Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Tan WS, Ho KL
    World J Gastroenterol, 2014 Sep 7;20(33):11650-70.
    PMID: 25206271 DOI: 10.3748/wjg.v20.i33.11650
    Hepatitis B virus (HBV) has killed countless lives in human history. The invention of HBV vaccines in the 20(th) century has reduced significantly the rate of the viral infection. However, currently there is no effective treatment for chronic HBV carriers. Newly emerging vaccine escape mutants and drug resistant strains have complicated the viral eradication program. The entire world is now facing a new threat of HBV and human immunodeficiency virus co-infection. Could phage display provide solutions to these life-threatening problems? This article reviews critically and comprehensively the innovative and potential applications of phage display in the development of vaccines, therapeutic agents, diagnostic reagents, as well as gene and drug delivery systems to combat HBV. The application of phage display in epitope mapping of HBV antigens is also discussed in detail. Although this review mainly focuses on HBV, the innovative applications of phage display could also be extended to other infectious diseases.
    Matched MeSH terms: Hepatitis B virus/genetics
  2. Raihan R, Akbar SMF, Al Mahtab M, Khan MSI, Tabassum S, Tee KK, et al.
    Viral Immunol, 2020 09;33(7):530-534.
    PMID: 32513066 DOI: 10.1089/vim.2019.0198
    Hepatitis B virus (HBV) is a noncytopathic virus and billions of HBV-infected patients live uneventful lives and do not suffer from notable liver damage. However, HBV also causes progressive liver diseases characterized by hepatic inflammation, hepatic fibrosis, and liver cancer in millions of HBV-infected patients. The goal of this study was to evaluate the role of mutant HBV in HBV pathogenesis. In a cohort of 360 chronic HBV-infected patients, mutations at T1762/A1764 of HBV genome were detected in most of the patients with HBV-induced liver cirrhosis and hepatocellular carcinoma. To explore if mutations at T1762/A1764 of HBV genome has any role in progressive liver disease, peripheral blood mononuclear cells (PBMCs) and antigen-presenting dendritic cells (DCs) were isolated from five chronic hepatitis B (CHB) patients with mutations at T1762/A1764 and five comparable patients of CHB without mutations at T1762/A1764. DCs were pulsed with hepatitis B surface antigen (HBsAg). The levels of cytokines produced by PBMCs and DCs as well as nitrite production by DCs were evaluated. Significantly higher levels of interleukin-12, tumor necrosis factor-alpha, interferon-gamma, and transforming growth factor-beta were detected in cultures of PBMCs, DCs, and HBsAg-pulsed DCs from CHB patients with mutations at T1762/A1764 compared with those without mutations (p 
    Matched MeSH terms: Hepatitis B virus/genetics*
  3. Jo HS, Khan JF, Han JH, Yu YD, Kim DS
    Transplant Proc, 2021 Dec;53(10):3016-3021.
    PMID: 34740450 DOI: 10.1016/j.transproceed.2021.09.038
    BACKGROUND: Hepatitis B immunoglobulin (HBIG) and oral nucleoside/nucleotide analogs have been the mainstay of hepatitis B virus (HBV) prophylaxis after liver transplantation. However, long-term HBIG administration could have disadvantages, such as an increase in medical costs and the development of mutant HBV strains. This study aimed to investigate the safety and efficacy of HBV vaccination after the withdrawal of HBIG after liver transplantation.

    METHODS: This prospective open-label single-arm observational clinical trial enrolled 41 patients who underwent liver transplantation between 2010 and 2016 because of a condition related to chronic HBV infection. At the time of enrollment, all patients had taken entecavir and discontinued HBIG administration. When hepatitis B surface antibody titer was undetectable after the withdrawal of HBIG, a recombinant HBV vaccine was injected intramuscularly at month 0, 1, and 6.

