Displaying publications 1 - 20 of 71 in total

Abstract:
Sort:
  1. Haque MA, Jantan I, Abbas Bukhari SN
    J Ethnopharmacol, 2017 Jul 31;207:67-85.
    PMID: 28629816 DOI: 10.1016/j.jep.2017.06.013
    ETHNOPHARMACOLOGICAL RELEVANCE: Studies on the effects of natural immunomodulators to heal various diseases related to the immune system have been a growing interest in recent years. Amongst the medicinal plants, Tinospora species (family; Menispermaceae) have been one of the widely investigated plants for their modulating effects on the immune system due to their wide use in ethnomedicine to treat various ailments related to immune-related diseases. However, their ethnopharmacological uses are mainly with limited or without scientific basis.

    AIM OF THIS REVIEW: In this article, we have reviewed the literature on the phytochemicals of several Tinospora species, which have shown strong immunomodulatory effects and critically analyzed the reports to provide perspectives and instructions for future research for the plants as a potential source of new immunomodulators for use as medicinal agents or dietary supplements.

    MATERIALS AND METHODS: Electronic search on worldwide accepted scientific databases (Google Scholar, Science Direct, SciFinder, Web of Science, PubMed, Wiley Online Library, ACS Publications Today) was performed to compile the relevant information. Some information was obtained from books, database on medicinal plants used in Ayurveda, MSc dissertations and herbal classics books written in various languages.

    RESULTS: T. cordifolia, T. crispa, T. sinensis, T. smilacina, T. bakis, and T. sagittata have been reported to possess significant immunomodulatory effects. For a few decades, initiatives in molecular research on the effects of these species on the immune system have been carried out. However, most of the biological and pharmacological studies were carried out using the crude extracts of plants. The bioactive compounds contributing to the bioactivities have not been properly identified, and mechanistic studies to understand the immunomodulatory effects of the plants are limited by many considerations with regard to design, conduct, and interpretation.

    CONCLUSION: The plant extracts and their active constituents should be subjected to more detail mechanistic studies, in vivo investigations in various animal models including pharmacokinetic and bioavailability studies, and elaborate toxicity study before submission to clinical trials.

    Matched MeSH terms: Immune System/drug effects
  2. Awang-Kechik NH, Ahmad R, Doustjalali SR, Sabet NS, Abd-Rahman AN
    J Clin Exp Dent, 2019 Mar;11(3):e269-e274.
    PMID: 31001398 DOI: 10.4317/jced.55546
    Background: The biological responses involved during retention phase have been studied for many years but little is known about the effect of saliva proteome during retention phase of post-orthodontic treatment. This study aims to identify the protein profiles during retention phase in relation to biological processes involved by Liquid Chromatography Mass Spectrometry (LC-MS) approach.

    Material and Methods: A total of 5 ml of unstimulated saliva was collected from each subject (10 non-orthodontic patients and 15 post-orthodontic patients with 6-months retention phase). Samples were then subjected to LC-MS analysis. The expressed proteins were identified and compared between groups. Incisor irregularity for both maxilla and mandible were determined with Little's Irregularity Index at 6-months retention phase.

    Results: 146 proteins and 135 proteins were expressed in control and 6-months retention phase group respectively. 15 proteins were identified to be co-expressed between groups. Immune system process was only detected in 6-months retention phase group. Detected protein in immune system process was identified as Tyrosine-protein kinase Tec. Statistical significant of incisor irregularity was only found in mandible at 6-months retention phase.

    Conclusions: Our study suggests that immune system process protein which is Tyrosine-protein kinase Tec could be used as biomarker for prediction of stability during retention phase of post-orthodontic treatment. Key words:Orthodontics, proteomics, retention, LC-MS, saliva.

