Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Hani H, Ibrahim TA, Othman AM, Lila MA, bt Allaudin ZN
    Xenotransplantation, 2010 12 17;17(6):469-80.
    PMID: 21158948 DOI: 10.1111/j.1399-3089.2010.00616.x
    BACKGROUND: Insufficient availability of human donors makes the search for alternative source of islet cells mandatory for future developments in pancreatic transplantation. The present study investigates the potential of caprine as an alternative source of pancreatic islets. The objectives of the study were to optimize techniques for caprine islet isolation and purification for culture establishment, and to subsequently assess their viable and functional potential.

    METHODS: Caprine pancreatic tissues were collected from a local slaughterhouse and prior transported to the laboratory by maintaining the cold chain. Islets were obtained by a collagenase-based digestion and optimized isolation technique. Islet cell purity and viability were determined by dithizone and trypan blue staining, respectively. Islet clusters of different sizes were positively identified by staining methods and demonstrated 90% viability in the culture system. Following static incubation, an in vitro insulin secretion assay was carried out and analyzed by ELISA.

    RESULTS: The islets remained satisfactorily viable for 5 days in the culture system following regular media changes. The current study has successfully optimized the isolation, purification and culture maintenance of caprine islets.

    CONCLUSION: The successful yield, viability and functionality of islets isolated from the optimized protocol provide promising potential as an alternative source of islets for diabetes and transplantation researches.

