A sorbent material based on a newly synthesized hydrazone ligand, 4-hydroxy-N'-[(E)-(2-hydroxyphenyl)methylidene]benzohydrazide was prepared by immobilizing the ligand into a silica sol-gel matrix. The capability of the sorbent material for the extraction of seven biogenic amines (BAs), i.e., tryptamine (TRY), beta-phenylethylamine (PEA), putrescine (PUT), cadaverine (CAD), histamine (HIS), tyramine (TYR), and spermidine (SPD) was studied. Under the adopted conditions, the sorbent showed good selectivity towards PUT, CAD, HIS and SPD (% extraction (%E)>96) while %E for TYR, TRY and PEA were 82.0, 78.9 and 46.4%, respectively. The sorbent could be used up to six extraction cycles for SPD, CAD and PUT and was applied to the determination of food samples ("budu", ketchup, orange juice, soy sauce) that were spiked with 20 mg L(-1) of the BAs. The extracted analytes were derivatized with dansyl chloride before the HPLC determination. With the exception of HIS and TYR in "budu" sample, reasonable recoveries were found for the other analytes in all the tested food samples.
Some novel 2,3-dioxo-5-(substituted)-arylpyrroles have been synthesized. Among these, pyrrolidine compound 1b was converted to 2,3-dioxo-5-aryl pyrrolidine 2b. Finally a set of hydrazone derivatives was obtained from the reaction of 2b with various hydrazine salts. The structures of all the new synthesized compounds were confirmed by elemental analyses, IR and 1H-NMR spectra.
Newly synthesized benzimidazole hydrazone derivatives 1-26 were evaluated for their α-glucosidase inhibitory activity. Compounds 1-26 exhibited varying degrees of yeast α-glucosidase inhibitory activity with IC50 values between 8.40 ± 0.76 and 179.71 ± 1.11 μM when compared with standard acarbose. In this assay, seven compounds that showed highest inhibitory effects than the rest of benzimidazole series were identified. All the synthesized compounds were characterized by different spectroscopic methods adequately. We further evaluated the interaction of the active compounds with enzyme with the help of docking studies.
Four new copper(II) complexes containing phosphonium substituted hydrazone (L) with the formulations [CuL]Cl(3), [Cu(phen)L]Cl(4), [Cu(bpy)L]Cl(5), [Cu(dbpy)L]Cl(6), (where L = doubly deprotonated hydrazone; phen = 1,10'-phenanthroline; bpy = 2,2'-bipyridine; dbpy = 5,5'-dimethyl-2,2'-bipyridine) have been synthesized. The compounds were characterized by elemental analysis, spectroscopic methods and in the case of crystalline products by X-ray crystallography. The cytotoxicity and topoisomerase I (topo I) inhibition activities of these compounds were studied. It is noteworthy that the addition of N,N-ligands to the copper(II) complex lead to the enhancement in the cytotoxicity of the compounds, especially against human prostate adenocarcinoma cell line (PC-3). Complex 4 exhibits the highest activity against PC-3 with the IC₅₀ value of 3.2 μΜ. The complexes can also inhibit topo I through the binding to DNA and the enzyme.
Free laccase and fungal biomass from white-rot fungi were compared in the thermokinetics study of the laccase-catalyzed decolorization of an azo dye, i.e., Trypan Blue. The decolorization in both systems followed a first-order kinetics. The apparent first-order rate constant, k1', value increases with temperature. Apparent activation energy of decolorization was similar for both systems at ∼ 22 kJ mol(-1), while energy for laccase inactivation was 18 kJ mol(-1). Although both systems were endothermic, fungal biomass showed higher enthalpy, entropy, and Gibbs free energy changes for the decolorization compared to free laccase. On the other hand, free laccase showed reaction spontaneity over a wider range of temperature (ΔT = 40 K) as opposed to fungal biomass (ΔT = 15 K). Comparison of entropy change (ΔS) values indicated metabolism of the dye by the biomass.
