Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Butt M, Sattar A, Abbas T, Hussain R, Ijaz M, Sher A, et al.
    PLoS One, 2021;16(11):e0257893.
    PMID: 34735478 DOI: 10.1371/journal.pone.0257893
    Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
    Matched MeSH terms: Malondialdehyde/metabolism
  2. Ma Z, Zhang F, Ma H, Chen X, Yang J, Yang Y, et al.
    PLoS One, 2021;16(4):e0248329.
    PMID: 33857162 DOI: 10.1371/journal.pone.0248329
    The elderly usually suffer from many diseases. Improving the quality of life of the elderly is an urgent social issue. In this present study, D-galactose treated aging mice models were used to reveal the effects of different animal sources and different doses of whey protein (WP) on the immune indexes organs and intestinal flora. A total of 9 groups were set up, including normal control (NC), negative control (NS), positive control (Vc), low-, medium- and high-doses of cow WP intervention groups (CL, CM and CH for short, correspondingly) and low-, medium- and high-doses of goat WP intervention groups (GL, GM and GH for short, correspondingly). The body weight gain, thymus/body weight ratio, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, spleen immunoglobulins G (IgG), spleen interleukin-2 (IL-2) and spleen interleukin-2 (IL-6) were measured. Then, the intestinal contents were collected, and 16s genes of intestinal bacteria were sequenced to reveal the changes in bacterial flora structure. WP intervention significantly increased the weight gain, thymus/body ratio and SOD activity, but decrease the content of MDA. WP intervention increased some immune indicators. All the WP treated aging mice showed similar values of physiological indexes to that of the Vc group, even better. The relative abundance of Lactobacillus and Stenotrophomonas was increased and decreased, respectively, by both cow and goat WP. Lactobacillus may be involved in regulating the functional repair of organisms. In contrast, Stenotrophomonas might play a negative role in the immune and antioxidant capacity of the body. Combining physiological indicators and intestinal flora structure, low-concentration WP for cow and goat might be optimal for aging models.
    Matched MeSH terms: Malondialdehyde/metabolism
  3. Abd Aziz CB, Ahmad Suhaimi SQ, Hasim H, Ahmad AH, Long I, Zakaria R
    J Integr Med, 2019 Jan;17(1):66-70.
    PMID: 30591413 DOI: 10.1016/j.joim.2018.12.002
    OBJECTIVE: This study was done to determine whether Tualang honey could prevent the altered nociceptive behaviour, with its associated changes of oxidative stress markers and morphology of the spinal cord, among the offspring of prenatally stressed rats.

    METHODS: Pregnant rats were divided into three groups: control, stress, and stress treated with Tualang honey. The stress and stress treated with Tualang honey groups were subjected to restraint stress from day 11 of pregnancy until delivery. Ten week old male offspring (n = 9 from each group) were given formalin injection and their nociceptive behaviours were recorded. After 2 h, the rats were sacrificed, and their spinal cords were removed to assess oxidative stress activity and morphology. Nociceptive behaviour was analysed using repeated measures analysis of variance (ANOVA), while the levels of oxidative stress parameters and number of Nissl-stained neurons were analysed using a one-way ANOVA.

    RESULTS: This study demonstrated that prenatal stress was associated with increased nociceptive behaviour, changes in the oxidative stress parameters and morphology of the spinal cord of offspring exposed to prenatal stress; administration of Tualang honey reduced the alteration of these parameters.

    CONCLUSION: This study provides a preliminary understanding of the beneficial effects of Tualang honey against the changes in oxidative stress and neuronal damage in the spinal cord of the offspring of prenatally stressed rats.

    Matched MeSH terms: Malondialdehyde/metabolism
  4. Arumugam K, Yip YC
    Fertil. Steril., 1995 Jul;64(1):62-4.
    PMID: 7789581
    OBJECTIVE: To show that raised iron levels in the peritoneal fluid (PF) of patients with endometriosis catalyze free radical reactions that results in the tissue destruction and fibrosis seen in these patients.