    Matched MeSH terms: Islets of Langerhans/cytology*; Islets of Langerhans Transplantation/methods*
  2. Syukri Y, Taher M, Martien R, Lukitaningsih E, Nugroho AE, Zakaria ZA
    Adv Pharm Bull, 2021 Jan;11(1):171-180.
    PMID: 33747864 DOI: 10.34172/apb.2021.018
    Purpose:
    Insulin resistance is a characteristic of non-insulin-dependent diabetes mellitus associated with obesity and caused by the failure of pancreatic beta cells to secrete sufficient amount of insulin. Andrographolide (AND) improves beta-cell reconstruction and inhibits fat-cell formation. This research aimed to improve the delivery of water-insoluble AND in self-nanoemulsifying (ASNE) formulation, tested in streptozotocin (STZ)-induced diabetic rats and 3T3-L1 preadipocyte cells.
    Methods:
    A conventional formulation of AND in suspension was used as a control. The experimental rats were orally administered with self-nanoemulsifying (SNE) and suspension of AND for 8 days. Measurements were performed to evaluate blood glucose levels in preprandial and postprandial conditions. Immunohistochemistry was used to assess the process of islet beta cell reconstruction. In vitro study was performed using cell viability and adipocyte differentiation assay to determine the delivery of AND in the formulation.
    Results:
    ASNE lowered blood glucose levels (day 4) faster than AND suspension (day 6). The histological testing showed that ASNE could regenerate pancreatic beta cells. Therefore, ASNE ameliorated pancreatic beta cells. The in vitro evaluation indicated the inhibition of adipocyte differentiation by both AND and ASNE, which occurred in a time-dependent manner. ASNE formulation had better delivery than AND.
    Conclusion:
    ASNE could improve the antidiabetic activity by lowering blood glucose levels, enhancing pancreatic beta cells, and inhibiting lipid formation in adipocyte cells.
    Matched MeSH terms: Islets of Langerhans
  3. Gao B, Wang L, Han S, Pingguan-Murphy B, Zhang X, Xu F
    Crit Rev Biotechnol, 2016 Aug;36(4):619-29.
    PMID: 25669871 DOI: 10.3109/07388551.2014.1002381
    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.
    Matched MeSH terms: Islets of Langerhans*
  4. Vethakkan SR, Walters JM, Gooley JL, Boston RC, Kay TW, Goodman DJ, et al.
    Transplantation, 2014 Jan 27;97(2):e9-11.
    PMID: 24434489 DOI: 10.1097/01.TP.0000437565.15965.67
    Matched MeSH terms: Islets of Langerhans Transplantation*
  5. Lock LT, Tzanakakis ES
    Med J Malaysia, 2008 Jul;63 Suppl A:5-6.
    PMID: 19024957
    Embryonic stem cells (ESCs) can be an inexhaustible source of islet cells for transplantation. Previously published protocols have been characterized by low differentiation efficiency. In this study, we developed a scalable system for the growth and differentiation of hESCs towards pancreatic islets. Our results showed that hESCs can be grown on microcarriers to a larger scale and directed to differentiate into pancreatic progenitor endoderm cells. This culture system would represent an economical differentiation protocol that can be scaled-up to meet the demand in islet transplantation.
    Matched MeSH terms: Islets of Langerhans/cytology*; Islets of Langerhans Transplantation/methods*
  6. Tai ES, Lim SC, Chew SK, Tan BY, Tan CE
    Diabetes Res Clin Pract, 2000 Aug;49(2-3):159-68.
    PMID: 10963828 DOI: 10.1016/s0168-8227(00)00152-2
    We studied insulin resistance and beta-cell function with reference to ethnic group, glucose tolerance and other coronary artery disease risk factors in a cross section of the Singapore population which comprises Chinese, Malays and Asian Indians. 3568 individuals aged 18-69 were examined. Blood pressure, anthropometric data, blood lipids, glucose and insulin were assayed in the fasting state. Glucose and serum insulin were measured 2 h after an oral glucose challenge. Insulin resistance and beta-cell function were calculated using homeostasis model assessment. Asian Indians had higher insulin resistance than Chinese or Malays. Impaired glucose tolerance (IGT) and diabetes mellitus (DM) were associated with greater insulin resistance and impaired beta-cell function compared to normal glucose tolerance (NGT). Insulin resistance was positively correlated with blood pressure in women and total cholesterol, LDL cholesterol and triglyceride in both men and women. It was negatively correlated with HDL cholesterol and LDL/apolipoprotein B ratio. beta-cell function showed no significant correlations with the cardiovascular risk factors studied. It appears that both impaired beta-cell function and insulin resistance are important for the development of hyperglycemia whereas insulin resistance alone seems more important in the development of coronary artery disease as it correlates with several known coronary artery disease risk factors.