Sorbent materials based on a hydrazone Schiff base compound, C(14)H(11)BrN(4)O(4), were prepared either by immobilizing the ligand into sol-gel (SG1) or bonding to silica (SG2). The sorbent materials were characterized by FT-IR, EDX, SEM, TEM, and TGA. The sorption characteristics of a matrix of eight transition metal ions (Ag(+), Cu(2+), Co(2+), Ni(2+), Fe(3+), Pb(2+), Zn(2+), and Mn(2+)) using batch method were studied. Several key parameters that affected the extraction efficiency such as pH, contact time, metal ions concentration, and gel size (for SGl) were investigated and optimized. Under the optimized conditions, the physically immobilized hydrazone sorbent (SG1) exhibits highest selectivity towards Ag(+) ions, while the chemically bonded hydrazone sorbent (SG2) exhibits high extraction for all metal ions tested. However, for practical applications such as the removal and preconcentration of Ag(+), the physically immobilized sorbent (SG1) is preferred.
A new series of antioxidants, namely imines bearing the well-known free radical scavenger group 3,4,5-trimethoxybenzyloxy, was designed and synthesized. Theoretical calculations based on density functional theory (DFT) were performed to understand the antioxidant activities. Experimental studies evaluating the antioxidant activities of the compounds using DPPH and FRAP assays verified the predictions obtained by DMOL3 based on DFT.1. The DPPH radical scavenging activities depended on the substitution pattern of the aromatic aldehyde, with both the substitution type and position showing significant effects. Compounds 7b, 7c and 7d, which contain a phenolic hydroxyl group at the para position to the imine as well as, additional electron donating groups at the ortho-position to this hydroxyl group, exhibited IC₅₀ values of 62, 75 and 106 μg/mL, respectively, and potent antioxidant activities against DPPH, which were better than that of the reference compound BHT. With the exception of compounds 7a and 7h with a phenolic hydroxyl group at the ortho position, all of the investigated compounds exhibited ferric reducing activities above 1000 μM. Correlation analysis between the two antioxidant assays revealed moderate positive correlation (r = 0.59), indicating differing antioxidant activities based on the reaction mechanism. Therefore, imines bearing a 3,4,5-trimethoxybenzyloxy group can be proposed as potential antioxidants for tackling oxidative stress.
Compounds 1-25 showed varying degree of antileishmanial activities with IC50 values ranging between 1.95 and 88.56 μM. Compounds 2, 10, and 11 (IC50=3.29±0.07 μM, 1.95±0.04 μM, and 2.49±0.03 μM, respectively) were found to be more active than standard pentamidine (IC50=5.09±0.04 μM). Compounds 7 (IC50=7.64±0.1 μM), 8 (IC50=13.17±0.46 μM), 18 (IC50=13.15±0.02 μM), and 24 (IC50=15.65±0.41 μM) exhibited good activities. Compounds 1, 3, 4, 5, 9, 12, 15, 18, and 19 were found to be moderately active. Compounds 13, 14, 16, 17, 20-25 showed weak activities with IC50 values ranging between 57 and 88 μM.
A series of novel hydrazone compounds have been synthesized by the condensation of hydrazines and different substituted salicylaldehydes at a molar ratio of 1:1 in one step reaction and characterized by FT-IR, ESI-MS, 1H NMR, and single crystal x-ray diffraction. The crystal structure of the compound shows a trans configuration around the C = N bond and triclinic system with P -1/-p 1. Synthesized compounds were screened for cytotoxicity activities against A375 (melanoma), HT-29 (Colon), and A549 (lung) cancer cell lines. Among them, compound 2 exhibited the highest cytotoxic effect against the A375 cell line (IC50 = 0.30 µM) and HT-29 cell line (1.68 µM), compared to those of apatinib as a reference standard drug (0.28, 1.49 µM, respectively). The cytocompatibility assay on the L929 normal cell line and the hemolysis assay on human RBC were used to validate the non-toxic action. From DFT calculation, the various parameters such as HOMO-LUMO energies, Hirshfeld, and MEP have been studied. Furthermore, in silico molecular docking with three receptors was studied. Among four compounds, compound 2 has the lowest binding energy against cyclin dependent kinase (ΔGb = -9.3 kcal/mol). In addition to this, molecular dynamics (MD) simulation was also performed. Based on this study, these novel hydrazones can be considered a promising anticancer agent due to their potent cytotoxicity activities and computational analysis.Communicated by Ramaswamy H. Sarma.