    DESIGN: A case-controlled study of the iron levels (microgram/mL) in the pelvic PF of 12 patients with moderate-to-severe disease, 15 patients with minimal-to-mild disease and in 17 women with normal pelvises were compared. As an index of free radical reactions through lipid peroxidation, the levels of malondialdehyde levels (ng/mL) were assessed simultaneously in the same specimens.

    RESULTS: Controlling for the phase of the menstrual cycle, significantly higher levels of iron were seen in patients with endometriosis, the levels being correlated with the severity of the disease. However no such corresponding relationship was seen in the malondialdehyde levels in the PF.

    CONCLUSIONS: These results suggest that raised iron levels in the PF do not play a role in catalyzing free radical reactions as judged by the degree of lipid peroxidation.

    Matched MeSH terms: Malondialdehyde/metabolism*
  5. Kadir FA, Kassim NM, Abdulla MA, Yehye WA
    PMID: 24305067 DOI: 10.1186/1472-6882-13-343
    Hepatocellular carcinoma is a common type of tumour worldwide with a high mortality rate and with low response to current cytotoxic and chemotherapeutic drugs. The prediction of activity spectra for the substances (PASS) software, which predicted that more than 300 pharmacological effects, biological and biochemical mechanisms based on the structural formula of the substance was efficiently used in this study to reveal new multitalented actions for Vitex negundo (VN) constituents.
    Matched MeSH terms: Malondialdehyde/metabolism
  6. Kadir FA, Kassim NM, Abdulla MA, Yehye WA
    BMC Complement Altern Med, 2013 Oct 30;13:294.
    PMID: 24499255 DOI: 10.1186/1472-6882-13-294
    BACKGROUND: Oxidative stress due to abnormal induction of reactive oxygen species (ROS) molecules is believed to be involved in the etiology of many diseases. Evidences suggest that ROS is involved in nephrotoxicity through frequent exposure to industrial toxic agents such as thioacetamide (TAA). The current investigation was designed to explore the possible protective effects of the leaves of Vitex negundo(VN) extract against TAA-induced nephrotoxicity in rats.

    METHODS: Twenty four Sprague Dawleyrats were divided into four groups: (A) Normal control, (B) TAA (0.03% w/v in drinking water), (C) VN100 (VN 100 mg/kg + TAA) and (D) VN300 (VN 300 mg/kg + TAA). Blood urea and serum creatinine levels were measured,supraoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) levels of renal tissue were assayed. Histopathological analysis together with the oxidative stress nicotinamide adenine dinucleotide phosphate (NADPH) oxidase p22phox in kidney sections were examined in all experimental groups.

    RESULTS: Blood urea and serum creatinine levels were increased in TAA group as a result of the nephrotoxicity compared to the VN100 and VN300 groups where, the levels were significantly decreased (p 