    Matched MeSH terms: Immune System Phenomena
  3. Kamis AB, Ahmad RA, Chang JS, Ambu S
    Parasitol Res, 1994;80(1):87-8.
    PMID: 8153134
    Daily intramuscular injection with thyroxine (T4) at a dose of 2.5 micrograms/100 g body weight decreased the larvae and adult worm burden of Parastrongylus malaysiensis in the brain and pulmonary arteries of male Sprague-Dawley albino rats. In contrast, rats treated with propyl thiouracil (PTU), an antithyroid drug, at a dose of 3.75 mg/100 g body weight retained greater numbers of larvae and adult worms. The results may reflect the contrasting immunomodulatory effects of T4 and PTU that influence the susceptibility of the host.
    Matched MeSH terms: Immune System/drug effects
  4. Bhawani SA, Husaini A, Ahmad FB, Asaruddin MR
    Curr Protein Pept Sci, 2018;19(10):972-982.
    PMID: 28828988 DOI: 10.2174/1389203718666170821162823
    Proteins have played a very important role in the drug industry for developing treatments of various diseases such as auto-immune diseases, cancer, diabetes, mental disorder, metabolic disease, and others. Therapeutic proteins have high activity and specificity but they have some limitations such as short half-life, poor stability, low solubility and immunogenicity, so they cannot prolong their therapeutic activity. These shortcomings have been rectified by using polymers for the conjugation with proteins. The conjugates of protein-polymer improves the half-lives, stability and makes them non-immunogenic. Poly(ethylene glycol) (PEG), is widely used in the delivery of proteins because it is the current gold standard for stealth polymers in the emerging field of polymer-based delivery as compared to various biodegradable polymers. PEGylation enhances the retention of therapeutic proteins, effectively alters the pharmacokinetics and enhances the pharmaceutical value. Smart polymer have been used to cope with the pathophysiological environment of target site and have imposed less toxic effects.The contents of this article are challenges in formulation of therapeutic proteins, synthetic routes of conjugates, smart polymer-protein conjugates and also some advantages/disadvantages of polymers as a carrier system of proteins.
    Matched MeSH terms: Immune System Diseases
  5. Malik A, Ashraf MAB, Khan MW, Zahid A, Shafique H, Waquar S, et al.
    Arch Environ Contam Toxicol, 2020 Apr;78(3):329-336.
    PMID: 31620805 DOI: 10.1007/s00244-019-00673-2
    The use of leaded gasoline adversely affects cardiovascular, nervous, and immune systems. Study projects to rule out different variables of prognostic importance in lead-exposed subjects. A total of 317 traffic wardens with 5 years of outdoor experience and Hb levels
    Matched MeSH terms: Immune System
  6. Sheam MM, Syed SB, Nain Z, Tang SS, Paul DK, Ahmed KR, et al.
    J Chemother, 2020 Dec;32(8):395-410.
    PMID: 32820711 DOI: 10.1080/1120009X.2020.1807231
    Bacteria are the most common aetiological agents of community-acquired pneumonia (CAP) and use a variety of mechanisms to evade the host immune system. With the emerging antibiotic resistance, CAP-causing bacteria have now become resistant to most antibiotics. Consequently, significant morbimortality is attributed to CAP despite their varying rates depending on the clinical setting in which the patients being treated. Therefore, there is a pressing need for a safe and effective alternative or supplement to conventional antibiotics. Bacteriophages could be a ray of hope as they are specific in killing their host bacteria. Several bacteriophages had been identified that can efficiently parasitize bacteria related to CAP infection and have shown a promising protective effect. Thus, bacteriophages have shown immense possibilities against CAP inflicted by multidrug-resistant bacteria. This review provides an overview of common antibiotic-resistant CAP bacteria with a comprehensive summarization of the promising bacteriophage candidates for prospective phage therapy.
    Matched MeSH terms: Immune System
  7. Jantan I, Ahmad W, Bukhari SN
    Front Plant Sci, 2015;6:655.