Discovery and development of carbonic anhydrase inhibitors is crucial for their clinical use as antiepileptic, diurectic and antiglaucoma agents. Keeping this in mind, we have synthesized carbohydrazones 1-27 and evaluated them for their in vitro carbonic anhydrase inhibitory potential. Out of twenty-seven compounds, compounds 1 (IC50=1.33±0.01µM), 2 (IC50=1.85±0.24µM), 3 (IC50=1.37±0.06µM), and 9 (IC50=1.46±0.12µM) have showed carbonic anhydrase inhibition better than the standard drug zonisamide (IC50=1.86±0.03µM). Moreover, compounds 4 (IC50=2.32±0.04µM), 5 (IC50=3.96±0.35µM), 7 (IC50=2.33±0.02µM), and 8 (IC50=2.67±0.01µM) showed good inhibitory activity. Cheminformatic analysis has shown that compounds 1 and 2 possess lead-like properties. In addition, kinetic and molecular docking studies were also performed to investigate the binding interaction between carbohydrazones and carbonic anhydrase enzyme. This study has identified a novel and potent class of carbonic anhydrase inhibitors with the potential to be investigated further.
The α-amylase acts as attractive target to treat type-2 diabetes mellitus. Therefore in discovering a small molecule as α-amylase inhibitor, we have synthesized benzofuran carbohydrazide analogs (1-25), characterized through different spectroscopic techniques such as 1HNMR and EI-MS. All screened analog shows good α-amylase inhibitory potentials with IC50 value ranging between 1.078±0.19 and 2.926±0.05µM when compared with acarbose having IC50=0.62±0.22µM. Only nine analogs among the series such as analogs 3, 5, 7, 8, 10, 12, 21, 23 and 24 exhibit good inhibitory potential with IC50 values 1.644±0.128, 1.078±0.19, 1.245±0.25, 1.843±0.19, 1.350±0.24, 1.629±0.015, 1.353±0.232, 1.359±0.119 and 1.488±0.07µM when compare with standard drug acarbose. All other analogs showed good to moderate α-amylase inhibitory potentials. The SAR study was conducted on the basis of substituent difference at the phenyl ring. The binding interaction between analogs and active site of enzyme was confirmed by docking studies.
Due to the great biological importance of β-glucuronidase inhibitors, here in this study, we have synthesized a library of novel benzothiazole derivatives (1-30), characterized by different spectroscopic methods and evaluated for β-glucuronidase inhibitory potential. Among the series sixteen compounds i.e.1-6, 8, 9, 11, 14, 15, 20-23 and 26 showed outstanding inhibitory potential with IC50 value ranging in between 16.50 ± 0.26 and 59.45 ± 1.12 when compared with standard d-Saccharic acid 1,4-lactone (48.4 ± 1.25 µM). Except compound 8 and 23 all active analogs showed better potential than the standard. Structure activity relationship has been established.
The stacked-film immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and horseradish peroxidase (HRP) in chitosan, performed in order to allow the determination of phenolic compounds, was investigated via an optical method. The stacked films were deposited onto a microscope glass slide by a spin-coating technique. The quinone or free radical product formed by the enzymatic reactions of phenolic compounds interacts with MBTH to form azo-dye products, which can be measured spectrophotometrically at a wavelength of 500 nm. The color intensity of the product was found to increase in proportion to the phenolic concentration after 5 min of exposure. The response of the biosensor was linear over concentration ranges of 0.025-0.500, 0.010-0.070 and 0.050-0.300 mM for guaiacol, resorcinol and o-cresol, respectively, and gave detection limits of 0.010, 0.005 and 0.012 mM. The sensor exhibited good sensitivity and stability for at least two months.
Eight novel N'-(2-oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazone derivatives 4a-h were synthesized and fully characterized by IR, NMR ((1)H-NMR and (13)C-NMR), elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2) and leukaemia (Jurkat), as well as in normal cell lines derived from human embryonic kidney (HEK293) using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 μM) as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32-50 μM). Among the tested compounds, 4a showed specificity against leukaemia (Jurkat) cells, with an IC50 value of 3.14 μM, but this compound was inactive in liver cancer and normal cell lines.
Xanthenone based hydrazone derivatives (5a-n) have been synthesized as potential α-glucosidase inhibitors. All synthesized compounds (5a-n) are characterized by their FTIR, 1H NMR, 13C NMR and HRMS, and in case of 5g also by X-ray crystallographic technique. The compounds unveiled a varying degree of α-glucosidase inhibitory activity when compared with standard acarbose (IC50 = 375.38 ± 0.12 µM). Amongst the series, compound 5l (IC50 = 62.25 ± 0.11 µM) bearing a trifluoromethyl phenyl group is found to be the most active compound. Molecular modelling is performed to establish the binding pattern of the more active compound 5l, which revealed the significance of substitution pattern. The pharmacological properties of molecules are also calculated by MedChem Designer which determines the ADME (absorption, distribution, metabolism, excretion) properties of molecules. The solid state self-assembly of compound 5g is discussed to show the conformation and role of iminoamide moiety in the molecular packing.
