthesis silver nanoparticles using aqueous extract of sumac. The bioactive compounds of sumac extract seem to play a role in the synthesis and capping of silver nanoparticles. Structural, morphological and optical properties of the nanoparticles were characterized using FTIR, XRD, FESEM and UV-Vis spectroscopy. The formation of Ag-NP was immediate within 10 min and confirmed with an absorbance band centered at 438 nm. The mean particle size for the green synthesized silver nanoparticles is 19.81 ± 3.67 nm and is fairly stable with a zeta potential value of -32.9 mV. The bio-formed Ag-NPs were effective against E. coli with a maximum inhibition zone of 14.3 ± 0.32 mm.
    Matched MeSH terms: Green Chemistry Technology
  14. Phong WN, Show PL, Chow YH, Ling TC
    J Biosci Bioeng, 2018 Sep;126(3):273-281.
    PMID: 29673987 DOI: 10.1016/j.jbiosc.2018.03.005
    Aqueous two-phase system (ATPS) has been suggested as a promising separation tool in the biotechnological industry. This liquid-liquid extraction technique represents an interesting advance in downstream processing due to several advantages such as simplicity, rapid separation, efficiency, economy, flexibility and biocompatibility. Up to date, a range of biotechnological products have been successfully recovered from different sources with high yield using ATPS-based strategy. In view of the important potential contribution of the ATPS in downstream processing, this review article aims to provide latest information about the application of ATPS in the recovery of various biotechnological products in the past 7 years (2010-2017). Apart from that, the challenges as well as the possible future work and outlook of the ATPS-based recovery method have also been presented in this review article.
    Matched MeSH terms: Green Chemistry Technology/methods
  15. Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, et al.
    Int J Nanomedicine, 2020;15:275-300.
    PMID: 32021180 DOI: 10.2147/IJN.S233789
    Gold nanoparticles (AuNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. There are various methods to synthesize AuNPs which are generally categorized into two main types: chemical and physical synthesis. Continuous efforts have been devoted to search for other more environmental-friendly and economical large-scale methods, such as environmentally friendly biological methods known as green synthesis. Green synthesis is especially important to minimize the harmful chemical and toxic by-products during the conventional synthesis of AuNPs. Green materials such as plants, fungi, microorganisms, enzymes and biopolymers are currently used to synthesize various NPs. Biosynthesized AuNPs are generally safer for use in biomedical applications since they come from natural materials themselves. Multiple surface functionalities of AuNPs allow them to be more robust and flexible when combined with different biological assemblies or modifications for enhanced applications. This review focuses on recent developments of green synthesized AuNPs and discusses their numerous biomedical applications. Sources of green materials with successful examples and other key parameters that determine the functionalities of AuNPs are also discussed in this review.
    Matched MeSH terms: Green Chemistry Technology/methods*
  16. Khan MJ, Shameli K, Sazili AQ, Selamat J, Kumari S
    Molecules, 2019 Feb 16;24(4).
    PMID: 30781541 DOI: 10.3390/molecules24040719
    Green synthesis of silver nanoparticles is desirable practice. It is not only the required technique for industrial and biomedical purposes but also a promising research area. The aim of this study was to synthesize green curcumin silver nanoparticles (C-Ag NPs). The synthesis of C-Ag NPs was achieved by reduction of the silver nitrate (AgNO₃) in an alkaline medium. The characterizations of the prepared samples were conducted by ultraviolet visible (UV-vis) spectroscopy, powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and zeta potential (ZP) analyses. The formation of C-Ag NPs was evaluated by the dark color of the colloidal solutions and UV-vis spectra, with 445 nm as the maximum. The size of the crystalline nanoparticles, recorded as 12.6 ± 3.8nm, was confirmed by HRTEM, while the face-centered cubic (fcc) crystallographic structure was confirmed by PXRD and SAED. It is assumed that green synthesized curcumin silver nanoparticles (C-Ag NPs) can be efficiently utilized as a strong antimicrobial substance for food and meat preservation due to their homogeneous nature and small size.
    Matched MeSH terms: Green Chemistry Technology*
  17. Zhang X, Tan Z, Jia K, Zhang W, Dang M
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):2171-2178.