    PMID: 26379683 DOI: 10.3389/fpls.2015.00655
    The phagocyte-microbe interactions in the immune system is a defense mechanism but when excessively or inappropriately deployed can harm host tissues and participate in the development of different non-immune and immune chronic inflammatory diseases such as autoimmune problems, allergies, some rheumatoid disorders, cancers and others. Immunodrugs include organic synthetics, biological agents such as cytokines and antibodies acting on single targets or pathways have been used to treat immune-related diseases but with limited success. Most of immunostimulants and immunosuppressants in clinical use are the cytotoxic drugs which possess serious side effects. There is a growing interest to use herbal medicines as multi-component agents to modulate the complex immune system in the prevention of infections rather than treating the immune-related diseases. Many therapeutic effects of plant extracts have been suggested to be due to their wide array of immunomodulatory effects and influence on the immune system of the human body. Phytochemicals such as flavonoids, polysaccharides, lactones, alkaloids, diterpenoids and glycosides, present in several plants, have been reported to be responsible for the plants immunomodulating properties. Thus the search for natural products of plant origin as new leads for development of potent and safe immunosuppressant and immunostimulant agents is gaining much major research interest. The present review will give an overview of widely investigated plant-derived compounds (curcumin, resveratrol, epigallocatechol-3-gallate, quercetin, colchicine, capsaicin, andrographolide, and genistein) which have exhibited potent effects on cellular and humoral immune functions in pre-clinical investigations and will highlight their clinical potential.
    Matched MeSH terms: Immune System
  8. Sarchio SNE, Scolyer RA, Beaugie C, McDonald D, Marsh-Wakefield F, Halliday GM, et al.
    J Invest Dermatol, 2014 Apr;134(4):1091-1100.
    PMID: 24226205 DOI: 10.1038/jid.2013.424
    One way sunlight causes skin cancer is by suppressing anti-tumor immunity. A major mechanism involves altering mast cell migration via the C-X-C motif chemokine receptor 4-C-X-C motif chemokine ligand 12 (CXCR4-CXCL12) chemokine pathway. We have discovered that pharmacologically blocking this pathway with the CXCR4 antagonist AMD3100 prevents both UV radiation-induced immune suppression and skin cancer. The majority of control mice receiving UV-only developed histopathologically confirmed squamous cell carcinomas. In contrast, skin tumor incidence and burden was significantly lower in AMD3100-treated mice. Perhaps most striking was that AMD3100 completely prevented the outgrowth of latent tumors that occurred once UV irradiation ceased. AMD3100 protection from UV immunosuppression and skin cancer was associated with reduced mast cell infiltration into the skin, draining lymph nodes, and the tumor itself. Thus a major target of CXCR4 antagonism was the mast cell. Our results indicate that interfering with UV-induced CXCL12 by antagonizing CXCR4 significantly inhibits skin tumor development by blocking UV-induced effects on mast cells. Hence, the CXCR4-CXCL12 chemokine pathway is a novel therapeutic target in the prevention of UV-induced skin cancer.
    Matched MeSH terms: Immune System
  9. Lin X, Liu X, Xu J, Cheng KK, Cao J, Liu T, et al.
    Chin Med, 2019;14:18.
    PMID: 31080495 DOI: 10.1186/s13020-019-0240-2
    Background: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which is commonly treated with antidiarrhoeal, antispasmodics, serotonergic agents or laxative agents. These treatments provide relief for IBS symptoms but may also lead to undesired side effects. Previously, herb-partitioned moxibustion (HPM) treatment has been demonstrated to be effective in ameliorating symptoms of IBS. However, the underlying mechanism of this beneficial treatment is yet to be established. The aim of the current study was to systematically assess the metabolic alterations in response to diarrhea-predominant IBS (IBS-D) and therapeutic effect of HPM.