    Matched MeSH terms: Islets of Langerhans/physiology
  7. Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, et al.
    Phytomedicine, 2015 Feb 15;22(2):297-300.
    PMID: 25765836 DOI: 10.1016/j.phymed.2015.01.003
    Although the anti-diabetic activity of cinnamic acid, a pure compound from cinnamon, has been reported but its mechanism(s) is not yet clear. The present study was designed to explore the possible mechanism(s) of anti-diabetic activity of cinnamic acid in in vitro and in vivo non-obese type 2 diabetic rats. Non-obese type 2 diabetes was developed by injecting 90 mg/kg streptozotocin in 2-day-old Wistar pups. Cinnamic acid and cinnamaldehyde were administered orally to diabetic rats for assessing acute blood glucose lowering effect and improvement of glucose tolerance. Additionally, insulin secretory activity of cinnamic acid and cinnamaldehyde was evaluated in isolated mice islets. Cinnamic acid, but not cinnamaldehyde, decreased blood glucose levels in diabetic rats in a time- and dose-dependent manner. Oral administration of cinnamic acid with 5 and 10 mg/kg doses to diabetic rats improved glucose tolerance in a dose-dependent manner. The improvement by 10 mg/kg cinnamic acid was comparable to that of standard drug glibenclamide (5 mg/kg). Further in vitro studies showed that cinnamaldehyde has little or no effect on glucose-stimulated insulin secretion; however, cinnamic acid significantly enhanced glucose-stimulated insulin secretion in isolated islets. In conclusion, it can be said that cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and stimulating insulin secretion in vitro.
    Matched MeSH terms: Islets of Langerhans/drug effects*
  8. Batumalaie K, Qvist R, Yusof KM, Ismail IS, Sekaran SD
    Clin Exp Med, 2014 May;14(2):185-95.
    PMID: 23584372 DOI: 10.1007/s10238-013-0236-7
    Type 2 diabetes consists of progressive hyperglycemia, insulin resistance, and pancreatic β-cell failure which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study, we investigate the effect of pretreatment with Gelam honey (Melaleuca spp.) and the individual flavonoid components chrysin, luteolin, and quercetin, on the production of reactive oxygen species (ROS), cell viability, lipid peroxidation, and insulin content in hamster pancreatic cells (HIT-T15 cells), cultured under normal and hyperglycemic conditions. Phenolic extracts from a local Malaysian species of Gelam honey (Melaleuca spp.) were prepared using the standard extraction methods. HIT-T15 cells were cultured in 5 % CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 μg/ml) as well as some of its flavonoid components chrysin, luteolin, and quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM of glucose. The antioxidative effects were measured in these cultured cells at different concentrations and time point by DCFH-DA assay. Pretreatment of cells with Gelam honey extract or the flavonoid components prior to culturing in 20 or 50 mM glucose showed a significant decrease in the production of ROS, glucose-induced lipid peroxidation, and a significant increase in insulin content and the viability of cells cultured under hyperglycemic condition. Our results show the in vitro antioxidative property of the Gelam honey and the flavonoids on the β-cells from hamsters and its cytoprotective effect against hyperglycemia.
    Matched MeSH terms: Islets of Langerhans/drug effects*; Islets of Langerhans/physiology
  9. Aziz MSA, Giribabu N, Rao PV, Salleh N
    Biomed Pharmacother, 2017 May;89:135-145.
    PMID: 28222394 DOI: 10.1016/j.biopha.2017.02.026
    Stingless bee honey (SLBH) has been claimed to possess multiple health benefits. Its anti-diabetic properties are however unknown. In this study, ability of SLBH from Geniotrigona thoracica stingless bee species in ameliorating pancreatic damage and in maintaining metabolic profiles were investigated in diabetic condition.