    PMID: 31159596 DOI: 10.1080/21691401.2019.1620249
    Nanomedicine is a rapidly emerging field and is reported to be a promising tool for treating various diseases. Green synthesized nanoparticles are documented to possess a potent anticancer effect. Rabdosia rubescens is a Chinese plant which is also one of the components of PC-SPES and used to treat prostate cancer. In the present study, we synthesized the gold nanoparticles from R. rubescens (RR-AuNP) and analyzed its anticancer activity against the lung carcinoma A549 cell lines. Since lung cancer is reported to be with increased morbidity and decreased survival rate. The biosynthesized RR-AuNP were confirmed using UV-Visible spectrophotometer, size and shape of RR-AuNP were assessed by DLS, TEM and EDX. The biomolecules present in RR-AuNP and its topographical structure were detected using FTIR, SAED and AFM analysis. MTT assay was performed to detect the IC50 dose of RR-AuNP and its apoptotic effect was assessed by detecting the caspases activation, ROS generation. The anticancer effect of RR-AuNP was confirmed by DAPI staining, TUNEL assay and its molecular mechanism were confirmed by assessing the apoptotic signalling molecules protein expression. Our results illustrate that RR-AuNP showed a strong absorption peak at 550 nm and the RRAuNP were polydispersed nanospheres with size of 130 nm. RR-AuNP IC50 dose against A549 lung carcinoma cell line was detected to be at 25 µg/ml. The results of DAPI staining, TUNEL and immunoblotting analysis confirms both the 25 µg/ml and 50 µg/ml of RR-AuNP possess potent anticancer and apoptotic effect, suggesting that RR-AuNP that it may be a persuasive molecule to treat lung cancer.
    Matched MeSH terms: Green Chemistry Technology
  18. Hazwan Hussin M, Samad NA, Latif NHA, Rozuli NA, Yusoff SB, Gambier F, et al.
    Int J Biol Macromol, 2018 Jul 01;113:1266-1272.
    PMID: 29548919 DOI: 10.1016/j.ijbiomac.2018.03.048
    Lignocellulosic materials can significantly contribute to the development of eco-friendly wood adhesives. In this work, glyoxal-phenolic resins for plywood were prepared using organosolv lignin, which was isolated from black liquor recovered from organosolv pulping of oil palm fronds (OPF) and considered to be an alternative to phenol. Glyoxal, which is a dialdehyde obtained from several natural resources, was used as substitute for formaldehyde. The structure of organosolv lignin and the resins were characterized by FTIR and NMR, and for thermal stability by TGA and DSC. The resins were further studied for their viscosity, pH, solids content and gel times. The resins performance as wood adhesive was further established from mechanical test in terms of tensile strength and modulus of elasticity (MOE) to obtain the optimum ratios of organosolv lignin, which replaces phenol in organosolv lignin phenol glyoxal (OLPG) resins. The adhesive composition having 50% (w/w) of phenol substituted by organosolv lignin, termed as 50% OLPG showed highest adhesive strength compared to phenol formaldehyde (PF) commercial adhesive.
    Matched MeSH terms: Green Chemistry Technology
  19. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV
    Int J Biol Macromol, 2017 Feb;95:1064-1071.
    PMID: 27984140 DOI: 10.1016/j.ijbiomac.2016.09.114
    In the present work, copper nanoparticles (CuNPs) were in situ generated inside cellulose matrix using Terminalia catappa leaf extract as a reducing agent. During this process, some CuNPs were also formed outside the matrix. The CuNPs formed outside the matrix were observed with transmission electron microscope (TEM) and scanning electron microscope (SEM). Majority of the CuNPs formed outside the matrix were in the size range of 21-30nm. The cellulose/CuNP composite films were characterized by Fourier transform infrared spectroscopic, X-Ray diffraction and thermogravimetric techniques. The crystallinity of the cellulose/CuNP composite films was found to be lower than that of the matrix indicating rearrangement of cellulose molecules by in situ generated CuNPs. Further, the expanded diffractogram of the composite films indicated the presence of a mixture of Cu, CuO and Cu2O nanoparticles. The thermal stability of the composites was found to be lower than that of the composites upto 350°C beyond which a reverse trend was observed. This was attributed to the catalytic behaviour of CuNPs for early degradation of the composites. The composite films possessed sufficient tensile strength which can replace polymer packaging films like polyethylene. Further, the cellulose/CuNP composite films exhibited good antibacterial activity against E.coli bacteria.
    Matched MeSH terms: Green Chemistry Technology
  20. Gorjian H, Raftani Amiri Z, Mohammadzadeh Milani J, Ghaffari Khaligh N
    Food Chem, 2021 Apr 16;342:128342.
    PMID: 33092927 DOI: 10.1016/j.foodchem.2020.128342
    Nanoliposome and nanoniosome formulations containing myrtle extract were prepared without using cholesterol and toxic organic solvents for the first time. The formulations had different concentrations of lecithin (5, 7, and 9% w/w) and Hydrophilic-Lipophilic Balance (HLB) values (6.76, 8.40, and 9.59). The physicochemical characterization results showed a nearly spherical shape for the prepared nanosamples. The particle sizes, zeta potentials and encapsulation efficiencies for the prepared nanoliposomes and nanoniosomes were at a range of 260-293 nm and 224-520 nm; -33.16 to - 31.16 mV and - 33.3 to - 10.36 mV; and 68-73% and 79-83%, respectively. The formulated nanoniosomes showed better stability during storage time. Besides, the encapsulation efficiency and in vitro release rate of myrtle extract could be controlled by adjusting the lecithin concentration and HLB value. The release of myrtle extract from nanovesicles showed a pH-responsive character. The FTIR analysis confirmed that the myrtle extract was encapsulated in nanovesicles physically.
    Matched MeSH terms: Green Chemistry Technology/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links