    Matched MeSH terms: Malondialdehyde/metabolism
  7. Aizzat O, Yap SW, Sopiah H, Madiha MM, Hazreen M, Shailah A, et al.
    Adv Med Sci, 2010;55(2):281-8.
    PMID: 21147697 DOI: 10.2478/v10039-010-0046-z
    Chlorella vulgaris (CV), a fresh water alga has been reported to have hypoglycemic effects. However, antioxidant and anti-inflammatory effects of CV in diabetic animals have not been investigated to date. The aim of the present study was to investigate the role of CV in inflammation and oxidative damage in STZ-induced diabetic rats.
    Matched MeSH terms: Malondialdehyde/metabolism
  8. Musalmah M, Nizrana MY, Fairuz AH, NoorAini AH, Azian AL, Gapor MT, et al.
    Lipids, 2005 Jun;40(6):575-80.
    PMID: 16149736
    The effect of supplementing 200 mg/kg body weight palm vitamin E (PVE) and 200 mg/kg body weight alpha-tocopherol (alpha-Toc) on the healing of wounds in streptozotocin-induced diabetic rats was evaluated. The antioxidant potencies of these two preparations of vitamin E were also evaluated by determining the antioxidant enzyme activities, namely, glutathione peroxidase (GPx) and superoxide dismutase (SOD), and malondialdehyde (MDA) levels in the healing of dermal wounds. Healing was evaluated by measuring wound contractions and protein contents in the healing wounds. Cellular redistribution and collagen deposition were assessed morphologically using cross-sections of paraffin-embedded day-10 wounds stained according to the Van Gieson method. GPx and SOD activities as well as MDA levels were determined in homogenates of day-10 dermal wounds. Results showed that PVE had a greater potency to enhance wound repair and induce the increase in free radical-scavenging enzyme activities than alpha-Toc. Both PVE and alpha-Toc, however, were potent antioxidants and significantly reduced the lipid peroxidation levels in the wounds as measured by the reduction in MDA levels.
    Matched MeSH terms: Malondialdehyde/metabolism
  9. Sidahmed HM, Hashim NM, Mohan S, Abdelwahab SI, Taha MM, Dehghan F, et al.
    Drug Des Devel Ther, 2016;10:297-313.
    PMID: 26834460 DOI: 10.2147/DDDT.S80625
    PURPOSE: β-Mangostin (BM) from Cratoxylum arborescens demonstrated various pharmacological activities such as anticancer and anti-inflammatory. In this study, we aimed to investigate its antiulcer activity against ethanol ulcer model in rats.

    MATERIALS AND METHODS: BM was isolated from C. arborescens. Gastric acid output, ulcer index, gross evaluation, mucus production, histological evaluation using hematoxylin and eosin and periodic acid-Schiff staining and immunohistochemical localization for heat shock protein 70 (HSP70) and Bax proteins were investigated. Possible involvement of reduced glutathione, lipid peroxidation, prostaglandin E2, antioxidant enzymes, superoxide dismutase and catalase enzymes, radical scavenging, nonprotein sulfhydryl compounds, and anti-Helicobacter pylori were investigated.

    RESULTS: BM showed antisecretory activity against the pylorus ligature model. The pretreatment with BM protect gastric mucosa from ethanol damaging effect as seen by the improved gross and histological appearance. BM significantly reduced the ulcer area formation, the submucosal edema, and the leukocytes infiltration compared to the ulcer control. The compound showed intense periodic acid-Schiff staining to the gastric mucus layer and marked amount of alcian blue binding to free gastric mucus. BM significantly increased the gastric homogenate content of prostaglandin E2 glutathione, superoxide dismutase, catalase, and nonprotein sulfhydryl compounds. The compound inhibited the lipid peroxidation revealed by the reduced gastric content of malondialdehyde. Moreover, BM upregulate HSP70 expression and downregulate Bax expression. Furthermore, the compound showed interesting anti-H. pylori activity.

    CONCLUSION: Thus, it could be concluded that BM possesses gastroprotective activity, which could be attributed to the antisecretory, mucus production, antioxidant, HSP70, antiapoptotic, and anti-H. pylori mechanisms.

    Matched MeSH terms: Malondialdehyde/metabolism
  10. Sidahmed HM, Hashim NM, Abdulla MA, Ali HM, Mohan S, Abdelwahab SI, et al.
    PLoS One, 2015;10(3):e0121060.
    PMID: 25798602 DOI: 10.1371/journal.pone.0121060
    BACKGROUND: Zingiber zerumbet Smith is a perennial herb, broadly distributed in many tropical areas. In Malaysia, it's locally known among the Malay people as "lempoyang" and its rhizomes, particularly, is widely used in traditional medicine for the treatment of peptic ulcer disease beyond other gastric disorders.

    AIM OF THE STUDY: The aim of the current study is to evaluate the gastroprotective effect of zerumbone, the main bioactive compound of Zingiber zerumbet rhizome, against ethanol-induced gastric ulcer model in rats.