    Methods: Proton nuclear magnetic resonance spectroscopy (1H NMR)-based metabolomics approach was used to investigate fecal and serum metabolome of rat model of IBS-D with and without HPM treatment.

    Results: The current results showed that IBS-induced metabolic alterations in fecal and serum sample include higher level of threonine and UDP-glucose together with lower levels of aspartate, ornithine, leucine, isoleucine, proline, 2-hydroxy butyrate, valine, lactate, ethanol, arginine, 2-oxoisovalerate and bile acids. These altered metabolites potentially involve in impaired gut secretory immune system and intestinal inflammation, malabsorption of nutrients, and disordered metabolism of bile acids. Notably, the HPM treatment was found able to normalize the Bristol stool forms scale scores, fecal water content, plasma endotoxin level, and a number of IBS-induced metabolic changes.

    Conclusions: These findings may provide useful insight into the molecular basis of IBS and mechanism of the HPM intervention.

    Matched MeSH terms: Immune System
  10. Foong, Audrey Kow Siew, Nuha Fahimah Binti Wan Zahidi, Chau, Ling Tham
    MyJurnal
    Immunoglobulins are antibodies that play important roles in preserving our immune system. They have the ability to initiate humoral responses and remove antigen from the body. Out of the five major isotypes of immunoglobulins, IgG are most abundantly found in human serum. Abnormalities – deficiency or elevation in the level of IgG are found to be associated to the occurrence of several autoimmune diseases. These may include rheumatoid arthritis, Crohn’s disease, Mikulicz’s disease, Kuttner’s tumour and Hashimoto’s thyroiditis. Apart from autoimmune diseases, IgG has been found to play a role in initiating anaphylaxis, a severe and life threatening form of allergy and lately it has been discovered in cases of dengue virus infection too. It is important to acknowledge the roles of IgG on diseases especially subclass IgG4 which the elevation has been tied to numerous diseases such as Kuttner’s tumour and Hashimoto’s thyroiditis hence termed IgG4-related diseases. In addition, the roles of IgG in anaphylaxis are of importance, too, as IgG has been used in allergy immunotherapy. Hence, this review is a mini compilation of effects of IgG abnormalities based on their subclasses. Hopefully it will provide insightful understanding on the development of diagnostic and therapeutic courses for the aforementioned IgG abnormalities in the future.
    Matched MeSH terms: Immune System
  11. Krishnan, Santhana, Mimi Sakinah Abdul Munaim, Zularisam Abdul Wahid, Chua, Yeo Gek Kee, Chew, Few Nee
    MyJurnal
    Monoclonal antibodies (mAbs) are unique and specific drug molecules targeting the treatment of various diseases such as arthritis, immune disorders, infectious diseases, and cancer etc. Different methods such as antibody coupled affinity chromatography, hydrophobic interaction chromatography, etc., can be applied to purify mAbs from various sources. This article provides a simple, cost effective, preparative native-polyacrylamide gel electrophoresis (n-PAGE)technique to purify mAbs expressed in H-192 cells (Hybridoma murine cell lines) against an antigen i.e. 17-alpha-hydroxyprogesterone (17-OHP), which further can have diagnostic application to detect Congenital Adrenal Hyperplasia (CAH). Furthermore, different parameters such as concentration and volume of the feedstock (medium containing antibodies), pore size of gel, height of resolving gel etc. were optimized to obtain the maximum purity and yield of mAbs.
    Matched MeSH terms: Immune System Diseases
  12. Kiong TS, Salem SB, Paw JK, Sankar KP, Darzi S
    ScientificWorldJournal, 2014;2014:164053.
    PMID: 25003136 DOI: 10.1155/2014/164053
    In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals.
    Matched MeSH terms: Immune System/physiology
  13. Tan GW, Visser L, Tan LP, van den Berg A, Diepstra A
    Pathogens, 2018 04 13;7(2).
    PMID: 29652813 DOI: 10.3390/pathogens7020040
    The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an aspecific reaction to the tumor cells. In fact, latent EBV-infected tumor cells utilize several specific mechanisms to form and shape the TME to their own benefit. These mechanisms have been studied largely in the context of EBV+ Hodgkin lymphoma, undifferentiated nasopharyngeal carcinoma, and EBV+ gastric cancer. This review describes the composition, immune escape mechanisms, and tumor cell promoting properties of the TME in these three malignancies. Mechanisms of susceptibility which regularly involve genes related to immune system function are also discussed, as only a small proportion of EBV-infected individuals develops an EBV-associated malignancy.
    Matched MeSH terms: Immune System
  14. Chellappan DK, Yee LW, Xuan KY, Kunalan K, Rou LC, Jean LS, et al.
    Drug Dev Res, 2020 06;81(4):419-436.
    PMID: 32048757 DOI: 10.1002/ddr.21648
    Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.
    Matched MeSH terms: Immune System/immunology
  15. Hussain MS, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, et al.
    J Biochem Mol Toxicol, 2023 Nov;37(11):e23482.
    PMID: 37530602 DOI: 10.1002/jbt.23482
    Inflammation is an essential immune response that helps fight infections and heal tissues. However, chronic inflammation has been linked to several diseases, including cancer, autoimmune disorders, cardiovascular diseases, and neurological disorders. This has increased interest in finding natural substances that can modulate the immune system inflammatory signaling pathways to prevent or treat these diseases. Luteolin is a flavonoid found in many fruits, vegetables, and herbs. It has been shown to have anti-inflammatory effects by altering signaling pathways in immune cells. This review article discusses the current research on luteolin's role as a natural immune system modulator of inflammatory signaling mechanisms, such as its effects on nuclear factor-kappa B, mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and inflammasome signaling processes. The safety profile of luteolin and its potential therapeutic uses in conditions linked to inflammation are also discussed. Overall, the data point to Luteolin's intriguing potential as a natural regulator of immune system inflammatory signaling processes. More research is needed to fully understand its mechanisms of action and possible therapeutic applications.
    Matched MeSH terms: Immune System
  16. Solanki N, Gupta G, Chellappan DK, Singh SK, Gulati M, Paudel KR, et al.
    PMID: 37183464 DOI: 10.2174/1871530323666230512154634
    BACKGROUND: In the last few decades, it has been largely perceived that the factors affecting the immune system and its varying pathways lead to the pathological progression of inflammation and inflammatory conditions. Chronic inflammation also contributes to common diseases, such as diabetes mellitus, ischemic heart disease, cancer, chronic renal inflammatory disease, non-alcoholic fatty hepat-ic disease, autoimmune diseases and neurodegenerative diseases.