    METHODS: SLBH at 1 and 2g/kg/b.w. was given orally to streptozotocin (STZ)-nicotinamide-induced male diabetic rats for 28days. Metabolic parameters (fasting blood glucose-FBG and lipid profiles-LP and serum insulin) were measured by biochemical assays. Distribution and expression level of insulin, oxidative stress marker i.e. catalase, inflammatory markers i.e. IKK-β, TNF-α, IL-1β and apoptosis marker i.e. caspase-9 in the pancreatic islets were identified and quantified respectively by immunohistochemistry. Levels of NF-κβ in pancreas were determined by enzyme-linked immunoassay (ELISA).

    RESULTS: SLBH administration to diabetic male rats prevented increase in FBG, total cholesterols (TC), triglyceride (TG) and low density lipoprotein (LDL) levels. However, high density lipoprotein (HDL) and serum insulin levels in diabetic rats receiving SLBH increased. Additionally, histopathological changes and expression level of oxidative stress, inflammation and apoptosis markers in pancreatic islets of diabetic rats decreased with increased expression level of insulin in the islets. LC-MS analysis revealed the presence of several compounds in SLBH that might be responsible for these effects.

    CONCLUSIONS: SLBH has great potential to be used as agent to protect the pancreas against damage and dysfunction where these could account for its anti-diabetic properties.

    Matched MeSH terms: Islets of Langerhans/drug effects; Islets of Langerhans/pathology
  10. Taheri Rouhi SZ, Sarker MMR, Rahmat A, Alkahtani SA, Othman F
    BMC Complement Altern Med, 2017 Mar 14;17(1):156.
    PMID: 28288617 DOI: 10.1186/s12906-017-1667-6
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is associated with hyperglycemia, inflammatory disorders and abnormal lipid profiles. Several functional foods have therapeutic potential to treat chronic diseases including diabetes. The therapeutic potential of pomegranate has been stated by multitudinous scientists. The present study aimed to evaluate the effects of pomegranate juice and seed powder on the levels of plasma glucose and insulin, inflammatory biomarkers, lipid profiles, and health of the pancreatic islets of Langerhans in streptozotocin (STZ)-nicotinamide (NAD) induced T2DM Sprague Dawley (SD) rats.

    METHODS: Forty healthy male SD rats were induced to diabetes with a single dose intra-peritoneal administration of STZ (60 mg/kg b.w.) - NAD (120 mg/kg b.w.). Diabetic rats were orally administered with 1 mL of pomegranate fresh juice (PJ) or 100 mg pomegranate seed powder in 1 mL distilled water (PS), or 5 mg/kg b.w. of glibenclamide every day for 21 days. Rats in all groups were sacrificed on day 22. The obtained data was analyzed by SPSS software (v: 22) using One-way analysis of variance (ANOVA).

    RESULTS: The results showed that PJ and PS treatment had slight but non-significant reduction of plasma glucose concentration, and no impact on plasma insulin compared to diabetic control (DC) group. PJ lowered the plasma total cholesterol (TC) and triglyceride (TG) significantly, and low-density lipoproteins (LDL) non-significantly compared to DC group. In contrast, PS treatment significantly raised plasma TC, LDL, and high-density lipoproteins (HDL) levels compared to the DC rats. Moreover, the administration of PJ and PS significantly reduced the levels of plasma inflammatory biomarkers, which were actively raised in diabetic rats. Only PJ treated group showed significant repairment and restoration signs in islets of Langerhans. Besides, PJ possessed preventative impact against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals almost 2.5 folds more than PS.