    MATERIALS AND METHODS: Rats were pre-treated with zerumbone and subsequently exposed to acute gastric ulcer induced by absolute ethanol administration. Following treatment, gastric juice acidity, ulcer index, mucus content, histological analysis (HE and PAS), immunohistochemical localization for HSP-70, prostaglandin E2 synthesis (PGE2), non-protein sulfhydryl gastric content (NP-SH), reduced glutathione level (GSH), and malondialdehyde level (MDA) were evaluated in ethanol-induced ulcer in vivo. Ferric reducing antioxidant power assay (FRAP) and anti-H. pylori activity were investigated in vitro.

    RESULTS: The results showed that the intragastric administration of zerumbone protected the gastric mucosa from the aggressive effect of ethanol-induced gastric ulcer, coincided with reduced submucosal edema and leukocyte infiltration. This observed gastroprotective effect of zerumbone was accompanied with a significant (p <0.05) effect of the compound to restore the lowered NP-SH and GSH levels, and to reduce the elevated MDA level into the gastric homogenate. Moreover, the compound induced HSP-70 up-regulation into the gastric tissue. Furthermore, zerumbone significantly (p <0.05) enhanced mucus production, showed intense PAS stain and maintained PG content near to the normal level. The compound exhibited antisecretory activity and an interesting minimum inhibitory concentration (MIC) against H. pylori strain.

    CONCLUSION: The results of the present study revealed that zerumbone promotes ulcer protection, which might be attributed to the maintenance of mucus integrity, antioxidant activity, and HSP-70 induction. Zerumbone also exhibited antibacterial action against H. pylori.

    Matched MeSH terms: Malondialdehyde/metabolism
  11. Uti DE, Atangwho IJ, Eyong EU, Umoru GU, Egbung GE, Nna VU, et al.
    Biomed Pharmacother, 2020 Apr;124:109879.
    PMID: 31991383 DOI: 10.1016/j.biopha.2020.109879
    AIMS: African walnuts were previously shown to modulate hepatic lipid bio-accumulation in obesity. Herein, we investigated the impact of the nuts on fat accumulation in adipose and ectopic regions, and associated oxidatiive stress status in obese rats.

    MATERIALS AND METHODS: Whole ethanol extract (WE) of the nuts, and its liquid-liquid fractions-ethyl acetate (ET) and residue (RES) were separately administered to obese rats for 6 weeks. The normal (NC) and obese (OC) controls received normal saline and the standard control (SC), orlistat (5.14 mg/kg b.w.), during the same period. Thereafter, the animals were euthanized and the adipose, brain, kidneys and heart tissues were studied.

    RESULTS: The change in body weight to naso-anal length which increased by 63.52 % in OC compared to NC (p < 0.05), decreased by 57.88, 85.80 and 70.20 % in WE, ET and RES-treated groups, respectively, relative to the OC (p < 0.05). Also, adipose tissue weights were lowered upon treatment with the extracts and fractions versus OC (p < 0.05). Total lipids, phospholipids, triacylglycerol and cholesterol concentrations in the studied tissues which were higher in OC (p < 0.05) were lowered (p < 0.05) and compared favorably with SC. Further, malondialdehyde levels in the tissues were lowered upon treatment, compared to the OC (p < 0.05). Glutathione level and activities of glutathione peroxidase, superoxide dismutase and glutathione-S-transferase which were decreased (p < 0.05) in OC, were restored upon treatment with the extracts, relative to the obese control (p < 0.05).

    SIGNIFICANCE: African walnuts assuaged lipogenesis, oxidative stress and peroxidation in extra-hepatic tissues of obese rats, hence, may attenuate ectopic fat accumulation and its associated pathogenesis.