    RESULTS: After excluding 5 patients who dropped out and 2 patients who had a persistent hepatitis B surface antibody titer, 9 (26.5%) of 34 patients had a positive vaccination response. The median hepatitis B surface antibody titer at seroconversion was 86 (12-1000) IU/L, and those at the end of follow-up were 216 (30-1000) IU/L. No patients experienced HBV recurrence during the study period. Sex (female, odds ratio 32.91 [1.83-592.54], P = .018) and the dosing interval of HBIG before withdrawal (≥90 days, 16.21 [1.21-217.31], P = .035) were independent contributing factors for positive response to the vaccination.

    CONCLUSION: HBV vaccination still deserves consideration as active immunoprophylaxis after liver transplantation because it could provide added immunity to nucleoside/nucleotide analogs monotherapy with excellent cost-effectiveness.

    Matched MeSH terms: Hepatitis B virus/genetics
  4. Locarnini S
    Med J Malaysia, 2005 Jul;60 Suppl B:41-51.
    PMID: 16108173
    Matched MeSH terms: Hepatitis B virus/genetics
  5. Lim CK, Tan JT, Ravichandran A, Chan YC, Ton SH
    Malays J Pathol, 2007 Dec;29(2):79-90.
    PMID: 19108399 MyJurnal
    Hepatitis B virus (HBV) is classified into eight genotypes (A to H). In this study, three genotyping methods were compared for their sensitivity and accuracy, namely PCR-RFLP on the S region, PCR-RFLP on the pre-S region and nested PCR with type specific primers. Sixty HBV samples from infected sera were genotyped. The nested PCR with type specific primers was found to be the most sensitive and produced substantial numbers of co-infections by genotypes B and C. The sensitivities for both PCR-RFLP methods were lower and did not reveal co-infections. Generally, the three methods produced consistent genotyping results in samples infected by single genotypes but for co-infections by genotypes B and C, the two PCR-RFLP methods yielded only single genotypic results. For the cases of single genotypic infections, genotypes ascertained by sequencing were in concordance across all three methods. However, when co-infections occurred, PCR analysis on clones revealed only single genotypic infections.
    Matched MeSH terms: Hepatitis B virus/genetics*
  6. Yap SF
    Malays J Pathol, 2004 Jun;26(1):1-12.
    PMID: 16190102
    "Parenteral" or "serum" hepatitis is known to have afflicted man for centuries. However, it was not until the mid-1960s that the causative agent of this infection, the hepatitis B virus, was discovered. Since then, the biology and the replication strategy of the virus, and the clinical features and the epidemiology of the hepatitis B infection have been determined. Knowledge about the virus and the infection it causes led to the development of firstly, a plasma-derived vaccine and later a recombinant vaccine for the prevention of the infection. Integration of the hepatitis B vaccine into newborn vaccination programmes on a worldwide basis represents a major step in the effort to eliminate this infectious disease and its complications. Laboratory tests are available for the diagnosis and monitoring of the disease. Therapies have been developed to halt the progress of the chronic infection in affected individuals. While these developments have resulted in a decrease of the frequency of infection in many countries, particularly those that have implemented universal immunization of newborns, the chronic infection remains a significant global problem. Worldwide, over 300 million individuals are infected and each year, an estimated 1 million persons die from chronic complications of the disease including hepatocellular carcinoma and hepatic failure. The therapies currently available result in elimination of the virus in only a relatively small proportion of subjects and carry with it serious side effects. Geopolitical, economic and other factors hinder the vision of elimination of the infection through immunization programmes. Nevertheless, work continues to clarify further the underlying pathological mechanism of the infection, the host and viral factors that promote elimination or persistence of the virus in the human host. It is hoped that such investigations will reveal viral targets for the design of newer and potentially more effective drugs to treat the infection.
    Matched MeSH terms: Hepatitis B virus/genetics
  7. Yap SF, Wong NW, Goh KL
    Malays J Pathol, 1994 Jun;16(1):57-62.