    CONCLUSIONS: Our findings suggest that active constituents with high antioxidant properties present in PJ are responsible for its anti-hyperlipidemic and anti-inflammatory effects, likewise the restoration effect on the damaged islets of Langerhans in experimental rats. Hence, the pharmacological, biochemical, and histopathological profiles of PJ treated rats obviously indicated its helpful effects in amelioration of diabetes-associated complications.

    Matched MeSH terms: Islets of Langerhans/drug effects; Islets of Langerhans/metabolism; Islets of Langerhans/pathology
  11. Hani H, Allaudin ZN, Mohd-Lila MA, Ibrahim TA, Othman AM
    Xenotransplantation, 2014 Mar-Apr;21(2):174-82.
    PMID: 24645790 DOI: 10.1111/xen.12087
    BACKGROUND: Type 1 diabetes mellitus is a devastating disease for which there is currently no cure, but only lifetime management. Islet xenotransplantation is a promising technique for the restoration of blood glucose control in patients with diabetes mellitus. The purpose of this study was to explore the potential use of caprine (goat) islet cells as xenogeneic grafts in the treatment for diabetes in a mouse model.
    METHODS: Caprine pancreases were harvested and transported to the laboratory under conditions optimized to prevent ischemia. Islets were isolated, purified, and tested for functionality. Caprine islets (2000 islet equivalent) were transplanted beneath the kidney capsules of diabetic BALB/c mice under thalidomide-induced immunosuppression. Blood glucose and insulin levels of grafted mice were evaluated by glucometer and enzyme-linked immunosorbent assay kit, respectively. The functionality and quality of caprine pancreatic islet grafts were assessed by intraperitoneal glucose tolerance tests.
    RESULTS: The viability of purified islet cells exceeded 90%. Recipient mice exhibited normoglycemia (<11 mM glucose) for 30 days. In addition, weight gain negatively correlated with blood glucose level. The findings verified diabetes reversal in caprine islet recipient mice. A significant drop in non-fasting blood glucose level (from 23.3 ± 5.4 to 8.04 ± 0.44 mM) and simultaneous increase in serum insulin level (from 0.01 ± 0.001 to 0.56 ± 0.17 μg/l) and body weights (from 23.64 ± 0.31 to 25.85 ± 0.34 g) were observed (P < 0.05). Immunohistochemical analysis verified insulin production in the transplanted islets.
    CONCLUSIONS: Purified caprine islets were demonstrated to successfully sustain viability and functionality for controlling blood glucose levels in an immunosuppressed mouse model of diabetes. These results suggest the use of caprine islets as an addition to the supply of xenogeneic islets for diabetes research.
    KEYWORDS: caprine islets; streptozotocin‐injected mice; type 1 diabetes; xenotransplantation
    Matched MeSH terms: Islets of Langerhans/cytology; Islets of Langerhans/surgery*
  12. Hani H, Allaudin ZN, Tengku Ibrahim TA, Mohd-Lila MA, Sarsaifi K, Camalxaman SN, et al.
    In Vitro Cell Dev Biol Anim, 2015 Feb;51(2):113-20.
    PMID: 25303943 DOI: 10.1007/s11626-014-9821-7
    Pancreatic islet transplantation is commonly used to treat diabetes. Cell isolation and purification methods can affect the structure and function of the isolated islet cells. Thus, the development of cell isolation techniques that preserve the structure and function of pancreatic islet cells is essential for enabling successful transplantation procedures. The impact of purification procedures on cell function can be assessed by performing ultrastructure and in vivo studies. Thus, the aim of this study was to evaluate the effect of caprine islets purification procedure on islet cell ultrastructure and functional integrity prior to and post-isolation/purification. The islets were isolated from caprine pancreas by using an optimized collagenase XI-S concentration, and the cells were subsequently purified using Euro-Ficoll density gradient. In vitro viability of islets was determined by fluorescein diacetate and propidium iodide staining. Static incubation was used to assess functionality and insulin production by islet cells in culture media when exposed to various levels of glucose. Pancreatic tissues were examined by using light microscopy, fluorescence microscopy, scanning, and transmission electron microscopy. In vivo viability and functionality of caprine islets were assessed by evaluating the transplanted islets in diabetic mice. Insulin assay of glucose-stimulated insulin secretion test showed that the insulin levels increased with increasing concentration of glucose. Thus, purified islets stimulated with high glucose concentration (25 mM) secreted higher levels of insulin (0.542 ± 0.346 μg/L) than the insulin levels (0.361 ± 0.219, 0.303 ± 0.234 μg/L) secreted by exposure to low glucose concentrations (1.67 mM). Furthermore, insulin levels of recipient mice were significantly higher (p 
    Matched MeSH terms: Islets of Langerhans/cytology*; Islets of Langerhans/ultrastructure*; Islets of Langerhans Transplantation/methods*
  13. Hani H, Allaudin ZN, Mohd-Lila MA, Sarsaifi K, Rasouli M, Tam YJ, et al.
    Xenotransplantation, 2017 05;24(3).
    PMID: 28397308 DOI: 10.1111/xen.12302
    BACKGROUND: Dead islets replaced with viable islets are a promising offer to restore normal insulin production to a person with diabetes. The main reason for establishing a new islet source for transplantation is the insufficiency of human donor pancreas while using xenogeneic islets perhaps assists this problem. The expression of PDX1 is essential for the pancreas expansion. In mature β-cells, PDX1 has several critical roles such as glucose sensing, insulin synthesis, and insulin secretion. In this study, we aimed to evaluate the expression of pancreatic duodenal homeobox-1 (PDX1) in treated caprine islets in culture and to assess the protective effects of antioxidant factors on the PDX1 gene in cultured caprine islets.