    Matched MeSH terms: Malondialdehyde/metabolism
  12. Al Batran R, Al-Bayaty F, Abdulla MA, Al-Obaidi MM, Hajrezaei M, Hassandarvish P, et al.
    J Gastroenterol Hepatol, 2013 Aug;28(8):1321-9.
    PMID: 23611708 DOI: 10.1111/jgh.12229
    Corchorus olitorius is a medicinal plant traditionally utilized as an antifertility, anti-convulsive, and purgative agent. This study aimed to evaluate the gastroprotective effect of an ethanolic extract of C. olitorius against ethanol-induced gastric ulcers in adult Sprague Dawley rats.
    Matched MeSH terms: Malondialdehyde/metabolism
  13. Budin SB, Han CM, Jayusman PA, Taib IS
    Pak J Biol Sci, 2012 Jun 01;15(11):517-23.
    PMID: 24191625
    Fenitrothion (FNT) is extensively used as pesticide and may induce oxidative stress in various organs. Tocotrienol, a form of vitamin E found in palm oil, reduces oxidative impairments in pathological conditions. This study aims to investigate the effects of palm oil tocotrienol rich fraction (TRF) on fenitrothion-induced oxidative damage in rat pancreas. Forty male Sprague-Dawley rats were divided into four groups: control group, FNT group, TRF group and FNT+TRF group. Regimens FNT (20 mg kg(-1) b.wt.) and TRF (200 mg kg(-1) b.wt.) were force-fed for 28 consecutive days with control group only receiving corn oil. Chronic administration of fenitrothion significantly (p < 0.05) induced oxidative damage in pancreas of rats with elevated malondialdehyde and protein carbonyl level. Depletion of glutathione and significant (p < 0.05) reduction in antioxidant enzyme activities in pancreas homogenate additionally suggested induction of oxidative stress. Despite these changes in pancreas of intoxicated rats, no significant (p < 0.05) changes in blood glucose and pancreas histology were observed. Co-administration of FNT with TRF alleviated these oxidative changes and significantly (p < 0.05) restored antioxidant status. Enzymatic activities of Superoxide Dismutase (SOD) and Catalase (CAT) were normalized. In conclusion, tocotrienol rich fraction of palm oil prevents fenitrothion-induced pancreatic oxidative damage in rats.
    Matched MeSH terms: Malondialdehyde/metabolism
  14. Gupta M, Gulati M, Kapoor B, Kumar B, Kumar R, Kumar R, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114115.
    PMID: 33852947 DOI: 10.1016/j.jep.2021.114115
    ETHNOPHARMACOLOGICAL RELEVANCE: Elaeagnus conferta Roxb. (Elaeagnaceae) is a subtropical shrub mainly native to India, Vietnam, Malaysia and South China, whose various parts are used for treatment of diabetes, gastric ulcers, pain, oxidative stress and pulmonary disorders. Though the other parts of the plant have been reported for their ethnic use i.e. fruits as astringent locally and for cancer systemically, leaves for body pain and flowers for pain in chest and the seeds are mentioned as edible, there is no report per se on the medicinal use of seeds. Based on the fact that seeds of closely resembling species i.e. Elaeagnus rhamnoides has demonstrated significant anti-gastroulcerative property, the probability of the seeds of E. conferta possessing similar activity seemed quite significant.

    AIM OF THE STUDY: Phytochemical investigation and assessment of pharmacological mechanism(s) involved in anti-ulcer effect of methanolic extract of the seeds of E. conferta.

    MATERIALS AND METHODS: Bioactive phytoconstituents were isolated by column chromatography. These were identified by spectroscopic techniques including infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and mass spectrometry. Methanolic extract (MEC) of the seeds was prepared by cold maceration and its anti-ulcerogenic potential was evaluated using indomethacin (50 mg/kg) and water immersion stress models in male rats. The animals were pre-treated with different doses of MEC (400 and 800 mg/kg) and the therapeutic effect was compared with standard drug i.e. ranitidine (RANT; 50 mg/kg). The ameliorative effects of MEC were investigated on gastric juice pH, total acidity, free acidity and ulcer index. The assays of malionaldehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and pro-inflammatory cytokines i.e. interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were carried out to find out the possible mechanism(s) of protection. Further, histopathological changes were also studied.