Medicinal importance of the sulfonylhydrazones is well-evident owing to their binding ability with zinc containing metalloenzymes. In the present study, we have synthesized different series of sulfonylhydrazones by using facile synthetic methods in good to excellent yield. All the successfully prepared sulfonylhydrazones were screened for ectonucleotidase (ALP & e5'NT) inhibitory activity. Among the chromen-2-one scaffold based sulfonylhydrazones, the compounds 7 was found to be most potent inhibitor for h-TNAP (human tissue non-specific alkaline phosphatase) and h-IAP (human intestinal alkaline phosphatase) with IC50 values of 1.02 ± 0.13 and 0.32 ± 0.0 3 µM respectively, compared with levamisole (IC50 = 25.2 ± 1.90 µM for h-TNAP) and l-phenylalanine (IC50 = 100 ± 3.00 µM for h-IAP) as standards. Further, the chromen-2-one based molecule 5a showed excellent activity against h-ecto 5'-NT (human ecto-5'-nucleotidase) with IC50 value of 0.29 ± 0.004 µM compared to standard, sulfamic acid (IC50 = 42.1 ± 7.8 µM). However, among the series of phenyl ring based sulfonylhydrazones, compound 9d was found to be most potent against h-TNAP and h-IAP with IC50 values of 0.85 ± 0.08 and 0.52 ± 0.03 µM, respectively. Moreover, in silico studies were also carried to demonstrate their putative binding with the target enzymes. The potent compounds 5a, 7, and 9d against different ectonucleotidases (h-ecto 5'-NT, h-TNAP, h-IAP) could potentially serve as lead for the development of new therapeutic agents.
Urease is a bacterial enzyme that is responsible for virulence of various pathogenic bacteria such as Staphylococcus aureus, Proteus mirabilis, Klebsiella pneumoniae, Ureaplasma urealyticum, Helicobacter pylori and Mycobacterium tuberculosis. Increased urease activity aids in survival and colonization of pathogenic bacteria causing several disorders especially gastric ulceration. Hence, urease inhibitors are used for treatment of such diseases. In search of new molecules with better urease inhibitory activity, herein we report a series of acridine derived (thio)semicarbazones (4a-4e, 6a-6l) that were found to be active against urease enzyme. Molecular docking studies were carried out to better comprehend the preferential mode of binding of these compounds against urease enzyme. Docking against urease from pathogenic bacterium S. pasteurii was also carried out with favorable results. In silico ADME evaluation was done to determine drug likeness of synthesized compounds.
Molecular hybridization yielded phenyl linked oxadiazole-benzohydrazones hybrids 6-35 and were evaluated for their antileishmanial potentials. Compound 10, a 3,4-dihydroxy analog with IC50 value of 0.95 ± 0.01 μM, was found to be the most potent antileishmanial agent (7 times more active) than the standard drug pentamidine (IC50 = 7.02 ± 0.09 μM). The current series 6-35 conceded in the identification of thirteen (13) potent antileishmanial compounds with the IC50 values ranging between 0.95 ± 0.01-78.6 ± 1.78 μM. Molecular docking analysis against pteridine reductase (PTR1) were also performed to probe the mode of action. Selectivity index showed that compounds with higher number of hydroxyl groups have low selectivity index. Theoretical stereochemical assignment was also done for certain derivatives by using density functional calculations.
A new series of gallic hydrazones containing an indole moiety was synthesized through the reaction of gallic hydrazide and different indole carboxaldehydes. Their antioxidant activities were determined on DPPH radical scavenging and inhibition of lipid peroxidation. The in-vitro cytotoxic activities of the compounds were evaluated against HCT-116 (human colon cancer cell line) and MCF-7 (estrogen-dependent human breast cancer cell line) by the MTT method. An attempt to correlate the biological results with their structural characteristics has been done. A limited positive structure activity relationship was found between cytotoxic and antioxidant activities.
The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways.