Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Said NA, Gould CM, Lackovic K, Simpson KJ, Williams ED
    Assay Drug Dev Technol, 2014 Sep;12(7):385-94.
    PMID: 25181411 DOI: 10.1089/adt.2014.593
    Metastasis accounts for the poor prognosis of the majority of solid tumors. The phenotypic transition of nonmotile epithelial tumor cells to migratory and invasive "mesenchymal" cells (epithelial-to-mesenchymal transition [EMT]) enables the transit of cancer cells from the primary tumor to distant sites. There is no single marker of EMT; rather, multiple measures are required to define cell state. Thus, the multiparametric capability of high-content screening is ideally suited for the comprehensive analysis of EMT regulators. The aim of this study was to generate a platform to systematically identify functional modulators of tumor cell plasticity using the bladder cancer cell line TSU-Pr1-B1 as a model system. A platform enabling the quantification of key EMT characteristics, cell morphology and mesenchymal intermediate filament vimentin, was developed using the fluorescent whole-cell-tracking reagent CMFDA and a fluorescent promoter reporter construct, respectively. The functional effect of genome-wide modulation of protein-coding genes and miRNAs coupled with those of a collection of small-molecule kinase inhibitors on EMT was assessed using the Target Activation Bioapplication integrated in the Cellomics ArrayScan platform. Data from each of the three screens were integrated to identify a cohort of targets that were subsequently examined in a validation assay using siRNA duplexes. Identification of established regulators of EMT supports the utility of this screening approach and indicated capacity to identify novel regulators of this plasticity program. Pathway analysis coupled with interrogation of cancer-related expression profile databases and other EMT-related screens provided key evidence to prioritize further experimental investigation into the molecular regulators of EMT in cancer cells.
    Matched MeSH terms: High-Throughput Screening Assays/methods*
  2. Ikram NK, Durrant JD, Muchtaridi M, Zalaludin AS, Purwitasari N, Mohamed N, et al.
    J Chem Inf Model, 2015 Feb 23;55(2):308-16.
    PMID: 25555059 DOI: 10.1021/ci500405g
    Recent outbreaks of highly pathogenic and occasional drug-resistant influenza strains have highlighted the need to develop novel anti-influenza therapeutics. Here, we report computational and experimental efforts to identify influenza neuraminidase inhibitors from among the 3000 natural compounds in the Malaysian-Plants Natural-Product (NADI) database. These 3000 compounds were first docked into the neuraminidase active site. The five plants with the largest number of top predicted ligands were selected for experimental evaluation. Twelve specific compounds isolated from these five plants were shown to inhibit neuraminidase, including two compounds with IC50 values less than 92 μM. Furthermore, four of the 12 isolated compounds had also been identified in the top 100 compounds from the virtual screen. Together, these results suggest an effective new approach for identifying bioactive plant species that will further the identification of new pharmacologically active compounds from diverse natural-product resources.
    Matched MeSH terms: High-Throughput Screening Assays/methods*
  3. Zaini MN, Patel SA, Syafruddin SE, Rodrigues P, Vanharanta S
    Sci Rep, 2018 08 13;8(1):12063.
    PMID: 30104738 DOI: 10.1038/s41598-018-30499-2
    Tissue-specific transcriptional programs control most biological phenotypes, including disease states such as cancer. However, the molecular details underlying transcriptional specificity is largely unknown, hindering the development of therapeutic approaches. Here, we describe novel experimental reporter systems that allow interrogation of the endogenous expression of HIF2A, a critical driver of renal oncogenesis. Using a focused CRISPR-Cas9 library targeting chromatin regulators, we provide evidence that these reporter systems are compatible with high-throughput screening. Our data also suggests redundancy in the control of cancer type-specific transcriptional traits. Reporter systems such as those described here could facilitate large-scale mechanistic dissection of transcriptional programmes underlying cancer phenotypes, thus paving the way for novel therapeutic approaches.
    Matched MeSH terms: High-Throughput Screening Assays/methods*
  4. Ku Nurul Aqmar Ku Bahaudin, Ahmad Bazli Ramzi, Syarul Nataqain Baharum, Suriana Sabri, Adam Leow Thean Chor, Tewin Tencomnao
    Sains Malaysiana, 2018;47:3077-3084.
    Flavonoid is an industrially-important compound due to its high pharmaceutical and cosmeceutical values. However,
    conventional methods in extracting and synthesizing flavonoids are costly, laborious and not sustainable due to small
    amount of natural flavonoids, large amounts of chemicals and space used. Biotechnological production of flavonoids
    represents a viable and sustainable route especially through the use of metabolic engineering strategies in microbial
    production hosts. In this review, we will highlight recent strategies for the improving the production of flavonoids
    using synthetic biology approaches in particular the innovative strategies of genetically-encoded biosensors for in
    vivo metabolite analysis and high-throughput screening methods using fluorescence-activated cell sorting (FACS).
    Implementation of transcription factor based-biosensor for microbial flavonoid production and integration of systems
    and synthetic biology approaches for natural product development will also be discussed.
    Matched MeSH terms: High-Throughput Screening Assays
  5. Rothan HA, Teoh TC
    Mol Biotechnol, 2021 Mar;63(3):240-248.
    PMID: 33464543 DOI: 10.1007/s12033-021-00299-7
    The global public health has been compromised since the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in late December 2019. There are no specific antiviral drugs available to combat SARS-CoV-2 infection. Besides the rapid dissemination of SARS-CoV-2, several variants have been identified with a potential epidemiologic and pathogenic variation. This fact has forced antiviral drug development strategies to stay innovative, including new drug discovery protocols, combining drugs, and establishing new drug classes. Thus, developing novel screening methods and direct-targeting viral enzymes could be an attractive strategy to combat SARS-CoV-2 infection. In this study, we designed, optimized, and validated a cell-based assay protocol for high-throughput screening (HTS) antiviral drug inhibitors against main viral protease (3CLpro). We applied the split-GFP complementation to develop GFP-split-3CLpro HTS system. The system consists of GFP-based reporters that become fluorescent upon cleavage by SARS-CoV-2 protease 3CLpro. We generated a stable GFP-split-3CLpro HTS system valid to screen large drug libraries for inhibitors to SARS-CoV-2 main protease in the bio-safety level 2 laboratory, providing real-time antiviral activity of the tested compounds. Using this assay, we identified a new class of viral protease inhibitors derived from quinazoline compounds that worth further in vitro and in vivo validation.
    Matched MeSH terms: High-Throughput Screening Assays/methods*
  6. Lim SV, Rahman MB, Tejo BA
    BMC Bioinformatics, 2011;12 Suppl 13:S24.
    PMID: 22373153 DOI: 10.1186/1471-2105-12-S13-S24
    The dengue virus is the most significant arthropod-borne human pathogen, and an increasing number of cases have been reported over the last few decades. Currently neither vaccines nor drugs against the dengue virus are available. NS5 methyltransferase (MTase), which is located on the surface of the dengue virus and assists in viral attachment to the host cell, is a promising antiviral target. In order to search for novel inhibitors of NS5 MTase, we performed a computer-aided virtual screening of more than 5 million commercially available chemical compounds using two approaches: i) structure-based screening using the crystal structure of NS5 MTase and ii) ligand-based screening using active ligands of NS5 MTase. Structure-based screening was performed using the LIDAEUS (LIgand Discovery At Edinburgh UniverSity) program. The ligand-based screening was carried out using the EDULISS (EDinburgh University LIgand Selection System) program.
    Matched MeSH terms: High-Throughput Screening Assays
  7. Tan GW, Khoo AS, Tan LP
    Sci Rep, 2015;5:9430.