    MATERIALS AND METHODS: Purified islets were treated with serum-free, serum, IBMX, tocopherol, or IBMX and tocopherol media. Quantitative polymerase chain reaction and Western blotting were carried out to compare the expression levels of PDX1 in treated purified islets cultured with different media.

    RESULTS: Islets treated with IBMX/tocopherol exhibited the highest fold change in the relative expression of PDX1 on day 5 post-treatment (relative expression: 6.80±2.08), whereas serum-treated islets showed the lowest fold changes in PDX1 expression on day 5 post-treatment (0.67±0.36), as compared with the expression on day 1 post-treatment. Insulin production and viability tests of purified islets showed superiority of islet at supplemented serum-free media with IBMX/tocopherol compared to other cultures (53.875%±1.59%).

    CONCLUSIONS: Our results indicated that supplemented serum-free medium with tocopherol and IBMX enhances viability and PDX1 gene expression compared to serum-added and serum-free media.

    Matched MeSH terms: Islets of Langerhans/cytology; Islets of Langerhans/drug effects; Islets of Langerhans/physiology*
  14. Lokman FE, Gu HF, Wan Mohamud WN, Yusoff MM, Chia KL, Ostenson CG
    PMID: 24319481 DOI: 10.1155/2013/727602
    Aims. To evaluate the antidiabetic properties of borapetol B known as compound 1 (C1) isolated from Tinospora crispa in normoglycemic control Wistar (W) and spontaneously type 2 diabetic Goto-Kakizaki (GK) rats. Methods. The effect of C1 on blood glucose and plasma insulin was assessed by an oral glucose tolerance test. The effect of C1 on insulin secretion was assessed by batch incubation and perifusion experiments using isolated pancreatic islets. Results. An acute oral administration of C1 improved blood glucose levels in treated versus placebo groups with areas under glucose curves 0-120 min being 72 ± 17 versus 344 ± 10 mmol/L (P < 0.001) and 492 ± 63 versus 862 ± 55 mmol/L (P < 0.01) in W and GK rats, respectively. Plasma insulin levels were increased by 2-fold in treated W and GK rats versus placebo group at 30 min (P < 0.05). C1 dose-dependently increased insulin secretion from W and GK isolated islets at 3.3 mM and 16.7 mM glucose. The perifusions of isolated islets indicated that C1 did not cause leakage of insulin by damaging islet beta cells (P < 0.001). Conclusion. This study provides evidence that borapetol B (C1) has antidiabetic properties mainly due to its stimulation of insulin release.
    Matched MeSH terms: Islets of Langerhans
  15. Choy KW, Zain ZM, Murugan DD, Giribabu N, Zamakshshari NH, Lim YM, et al.
    Front Pharmacol, 2021;12:632169.
    PMID: 33986669 DOI: 10.3389/fphar.2021.632169
    Type 2 diabetes mellitus is characterized by both resistance to the action of insulin and defects in insulin secretion. Bird's nest, which is derived from the saliva of swiftlets are well known to possess multiple health benefits dating back to Imperial China. However, it's effect on diabetes mellitus and influence on the actions of insulin action remains to be investigated. In the present study, the effect of standardized aqueous extract of hydrolyzed edible bird nest (HBN) on metabolic characteristics and insulin signaling pathway in pancreas, liver and skeletal muscle of db/db, a type 2 diabetic mice model was investigated. Male db/db diabetic and its euglycemic control, C57BL/6J mice were administered HBN (75 and 150 mg/kg) or glibenclamide (1 mg/kg) orally for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin and oral glucose tolerance test (OGTT). Insulin signaling and activation of inflammatory pathways in liver, adipose, pancreas and muscle tissue were evaluated by Western blotting and immunohistochemistry. Pro-inflammatory cytokines were measured in the serum at the end of the treatment. The results showed that db/db mice treated with HBN significantly reversed the elevated fasting blood glucose, serum insulin, serum pro-inflammatory cytokines levels and the impaired OGTT without affecting the body weight of the mice in all groups. Furthermore, HBN treatment significantly ameliorated pathological changes and increased the protein expression of insulin, and glucose transporters in the pancreatic islets (GLUT-2), liver and skeletal muscle (GLUT-4). Likewise, the Western blots analysis denotes improved insulin signaling and antioxidant enzyme, decreased reactive oxygen species producing enzymes and inflammatory molecules in the liver and adipose tissues of HBN treated diabetic mice. These results suggest that HBN improves β-cell function and insulin signaling by attenuation of oxidative stress mediated chronic inflammation in the type 2 diabetic mice.
    Matched MeSH terms: Islets of Langerhans
  16. Motshakeri M, Ebrahimi M, Goh YM, Othman HH, Hair-Bejo M, Mohamed S
    PMID: 24516503 DOI: 10.1155/2014/379407
    The edible seaweed Sargassum polycystum (SP) is traditionally used against several human diseases. This investigation evaluated the effects of two dietary doses of SP ethanolic and aqueous extracts on the pancreatic, hepatic, and renal morphology of type 2 diabetic rats (T2DM). T2DM was induced by feeding rats on high calorie diet followed by a low dose streptozotocin. Changes in the diabetic rat organs in SP treated groups with different doses of extracts were compared with normal rats, diabetic control rats, and metformin treated rats. After 22 days of treatment, the pathological lesions of the livers and kidneys in the diabetic rats were quantitatively and qualitatively alleviated (P < 0.05) by both the SP extracts at 150 mg/kg body weight and by metformin. All the treated diabetic groups revealed marked improvement in the histopathology of the pancreas compared with the control diabetic group. Oral administration of 300 mg/kg body weight of aqueous and ethanolic extracts of SP and metformin revealed pancreas protective or restorative effects. The seaweed extracts at 150 mg/kg body weight reduced the liver and kidney damages in the diabetic rats and may exert tissue repair or restoration of the pancreatic islets in experimentally induced diabetes to produce the beneficial homeostatic effects.
    Matched MeSH terms: Islets of Langerhans
  17. Hani H, Nazariah Allaudin Z, Mohd-Lila MA, Sarsaifi K, Tengku-Ibrahim TA, Mazni Othman A
    Xenotransplantation, 2016 03;23(2):128-36.
    PMID: 26792070 DOI: 10.1111/xen.12220
    BACKGROUND: Pancreatic islets are composed of different hormone-secreting cell types. A finely balanced combination of endocrine cells in the islets regulates intraportal vein secretions and plasma nutrient levels. Every islet cell type is distinguished by its specific secretory granule pattern and hormone content, endocrine and cell signaling mechanisms, and neuronal interactions. The scarcity of pancreatic islet donors for patients with diabetes has caused a considerable interest in the field of islet xenotransplantation. Previous studies have shown that cell arrangement in the pancreatic islets of ruminants differs from that of other mammals; however, caprine islet cytoarchitecture has not yet been comprehensively described. This investigation aimed to characterize caprine islets in regard to better understanding of caprine islet structure and compare with previously reported species, by conducting a detailed analysis of islet architecture and composition using confocal microscopy and immunofluorescence staining for pancreatic islet hormones.