    PMID: 16329577
    The relationship between serum Hepatitis B virus DNA (HBV-DNA) and the Hepatitis B e-antigen/ anti-Hepatitis Be (HBeAg/anti-HBe) serological status in Malaysians was studied. 212 cases of asymptomatic HBV carriers were recruited for this study. 92 cases were positive for the HBeAg at the point of recruitment. 85 (92.4%) of these patients tested positive for HBV-DNA, of whom 55 (64.7%) had levels over 100pg/ml of serum. Three of the remaining 7 HBeAg positive cases who were negative for HBV-DNA subsequently seroconverted. The other 4 cases remained negative for HBV-DNA for periods of 6-12 months. Out of 113 cases who were anti-HBe positive, 12 (10.6%) gave a positive HBV-DNA result. 2 of these 12 patients were recent seroconverters; the remaining cases had transiently increased viral replicative activity which later subsided. 7 out of the 212 carriers were in the e-window period; all 7 tested negative for HBV-DNA. Our data confirm a high frequency of HBV-DNA in HBeAg positive carriers and a negative correlation between HBV-DNA and anti-HBe. An atypical profile of anti-HBe associated with HBV-DNA was observed in 10.6% of the carriers. An inverse relationship between serum HBV-DNA levels and age was also observed.
    Matched MeSH terms: Hepatitis B virus/genetics
  8. Hassan MR, Mustapha NR, Zawawi FM, Earnest BS, Voralu K, Pani SP
    Singapore Med J, 2011 Feb;52(2):86-9.
    PMID: 21373733
    This study was conducted to compare the genotype and markers of disease severity of chronic hepatitis C (CHC), namely viral load, alanine transaminase (ALT) levels and histopathological findings on liver biopsy, in patients with and without end-stage renal disease (ESRD).
    Matched MeSH terms: Hepatitis B virus/genetics
  9. Chuon C, Takahashi K, Matsuo J, Katayama K, Yamamoto C, Ko K, et al.
    Sci Rep, 2019 08 21;9(1):12186.
    PMID: 31434918 DOI: 10.1038/s41598-019-48304-z
    Approximately 75% of hepatocellular carcinomas (HCC) occur in Asia; core promoter mutations are associated with HCC in HBV genotype C, the dominant genotype in Cambodia. We analyzed these mutations in Cambodian residents and compared them with HBV full genomes registered in GenBank. We investigated the characteristics of 26 full-length HBV genomes among 35 residents positive for hepatitis B surface antigen in Siem Reap province, Cambodia. Genotype C1 was dominant (92.3%, 24/26), with one case of B2 and B4 each. Multiple mutations were confirmed in 24 Cambodian C1 isolates, especially double mutation at A1762T/G1764A in 18 isolates (75.0%), and combination mutation at C1653T and/or T1753V and A1762T/G1764A in 14 isolates (58.3%). In phylogenetic analysis, 16 of 24 isolates were located in the cluster with Laos, Thailand, and Malaysia. In 340 GenBank-registered C1 strains, 113 (33.2%) had combination mutation amongst which 16.5%, 34.2%, and 95.2% were found in ASC, chronic hepatitis, and liver cirrhosis (LC)/HCC respectively (P 
    Matched MeSH terms: Hepatitis B virus/genetics*
  10. Ton SH, Iskandar K, Noriah R, Thanaletchimy N
    Scand. J. Infect. Dis., 1996;28(6):543-8.