    PMID: 25800946 DOI: 10.1038/srep09430
    MicroRNAs regulate gene expression at the post-transcriptional level. Differential expression of miRNAs can potentially be used as biomarkers for early diagnosis and prediction for outcomes. Failure in validation of miRNA profiles is often caused by variations in experimental parameters. In this study, the performance of five extraction kits and three RT-qPCR systems were evaluated using BioMark high-throughput platform and the effects of different experimental parameters on circulating miRNA levels were determined. Differences in the performance of extraction kits as well as varying accuracy, sensitivity and reproducibility in qPCR systems were observed. Normalisation of RT-qPCR data to spike-in controls can reduce extraction bias. However, the extent of correlation for different qPCR systems varies in different assays. At different time points, there was no significant fold change in eight of the plasma miRNAs that we evaluated. Higher level of miRNAs was detected in plasma as compared to serum of the same cohort. In summary, we demonstrated that high-throughput RT-qPCR with pre-amplification step had increased sensitivity and can be achieved with accuracy and high reproducibility through stringent experimental controls. The information provided here is useful for planning biomarker validation studies involving circulating miRNAs.
    Matched MeSH terms: High-Throughput Screening Assays
  8. Tan GW, Tan LP
    Methods Mol Biol, 2017;1580:7-19.
    PMID: 28439823 DOI: 10.1007/978-1-4939-6866-4_2
    Reverse transcription followed by real-time or quantitative polymerase chain reaction (RT-qPCR) is the gold standard for validation of results from transcriptomic profiling studies such as microarray and RNA sequencing. The current need for most studies, especially biomarker studies, is to evaluate the expression levels or fold changes of many transcripts in a large number of samples. With conventional low to medium throughput qPCR platforms, many qPCR plates would have to be run and a significant amount of RNA input per sample will be required to complete the experiments. This is particularly challenging when the size of study material (small biopsy, laser capture microdissected cells, biofluid, etc.), time, and resources are limited. A sensitive and high-throughput qPCR platform is therefore optimal for the evaluation of many transcripts in a large number of samples because the time needed to complete the entire experiment is shortened and the usage of lab consumables as well as RNA input per sample are low. Here, the methods of high-throughput RT-qPCR for the analysis of circulating microRNAs are described. Two distinctive qPCR chemistries (probe-based and intercalating dye-based) can be applied using the methods described here.
    Matched MeSH terms: High-Throughput Screening Assays/methods
  9. Kho SL, Chua KH, George E, Tan JA
    Sensors (Basel), 2013;13(2):2506-14.
    PMID: 23429513 DOI: 10.3390/s130202506
    β-Thalassemia is a public health problem where 4.5% of Malaysians are β-thalassemia carriers. The genetic disorder is caused by defects in the β-globin gene complex which lead to reduced or complete absence of β-globin chain synthesis. Five TaqMan genotyping assays were designed and developed to detect the common β-thalassemia mutations in Malaysian Malays. The assays were evaluated with 219 "blinded" DNA samples and the results showed 100% sensitivity and specificity. The in-house designed TaqMan genotyping assays were found to be cost- and time-effective for characterization of β-thalassemia mutations in the Malaysian population. 
    Matched MeSH terms: High-Throughput Screening Assays/methods*
  10. Li Y, Ling Ma N, Chen H, Zhong J, Zhang D, Peng W, et al.
    Environ Int, 2023 Nov;181:108279.
    PMID: 37924601 DOI: 10.1016/j.envint.2023.108279
    According to the World Health Organization, women's breast cancer is among the most common cancers with 7.8 million diagnosed cases during 2016-2020 and encompasses 15 % of all female cancer-related mortalities. These mortality events from triple-negative breast cancer are a significant health issue worldwide calling for a continuous search of bioactive compounds for better cancer treatments. Historically, plants are important sources for identifying such new bioactive chemicals for treatments. Here we use high-throughput screening and mass spectrometry analyses of extracts from 100 plant species collected in Chinese ancient forests to detect novel bioactive breast cancer phytochemicals. First, to study the effects on viability of the plant extracts, we used a MTT and CCK-8 cytotoxicity assay employing triple-negative breast cancer (TNBC) MDA-MB-231 and normal epithelial MCF-10A cell lines and cell cycle arrest to estimate apoptosis using flow cytometry for the most potent three speices. Based on these analyses, the final most potent extracts were from the Amur honeysuckle (Lonicera maackii) wood/root bark and Nigaki (Picrasma quassioides) wood/root bark. Then, 5 × 106 MDA-MB-231 cells were injected subcutaneously into the right hind leg of nude mice and a tumour was allowed to grow before treatment for seven days. Subsequently, the four exposed groups received gavage extracts from Amur honeysuckle and Nigaki (Amur honeysuckle wood distilled water, Amur honeysuckle root bark ethanol, Nigaki wood ethanol or Nigaki root bark distilled water/ethanol (1:1) extracts) in phosphate-buffered saline (PBS), while the control group received only PBS. The tumour weight of treated nude mice was reduced significantly by 60.5 % within 2 weeks, while on average killing 70 % of the MDA-MB-231 breast cancer cells after 48 h treatment (MTT test). In addition, screening of target genes using the Swiss Target Prediction, STITCH, STRING and NCBI-gene database showed that the four plant extracts possess desirable activity towards several known breast cancer genes. This reflects that the extracts may kill MBD-MB-231 breast cancer cells. This is the first screening of plant extracts with high efficiency in 2 decades, showing promising results for future development of novel cancer treatments.
    Matched MeSH terms: High-Throughput Screening Assays
  11. Agarwal T, Annamalai N, Khursheed A, Maiti TK, Arsad HB, Siddiqui MH
    J Mol Graph Model, 2015 Sep;61:141-9.
    PMID: 26245696 DOI: 10.1016/j.jmgm.2015.07.003
    Recent developments in the target based cancer therapies have identified HSF1 as a novel non oncogenic drug target. The present study delineates the design and molecular docking evaluation of Rohinitib (RHT) - Cantharidin (CLA) based novel HSF1 inhibitors for target-based cancer therapy. Here, we exploited the pharmacophoric features of both the parent ligands for the design of novel hybrid HSF1 inhibitors. The RHT-CLA ligands were designed and characterized for ADME/Tox features, interaction with HSF1 DNA binding domain and their pharmacophoric features essential for interaction. From the results, amino acid residues Ala17, Phe61, His63, Asn65, Ser68, Arg71 and Gln72 were found crucial for HSF1 interaction with the Heat shock elements (HSE). The hybrid ligands had better affinity towards the HSF1 DNA binding domain, in comparison to RHT or CLA and interacted with most of the active site residues. Additionally, the HSF1-ligand complex had a reduced affinity towards HSE in comparison to native HSF1. Based on the results, ligand RC15 and RC17 were non carcinogenic, non mutagenic, completely biodegradable under aerobic conditions, had better affinity for HSF1 (1.132 and 1.129 folds increase respectively) and diminished the interaction of HSF1 with HSE (1.203 and 1.239 folds decrease respectively). The simulation analysis also suggested that the ligands formed a stable complex with HSF1, restraining the movement of active site residues. In conclusion, RHT-CLA hybrid ligands can be used as a potential inhibitor of HSF1 for non-oncogene target based cancer therapy.
    Matched MeSH terms: High-Throughput Screening Assays
  12. Savall J, Ho ET, Huang C, Maxey JR, Schnitzer MJ
    Nat. Methods, 2015 Jul;12(7):657-60.
    PMID: 26005812 DOI: 10.1038/nmeth.3410
    We present a robot that enables high-content studies of alert adult Drosophila by combining operations including gentle picking; translations and rotations; characterizations of fly phenotypes and behaviors; microdissection; or release. To illustrate, we assessed fly morphology, tracked odor-evoked locomotion, sorted flies by sex, and dissected the cuticle to image neural activity. The robot's tireless capacity for precise manipulations enables a scalable platform for screening flies' complex attributes and behavioral patterns.
    Matched MeSH terms: High-Throughput Screening Assays*
  13. Kaur H, Ahmad M, Scaria V
    Interdiscip Sci, 2016 Mar;8(1):95-101.
    PMID: 26298582 DOI: 10.1007/s12539-015-0273-x
    There is emergence of multidrug-resistant Salmonella enterica serotype typhi in pandemic proportions throughout the world, and therefore, there is a necessity to speed up the discovery of novel molecules having different modes of action and also less influenced by the resistance formation that would be used as drug for the treatment of salmonellosis particularly typhoid fever. The PhoP regulon is well studied and has now been shown to be a critical regulator of number of gene expressions which are required for intracellular survival of S. enterica and pathophysiology of disease like typhoid. The evident roles of two-component PhoP-/PhoQ-regulated products in salmonella virulence have motivated attempts to target them therapeutically. Although the discovery process of biologically active compounds for the treatment of typhoid relies on hit-finding procedure, using high-throughput screening technology alone is very expensive, as well as time consuming when performed on large scales. With the recent advancement in combinatorial chemistry and contemporary technique for compounds synthesis, there are more and more compounds available which give ample growth of diverse compound library, but the time and endeavor required to screen these unfocused massive and diverse library have been slightly reduced in the past years. Hence, there is demand to improve the high-quality hits and success rate for high-throughput screening that required focused and biased compound library toward the particular target. Therefore, we still need an advantageous and expedient method to prioritize the molecules that will be utilized for biological screens, which saves time and is also inexpensive. In this concept, in silico methods like machine learning are widely applicable technique used to build computational model for high-throughput virtual screens to prioritize molecules for advance study. Furthermore, in computational analysis, we extended our study to identify the common enriched structural entities among the biologically active compound toward finding out the privileged scaffold.
    Matched MeSH terms: High-Throughput Screening Assays/methods*
  14. Jabanathan SG, Xuan LZ, Ramanathan B
    Methods Mol Biol, 2021;2296:279-302.
    PMID: 33977455 DOI: 10.1007/978-1-0716-1358-0_17
    Dengue is an arthropod-borne viral disease that has become endemic and a global threat in over 100 countries. The increase in prevalence would require a long-term measure to control outbreaks. Sanofi Pasteur has licensed the tetravalent dengue vaccine (Dengvaxia) in certain dengue endemic countries. However, the efficacy of the vaccine is limited against certain dengue serotypes and can only be used for individuals from the age from 9 to 45 years old. Over the years, there has been intense research conducted on the development of antivirals against dengue virus (DENV) through either inhibiting the virus replication or targeting the host cell mechanism to block the virus entry. However, no approved antiviral drug against dengue is yet available. In this chapter, we describe the dengue antiviral development workflow including (i) prophylactic, (ii) virucidal, and (iii) postinfection assays that are employed in the antiviral drug screening process against DENV. Further, we demonstrate different methods that can be used to enumerate the reduction in virus foci number including foci-forming unit reduction assay (FFURA), estimation of viral RNA copy number through quantitative real-time PCR, and a high-throughput enzyme linked immunosorbent assay (ELISA)-based quantification of virus particles.
    Matched MeSH terms: High-Throughput Screening Assays/methods*
  15. Bajaber NAOA, Ramanathan B
    Methods Mol Biol, 2021;2296:167-184.
    PMID: 33977447 DOI: 10.1007/978-1-0716-1358-0_9
    Enteroviruses 71 (EV71) is a single-stranded, neurotrophic RNA virus responsible for the numerous outbreaks of hand, foot, and mouth disease (HFMD) in the Asia-Pacific regions. HFMD primarily affects children to cause range of infection, from mild symptoms to acute flaccid paralysis, and hemorrhage. Despite increased incidence of EV71 epidemics globally and research against EV71 becoming prioritized, no antiviral agent against EV71 has yet been licensed and approved worldwide. In this chapter, detailed EV71 antiviral screening techniques are described, including plaque assay which determines viral titers through the use of a semisolid overlay, carboxymethyl cellulose to allow even viral spread and infection across the host cellular monolayers as well as a crystal violet, a distinct counterstain to visualize circular regions of infectious zones-plaques. qRT-PCR is used to quantify the viral genomic RNA in the infected samples and MTS cell viability assay to quantify the cell viability after infection or toxicity of the compound on the cells. Furthermore, various antiviral inhibition assays including prophylactic, post infection, and virucidal assays are demonstrated for estimation of the antiviral activity of potential antiviral drugs against EV71. These methods can be effectively utilized in virology laboratories for effective high-throughput screening of antiviral molecules against EV71 that can assist in the future development of antiviral drugs.