    METHODOLOGY: After collection and purification of caprine islets with Euro-Ficoll density gradients, islets were considered for viability and functionality procedures with DTZ (dithizone) staining and GSIST (glucose-stimulated insulin secretion test) subsequently. Batches of islet were selected for immunostaining and study through confocal microscopy and flow cytometry.

    RESULTS: Histological sections of caprine pancreatic islets showed that α-cells were segregated at the periphery of β-cells. In caprine islets, α- and δ-cells remarkably were intermingled with β-cells in the mantle. Such cytoarchitecture was observed in all examined caprine pancreatic islets and was also reported for the islets of other ruminants. In both small and large caprine islets (< 150 and > 150 μm in diameter, respectively), the majority of β-cells were positioned at the core and α-cells were arranged at the mantle, while some single α-cells were also observed in the islet center. We evaluated the content of β-, α-, and δ-cells by confocal microscopy (n = 35, mean ± SD; 38.01 ± 9.50%, 30.33 ± 10.11%, 2.25 ± 1.10%, respectively) and flow cytometry (n = 9, mean ± SD; 37.52 ± 9.74%, 31.72 ± 4.92%, 2.70 ± 2.81%, respectively). Our findings indicate that the caprine islets are heterogeneous in cell composition. The difference could be attributed to species-specific interaction between endocrine cells and blood.

    CONCLUSIONS: Comparative studies of islet architecture may lead to better understanding of islet structure and cell type population arrangement. These results suggest the use of caprine islets as an addition to the supply of islets for diabetes research.

    Matched MeSH terms: Islets of Langerhans/cytology*
  18. Ghazalli N, Wu X, Walker S, Trieu N, Hsin LY, Choe J, et al.
    Stem Cells Dev, 2018 07 01;27(13):898-909.
    PMID: 29717618 DOI: 10.1089/scd.2017.0160
    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GRflox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.
    Matched MeSH terms: Islets of Langerhans/metabolism
  19. Nazaimoon WM, Azmi KN, Rasat R, Ismail IS, Singaraveloo M, Wan Mohamad WB, et al.
    Med J Malaysia, 2000 Sep;55(3):318-23.
    PMID: 11200711
    This study determined the prevalence and significance of autoantibodies to GAD65 (GAD Ab), insulin (IAA), tyrosine-like phosphatase (IA2) and islet-cell (ICA) in a group of 213 young Malaysian Type 1 diabetics, diagnosed before the age of 40 years. Venous blood was taken at fasting, and at 6 minutes post-glucagon (1 mg i.v.). IAA was detected in 47.4%, GAD Ab in 33.8%, IA2 in 8.9% and ICA in 1.4% of the subjects. When based on post-glucagon C-peptide level of 600 pmol/L, 172 (80.7%) patients had inadequate pancreatic reserve, while the remainder 41(19.3%) showed normal response. The autoantibodies, either alone or in combination, were detectable in both groups of patients; higher prevalence in those with poor or no beta-cell function (73.3% versus 46.3%, p = 0.0001). Although the prevalence of GAD Ab was highest in newly diagnosed patients (< 5 years), unlike IA2 and ICA, the marker remained detectable in 24-25% of those patients with long-standing disease. Nineteen patients could probably belong to the "latent autoimmune diabetes in adults (LADA)" subset, where pancreatic reserve was adequate but patients had detectable autoantibodies and insulin-requiring. On the other hand, 68 of the 213 patients (32%) were seronegative, but presented with near or total beta-cell destruction. Thus, as has also been suggested by others, there is indeed etiological differences between the Asian and the Caucasian Type 1 diabetics, and, there is also the possibility that other, but unknown autoantigens are involved in causing the pancreatic damage.
    Matched MeSH terms: Islets of Langerhans/immunology
  20. Mohamad Buang ML, Seng HK, Chung LH, Saim AB, Idrus RB
    Arch Med Res, 2012 Jan;43(1):83-8.
    PMID: 22374243 DOI: 10.1016/j.arcmed.2012.01.012
    BACKGROUND AND AIMS: Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs).

    METHODS: Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test.

    RESULTS: Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium.

    CONCLUSIONS: These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future.

    Matched MeSH terms: Islets of Langerhans/metabolism; Islets of Langerhans/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links