    PMID: 9060053
    As most published studies on precore mutants have been carried out on isolates from patients with liver diseases, and it is unclear whether HBsAg carriers with viraemia in the absence of HBeAg are also generally infected by such mutants, it was decided to sequence the precore region in some HBV-DNA isolated from HBsAg-positive carriers. Precore sequences of HBV-DNA from 43 HBsAg carriers in Malaysia were studied. Three HBV subtypes were identified according to the nucleotide sequence of the precore region. Most of the carriers were found to be infected by the subtype adr. Mutations were detected in the precore regions. The most common conserved mutation was a silent mutation involving conversion from T to C (CCT to CCC) at position 1858 at codon 15 (proline). It was found that 4/43 (9.3%) had a mutation at the penultimate codon where TGG was changed to TAG. All 4 isolates with the TAG mutation had nt T at position 1858. Of the 4 carriers who were infected by these mutant viruses, 2 were coinfected with the wild type, 1 was infected only by a variant with the mutation at position 1896, while another was infected by a variant with mutations at positions 1896 and 1899. Three of the 4 were anti-HBe positive while 1 was HBeAg positive. Alanine aminotransaminase activities in all 4 carriers were normal. This study therefore demonstrated that variants with stop codons at the penultimate codon could be found in asymptomatic carriers in Malaysia.
    Matched MeSH terms: Hepatitis B virus/genetics*
  11. Leong CR, Funami K, Oshiumi H, Mengao D, Takaki H, Matsumoto M, et al.
    Oncotarget, 2016 10 18;7(42):68179-68193.
    PMID: 27626689 DOI: 10.18632/oncotarget.11907
    Hepatitis B virus (HBV) barely induces host interferon (IFN)-stimulated genes (ISGs), which allows efficient HBV replication in the immortalized mouse hepatocytes as per human hepatocytes. Here we found that transfection of Isg20 plasmid robustly inhibits the HBV replication in HBV-infected hepatocytes irrespective of IRF3 or IFN promoter activation. Transfection of Isg20 is thus effective to eradicate HBV in the infected hepatocytes. Transfection of HBV genome or ε-stem of HBV pgRNA (active pgRNA moiety) failed to induce Isg20 in the hepatocytes, while control polyI:C (a viral dsRNA analogue mimic) activated MAVS pathway leading to production of type I IFN and then ISGsg20 via the IFN-α/β receptor (IFNAR). Consistently, addition of IFN-α induced Isg20 and partially suppressed HBV replication in hepatocytes. Chasing HBV RNA, DNA and proteins by blotting indicated that ISG20 expression decreased HBV RNA and replicative DNA in HBV-transfected cells, which resulted in low HBs antigen production and virus titer. The exonuclease domains of ISG20 mainly participated in HBV-RNA decay. In vivo hydrodynamic injection, ISG20 was crucial for suppressing HBV replication without degrading host RNA in the liver. Taken together, ISG20 acts as an innate anti-HBV effector that selectively degrades HBV RNA and blocks replication of infectious HBV particles. ISG20 would be a critical effector for ameliorating chronic HBV infection in the IFN therapy.
    Matched MeSH terms: Hepatitis B virus/genetics*
  12. Ong HT, Duraisamy G, Kee Peng N, Wen Siang T, Seow HF
    Microbes Infect., 2005 Mar;7(3):494-500.
    PMID: 15792534
    Hepatitis B virus (HBV) has been classified into eight genotypes, designated A-H. These genotypes are known to have distinct geographic distributions. The clinical importance of genotype-related differences in the pathogenicity of HBV has been revealed recently. In Malaysia, the current distribution of HBV remains unclear. The aim of this study was to determine the genotypes and subtypes of HBV by using PCR, followed by DNA sequencing, as well as to analyse the mutations in the immunodominant region of preS and S proteins. The S gene sequence was determined from HBV DNA of four apparently healthy blood donors' sera and three sera from asymptomatic chronic hepatitis B carriers. Of this batch of sera, the preS gene sequence was obtained from HBV DNA from three out of the four blood donors and two out of the three chronic carriers. Due to insufficient sera, we had to resort to using sera from another blood donor to make up for the sixth DNA sequence of the preS gene. Based on the comparative analysis of the preS sequences with the reported sequences in the GenBank database, HBV DNA from two normal carriers was classified as genotype C. Genotype B was assigned to HBV from one blood donor and two hepatitis B chronic carriers, whereas HBV of one chronic carrier was of genotype D. Based on the S gene sequences, HBV from three blood donors was of genotype C, that of one blood donor and one chronic carrier was of genotype B, and the remaining, of genotype D. In the five cases where both preS and S gene sequences were determined, the genotypes assigned based on either the preS or S gene sequences were in concordance. The nature of the deduced amino acid (aa) sequences at positions 125, 127, 134, 143, 159, 161 and 168 of the S gene enabled the classification of these sequences into subtypes, namely, adrq+, adw2 and ayw2. The clustering of our DNA sequences into genotype groups corresponded to their respective subtype, that is, adw2 in genotype B, adrq in genotype C and ayw in genotype D. Analysis of the point mutations revealed that five of the sequences contained aa substitutions at immunodominant epitopes involved in B or/and T cell recognition. In conclusion, despite the low numbers of samples studied, due to budget constraints, these data are still worthwhile reporting, as it is important for the control of HBV infections. In addition, the genotype and mutational data obtained in this study may be useful for designing new treatment regimes for HBV patients.
    Matched MeSH terms: Hepatitis B virus/genetics*
  13. Seto WK, Lo YR, Pawlotsky JM, Yuen MF
    Lancet, 2018 11 24;392(10161):2313-2324.
    PMID: 30496122 DOI: 10.1016/S0140-6736(18)31865-8
    Chronic hepatitis B virus infection is a global public health threat that causes considerable liver-related morbidity and mortality. It is acquired at birth or later via person-to-person transmission. Vaccination effectively prevents infection and chronic hepatitis B virus carriage. In chronically infected patients, an elevated serum hepatitis B virus DNA concentration is the main risk factor for disease progression, although there are other clinical and viral parameters that influence disease outcomes. In addition to liver biochemistry, virological markers, and abdominal ultrasonography, non-invasive assessment of liver fibrosis is emerging as an important assessment modality. Long-term nucleos(t)ide-analogue therapy is safe and well tolerated, achieves potent viral suppression, and reduces the incidence of liver-related complications. However, a need to optimise management remains. Promising novel therapies are at the developmental stage. With current vaccines, therapies, and an emphasis on improving linkage to care, WHO's goal of eliminating hepatitis B virus as a global health threat by 2030 is achievable.
    Matched MeSH terms: Hepatitis B virus/genetics
  14. Tsai KN, Chong CL, Chou YC, Huang CC, Wang YL, Wang SW, et al.
    J Virol, 2015 Nov;89(22):11406-19.
    PMID: 26339052 DOI: 10.1128/JVI.00949-15
    The risk of liver cancer in patients infected with the hepatitis B virus (HBV) and their clinical response to interferon alpha therapy vary based on the HBV genotype. The mechanisms underlying these differences in HBV pathogenesis remain unclear. In HepG2 cells transfected with a mutant HBV(G2335A) expression plasmid that does not transcribe the 2.2-kb doubly spliced RNA (2.2DS-RNA) expressed by wild-type HBV genotype A, the level of HBV pregenomic RNA (pgRNA) was higher than that in cells transfected with an HBV genotype A expression plasmid. By using cotransfection with HBV genotype D and 2.2DS-RNA expression plasmids, we found that a reduction of pgRNA was observed in the cells even in the presence of small amounts of the 2.2DS-RNA plasmid. Moreover, ectopic expression of 2.2DS-RNA in the HBV-producing cell line 1.3ES2 reduced the expression of pgRNA. Further analysis showed that exogenously transcribed 2.2DS-RNA inhibited a reconstituted transcription in vitro. In Huh7 cells ectopically expressing 2.2DS-RNA, RNA immunoprecipitation revealed that 2.2DS-RNA interacted with the TATA-binding protein (TBP) and that nucleotides 432 to 832 of 2.2DS-RNA were required for efficient TBP binding. Immunofluorescence experiments showed that 2.2DS-RNA colocalized with cytoplasmic TBP and the stress granule components, G3BP and poly(A)-binding protein 1 (PABP1), in Huh7 cells. In conclusion, our study reveals that 2.2DS-RNA acts as a repressor of HBV transcription through an interaction with TBP that induces stress granule formation. The expression of 2.2DS-RNA may be one of the viral factors involved in viral replication, which may underlie differences in clinical outcomes of liver disease and responses to interferon alpha therapy between patients infected with different HBV genotypes.