    Matched MeSH terms: High-Throughput Screening Assays/methods*
  16. Loh GOK, Wong EYL, Tan YTF, Ong LM, Ng RS, Wee HC, et al.
    PMID: 33429127 DOI: 10.1016/j.jchromb.2020.122517
    A simple, fast and sensitive LC-MS/MS method was developed to quantify terazosin in human plasma. The mobile phase consisted of acetonitrile-0.1% (v/v) formic acid (70:30, v/v). Prazosin was used as internal standard (IS). As deproteinization agent, acetonitrile produced a clean sample. A higher response intensity with more symmetrical peak was obtained using Agilent Poroshell 120 EC-C18 - Fast LC column (100 × 2.1mmID, 2.7 μm) compared with Kinetex XB-C18 (100 × 2.1 mm, 2.6 µm) column. The response of terazosin and IS were approximately two times in citrate phosphate dextrose (CPD) plasma compared with dipotassium ethylenediaminetetraacetic acid (K2EDTA) plasma. Plasma calibration curve was linear from 1.0 to 100.0 ng/mL, with coefficient of determination r2 ≥ 0.99. The within-run and between-run precision values (CV, %) were <5.2% and <7.8%, while accuracy values were 102.8-112.7% and 103.4-112.2%. The extended run accuracy was 98.6-102.8% and precision (CV, %) 4.3-10.4%. The recovery of analyte was >98% and IS >94%. Terazosin in plasma kept at benchtop was stable for 24 h, in autosampler tray for 48 h, in instrumentation room for 48 h, for 7 freeze-thaw cycles and in freezer for 140 days. Terazosin and IS stock standard solutions were stable for 140 days at room temperature and in the chiller. The high throughput method was successfully utilized to measure 935 samples in a bioequivalence study of terazosin.
    Matched MeSH terms: High-Throughput Screening Assays
  17. Sethi S, Chourasia D, Parhar IS
    J Biosci, 2015 Sep;40(3):607-27.
    PMID: 26333406
    An extensive guide on practicable and significant quantitative proteomic approaches in neuroscience research is important not only because of the existing overwhelming limitations but also for gaining valuable understanding into brain function and deciphering proteomics from the workbench to the bedside. Early methodologies to understand the functioning of biological systems are now improving with high-throughput technologies, which allow analysis of various samples concurrently, or of thousand of analytes in a particular sample. Quantitative proteomic approaches include both gel-based and non-gel-based methods that can be further divided into different labelling approaches. This review will emphasize the role of existing technologies, their advantages and disadvantages, as well as their applications in neuroscience. This review will also discuss advanced approaches for targeted proteomics using isotope-coded affinity tag (ICAT) coupled with laser capture microdissection (LCM) followed by liquid chromatography tandem mass spectrometric (LC-MS/MS) analysis. This technology can further be extended to single cell proteomics in other areas of biological sciences and can be combined with other 'omics' approaches to reveal the mechanism of a cellular alterations. This approach may lead to further investigation in basic biology, disease analysis and surveillance, as well as drug discovery. Although numerous challenges still exist, we are confident that this approach will increase the understanding of pathological mechanisms involved in neuroendocrinology, neuropsychiatric and neurodegenerative disorders by delivering protein biomarker signatures for brain dysfunction.
    Matched MeSH terms: High-Throughput Screening Assays/methods
  18. Ooi LC, Watanabe N, Futamura Y, Sulaiman SF, Darah I, Osada H
    Cancer Sci, 2013 Nov;104(11):1461-7.
    PMID: 23910095 DOI: 10.1111/cas.12246
    Dysregulation of p27(Kip1) due to proteolysis that involves the ubiquitin ligase (SCF) complex with S-phase kinase-associated protein 2 (Skp2) as the substrate-recognition component (SCF(Skp2)) frequently results in tumorigenesis. In this report, we developed a high-throughput screening system to identify small-molecule inhibitors of p27(Kip1) degradation. This system was established by tagging Skp2 with fluorescent monomeric Azami Green (mAG) and CDK subunit 1 (Cks1) (mAGSkp2-Cks1) to bind to p27(Kip1) phosphopeptides. We identified two compounds that inhibited the interaction between mAGSkp2-Cks1 and p27(Kip1): linichlorin A and gentian violet. Further studies have shown that the compounds inhibit the ubiquitination of p27(Kip1) in vitro as well as p27(Kip1) degradation in HeLa cells. Notably, both compounds exhibited preferential antiproliferative activity against HeLa and tsFT210 cells compared with NIH3T3 cells and delayed the G1 phase progression in tsFT210 cells. Our approach indicates a potential strategy for restoring p27(Kip1) levels in human cancers.
    Matched MeSH terms: High-Throughput Screening Assays
  19. Acquah C, Danquah MK, Yon JL, Sidhu A, Ongkudon CM
    Anal Chim Acta, 2015 Aug 12;888:10-8.
    PMID: 26320953 DOI: 10.1016/j.aca.2015.05.050
    The discovery of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has led to the generation of aptamers from libraries of nucleic acids. Concomitantly, aptamer-target recognition and its potential biomedical applications have become a major research endeavour. Aptamers possess unique properties that make them superior biological receptors to antibodies with a plethora of target molecules. Some specific areas of opportunities explored for aptamer-target interactions include biochemical analysis, cell signalling and targeting, biomolecular purification processes, pathogen detection and, clinical diagnosis and therapy. Most of these potential applications rely on the effective immobilisation of aptamers on support systems to probe target species. Hence, recent research focus is geared towards immobilising aptamers as oligosorbents for biodetection and bioscreening. This article seeks to review advances in immobilised aptameric binding with associated successful milestones and respective limitations. A proposal for high throughput bioscreening using continuous polymeric adsorbents is also presented.
    Matched MeSH terms: High-Throughput Screening Assays/instrumentation; High-Throughput Screening Assays/methods
  20. Ooi L, Heng LY, Mori IC
    Sensors (Basel), 2015;15(2):2354-68.
    PMID: 25621608 DOI: 10.3390/s150202354
    Biosensors fabricated with whole-cell bacteria appear to be suitable for detecting bioavailability and toxicity effects of the chemical(s) of concern, but they are usually reported to have drawbacks like long response times (ranging from hours to days), narrow dynamic range and instability during long term storage. Our aim is to fabricate a sensitive whole-cell oxidative stress biosensor which has improved properties that address the mentioned weaknesses. In this paper, we report a novel high-throughput whole-cell biosensor fabricated by immobilizing roGFP2 expressing Escherichia coli cells in a k-carrageenan matrix, for the detection of oxidative stress challenged by metalloid compounds. The E. coli roGFP2 oxidative stress biosensor shows high sensitivity towards arsenite and selenite, with wide linear range and low detection limit (arsenite: 1.0 × 10(-3)-1.0 × 10(1) mg·L(-1), LOD: 2.0 × 10(-4) mg·L(-1); selenite: 1.0 × 10(-5)-1.0 × 10(2) mg·L(-1), LOD: 5.8 × 10(-6) mg·L(-1)), short response times (0-9 min), high stability and reproducibility. This research is expected to provide a new direction in performing high-throughput environmental toxicity screening with living bacterial cells which is capable of measuring the bioavailability and toxicity of environmental stressors in a friction of a second.
    Matched MeSH terms: High-Throughput Screening Assays
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links