    OBJECTIVE: Interestingly, plant sources and secondary metabolites from plants have been increasingly employed in managing acute and chronic inflammatory diseases for centuries. Boswellic acids are pentacyclic triterpenoidal moieties obtained from the oleo gum resin of different Boswellia species.

    METHODS: Detailed data was collected revealing the anti-inflammatory potential of Boswellic acids through various databases.

    RESULT: These are pharmacologically active agents that possess promising anti-inflammatory, anti-arthritic, antirheumatic, anti-diarrheal, anti-hyperlipidemic, anti-asthmatic, anti-cancer, and anti-microbial effects.

    CONCLUSION: Boswellic acids have been in use since ancient times primarily to treat acute and chronic inflammatory diseases. This review discusses the various mechanisms underlying the inflammatory process and the necessity of such natural products as a medication to treat inflammatory diseases. In addition, a discussion has also been extended to understand the primary targets involved in inflammation. The review further explores the therapeutic potential of boswellic acids in.

    Matched MeSH terms: Immune System
  17. Phing AH, Makpol S, Nasaruddin ML, Wan Zaidi WA, Ahmad NS, Embong H
    Int J Mol Sci, 2023 Mar 15;24(6).
    PMID: 36982655 DOI: 10.3390/ijms24065580
    Delirium, a common form of acute brain dysfunction, is associated with increased morbidity and mortality, especially in older patients. The underlying pathophysiology of delirium is not clearly understood, but acute systemic inflammation is known to drive delirium in cases of acute illnesses, such as sepsis, trauma, and surgery. Based on psychomotor presentations, delirium has three main subtypes, such as hypoactive, hyperactive, and mixed subtype. There are similarities in the initial presentation of delirium with depression and dementia, especially in the hypoactive subtype. Hence, patients with hypoactive delirium are frequently misdiagnosed. The altered kynurenine pathway (KP) is a promising molecular pathway implicated in the pathogenesis of delirium. The KP is highly regulated in the immune system and influences neurological functions. The activation of indoleamine 2,3-dioxygenase, and specific KP neuroactive metabolites, such as quinolinic acid and kynurenic acid, could play a role in the event of delirium. Here, we collectively describe the roles of the KP and speculate on its relevance in delirium.
    Matched MeSH terms: Immune System/metabolism
  18. Irmi Z, Zaiton A, Faezah H
    Malays Fam Physician, 2013;8(1):24-7.
    PMID: 25606264 MyJurnal
    Reactive arthritis and erythema are uncommon presentations of tuberculosis (TB). Reactive arthritis in tuberculosis (TB) is known as Poncet's disease, a rare aseptic form of arthritis observed in patients with active TB. We report a case of Poncet's disease in a 20-year old man whose reactive arthritis overshadowed other clinical symptoms of TB resulting in delayed diagnosis and treatment. Although a conclusive diagnosis of Poncet's disease is not possible, reactive immunologic reactions such as reactive arthritis and erythema nodosum even without respiratory symptoms should raise suspicion on possible TB. Thus, taking a thorough medical history as well as performing relevant examinations and investigations for possible TB will help expedite the diagnostic process.
    Matched MeSH terms: Immune System Phenomena
  19. Kaur A, Lee LH, Chow SC, Fang CM
    Int Rev Immunol, 2018;37(5):229-248.
    PMID: 29985675 DOI: 10.1080/08830185.2018.1469629
    Transcription factors are gene regulators that activate or repress target genes. One family of the transcription factors that have been extensively studied for their crucial role in regulating gene network in the immune system is the interferon regulatory factors (IRFs). IRFs possess a novel turn-helix turn motif that recognizes a specific DNA consensus found in the promoters of many genes that are involved in immune responses. IRF5, a member of IRFs has recently gained much attention for its role in regulating inflammatory responses and autoimmune diseases. Here, we discuss the role of IRF5 in regulating immune cells functions and how the dysregulation of IRF5 contributes to the pathogenesis of immune disorders. We also review the latest findings of potential IRF5 inhibitors that modulate IRF5 activity in the effort of developing therapeutic approaches for treating inflammatory disorders.
    Matched MeSH terms: Immune System; Immune System Diseases
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links