    Matched MeSH terms: Hepatitis B virus/genetics*
  15. Tang KH, Yusoff K, Tan WS
    J Virol Methods, 2009 Aug;159(2):194-9.
    PMID: 19490973 DOI: 10.1016/j.jviromet.2009.03.015
    Hepatitis B is a major public health problem worldwide which may lead to chronic liver diseases, cirrhosis and hepatocellular carcinoma. An interaction between hepatitis B virus (HBV) envelope protein, particularly the PreS1 region, and a specific cell surface receptor is believed to be the initial step of HBV infection through attachment to hepatocytes. In order to develop a gene delivery system, bacteriophage T7 was modified genetically to display polypeptides of the PreS1 region. A recombinant T7 phage displaying amino acids 60-108 of the PreS1 region (PreS1(60-108)) was demonstrated to be most effective in transfecting HepG2 cells in a dose- and time-dependant manner. The phage genome was recovered from the cell lysate and confirmed by PCR whereas the infectious form of the internalized phage was measured by a plaque-forming assay. The internalized phage exhibited the appearance of green fluorescent dots when examined by immunofluorescence microscopy. Surface modification, particularly by displaying the PreS1(60-108) enhanced phage uptake, resulting in more efficient in vitro gene transfer. The ability of the recombinant phage to transfect HepG2 cells demonstrates the potential of the phage display system as a gene therapy for liver cancer.
    Matched MeSH terms: Hepatitis B virus/genetics*
  16. Lee KW, Tan WS
    J Virol Methods, 2008 Aug;151(2):172-180.
    PMID: 18584885 DOI: 10.1016/j.jviromet.2008.05.025
    The recombinant hepatitis B virus (HBV) core antigen (HBcAg) expressed in Escherichia coli self-assembles into icosahedral capsids of about 35 nm which can be exploited as gene or drug delivery vehicles. The association and dissociation properties of the C-terminally truncated HBcAg with urea and guanidine hydrochloride (GdnHCl) were studied. Transmission electron microscopy (TEM) revealed that the dissociated HBcAg was able to re-associate into particles when the applied denaturing agents were physically removed. In order to evaluate the potential of the particles in capturing molecules, purified green fluorescent protein (GFP) was applied to the dissociated HBcAg for encapsidation. The HBcAg particles harbouring the GFP molecules were purified using sucrose density gradient ultracentrifugation and analysed using native agarose gel electrophoresis and TEM. A method for the encapsidation of GFP in HBcAg particles which has the potential to capture drugs or nucleic acids was established.
    Matched MeSH terms: Hepatitis B virus/genetics*
  17. Monjezi R, Tan SW, Tey BT, Sieo CC, Tan WS
    J Virol Methods, 2013 Jan;187(1):121-6.
    PMID: 23022731 DOI: 10.1016/j.jviromet.2012.09.017
    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples.
    Matched MeSH terms: Hepatitis B virus/genetics*
  18. Meldal BH, Bon AH, Prati D, Ayob Y, Allain JP
    J Viral Hepat, 2011 Feb;18(2):91-101.
    PMID: 20196797 DOI: 10.1111/j.1365-2893.2010.01282.x
    Malaysia is a medium endemic country for hepatitis B virus (HBV) infection but little is known about HBV strains circulating in Malaysian blood donors. Viral load, HBsAg concentrations and nested PCR products from 84 HBV surface antigen (HBsAg) positive samples were analysed in detail. Median viral load was 3050 IU/mL and median HBsAg 1150 IU/mL. Fifty-six full genome, 20 pre-S/S, 1 S gene and six basic core promoter/precore-only sequences were obtained. Genotypes B and C were present at a ratio of 2:1, and two genotype D samples were obtained, both from donors of Indian background. Phylogenetically, genotype B was more diverse with subgenotypes B2-5, B7 and B8 present, while most genotype C strains were from subgenotype C1. Genotypes B and C were equally frequent in ethnic Malays, but 80% of strains from Chinese were genotype B. HBsAg concentrations were higher in genotype C than in genotype B, in Chinese than Malays and in donors under the age of 30. HBV vaccine escape substitutions (P120S/T, I126N and G145G) were present in six strains. In the large surface protein, immuno-inactive regions were more mutated than CD8 epitopes and the major hydrophilic region. Strains of genotype B or from ethnic Malays had higher genetic diversity than strains of genotype C or from Chinese donors. Hence HBV strains circulating in Malaysia are phylogenetically diverse reflecting the ethnic mix of its population. Ethnic Malays carry lower HBsAg levels and higher genetic diversity of the surface antigen, possibly resulting in more effective immune control of the infection.
    Matched MeSH terms: Hepatitis B virus/genetics
  19. Louisirirotchanakul S, Olinger CM, Arunkaewchaemsri P, Poovorawan Y, Kanoksinsombat C, Thongme C, et al.
    J Med Virol, 2012 Oct;84(10):1541-7.
    PMID: 22930500 DOI: 10.1002/jmv.23363
    Phylogenetic analysis was performed on hepatitis B virus (HBV) strains obtained from 86 hepatitis B surface antigen (HBsAg) positive donors from Thailand originating throughout the country. Based on the S gene, 87.5% of strains were of genotype C while 10.5% were of genotype B, with all genotype B strains obtained from patients originating from the central or the south Thailand. No genotype B strains were found in the north of Thailand. Surprisingly, one patient was infected with a genotype H strain while another patient was infected with a genotype G strain. Complete genome sequencing and recombination analysis identified the latter as being a genotype G and C2 recombinant with the breakpoint around nucleotide position 700. The origin of the genotype G fragment was not identifiable while the genotype C2 fragment most likely came from strains circulating in Laos or Malaysia. The performance of different HBsAg diagnostic kits and HBV nucleic acid amplification technology (NAT) was evaluated. The genotype H and G/C2 recombination did not interfere with HBV detection.
    Matched MeSH terms: Hepatitis B virus/genetics*
  20. Chook JB, Ngeow YF, Khang TF, Ng KP, Tiang YP, Mohamed R
    J Med Virol, 2013 Mar;85(3):419-24.
    PMID: 23297244 DOI: 10.1002/jmv.23500
    Infection with the hepatitis B virus (HBV) may lead to an acute or chronic infection. It is generally accepted that the clinical outcome of infection depends on the balance between host immunity and viral survival strategies. In order to persist, the virus needs to have a high rate of replication and some immune-escape capabilities. Hence, HBVs lacking these properties are likely to be eliminated more rapidly by the host, leading to a lower rate of chronicity. To test this hypothesis, 177 HBV genomes from acute non-fulminant cases and 1,149 from chronic cases were retrieved from GenBank for comparative analysis. Selection of candidate nucleotides associated with the disease state was done using random guess cut-off and the Bonferroni correction. Five significant nucleotides were detected using this filtering step. Their predictive values were assessed using the support vector machine classification with five-fold cross-validation. The average prediction accuracy was 61% ± 1%, with a sensitivity of 24% ± 1%, specificity of 98% ± 1%, positive predictive value of 92% ± 4% and negative predictive value of 56% ± 1%. BCP/X, enhancer I and surface/polymerase variants were found to be associated almost exclusively with acute hepatitis. These HBV variants are novel potential markers for non-progression to chronic hepatitis.
    Matched MeSH terms: Hepatitis B virus/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links