    RESULTS: Chromatography studies and further confirmation by spectroscopic techniques revealed the presence of four different compounds in MEC i.e oleic acid (1), stearic acid (2), ascorbic acid (3) and quercetin (4). MEC exhibited anti-ulcerogenic effect in dose dependent manner which may be attributed to suppression of pro-inflammatory cytokines (IL-6, TNF-α) and MDA (112.7%), and up-regulation of protective factors such as CAT (90.48%), SOD (92.77%) and GSH (90.01%). Ulcer inhibition, reduction in total and free acidity and increase in gastric juice pH were observed in MEC treated rats as compared to disease control animals. Histopathological findings confirmed decreased cell infiltration, less epithelial cell damage and regeneration of gastric mucosa in dose dependent manner.

    CONCLUSIONS: The anti-ulcer effect of MEC may be attributed to its ability to scavenge free radicals and anti-inflammatory property via suppression of TNF-α and IL-6, thus offers a complete and holistic approach for management of peptic ulcer.

    Matched MeSH terms: Malondialdehyde/metabolism
  15. Sundaram A, Siew Keah L, Sirajudeen KN, Singh HJ
    Hypertens Res, 2013 Mar;36(3):213-8.
    PMID: 23096233 DOI: 10.1038/hr.2012.163
    Although oxidative stress has been implicated in the pathogenesis of hypertension in spontaneously hypertensive rats (SHRs), there is little information on the levels of primary antioxidant enzymes status (AOEs) in pre-hypertensive SHR. This study therefore determined the activities of primary AOEs and their mRNA levels, levels of hydrogen peroxide (H2O2), malondialdehyde (MDA) and total antioxidant status (TAS) in whole kidneys of SHR and age-matched Wistar-Kyoto (WKY) rats aged between 2 and 16 weeks. Compared with age-matched WKY rats, catalase (CAT) activity was significantly higher from the age of 2 weeks (P<0.001) and glutathione peroxide (GPx) activity was lower from the age of 3 weeks (P<0.001) in SHR. CAT mRNA levels were significantly higher in SHR aged 2, 4, 6 and 12 weeks. GPx mRNA levels were significantly lower in SHR at 8 and 12 weeks. Superoxide dismutase activity or its mRNA levels were not different between the two strains. H2O2 levels were significantly lower in SHR from the age of 8 weeks (P<0.01). TAS was significantly higher in SHR from the age of 3 weeks (P<0.05). MDA levels were only significantly higher at 16 weeks of age in the SHR (P<0.05). The data suggest that altered renal CAT and GPx mRNA expression and activity precede the development of hypertension in SHR. The raised CAT activity perhaps contributes to the higher TAS and lower H2O2 levels in SHR. In view of these findings, the precise role of oxidative stress in the pathogenesis of hypertension in SHR needs to be investigated further.
    Matched MeSH terms: Malondialdehyde/metabolism
  16. Effendy NM, Shuid AN
    Nutrients, 2014 Aug;6(8):3288-302.
    PMID: 25195641 DOI: 10.3390/nu6083288
    Postmenopausal osteoporosis can be associated with oxidative stress and deterioration of antioxidant enzymes. It is mainly treated with estrogen replacement therapy (ERT). Although effective, ERT may cause adverse effects such as breast cancer and pulmonary embolism. Labisia pumila var. alata (LP), a herb used traditionally for women's health was found to protect against estrogen-deficient osteoporosis. An extensive study was conducted in a postmenopausal osteoporosis rat model using several LP doses and duration of treatments to determine if anti-oxidative mechanisms were involved in its bone protective effects. Ninety-six female Sprague-Dawley rats were randomly divided into six groups; baseline group (BL), sham-operated (Sham), ovariectomised control (OVXC), ovariectomised (OVX) and given 64.5 μg/kg of Premarin (ERT), ovariectomised and given 20 mg/kg of LP (LP20) and ovariectomised and given 100 mg/kg of LP (LP100). The groups were further subdivided to receive their respective treatments via daily oral gavages for three, six or nine weeks of treatment periods. Following euthanization, the femora were dissected out for bone oxidative measurements which include superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA) levels.
    Matched MeSH terms: Malondialdehyde/metabolism
  17. Sulaiman SF, Moon JK, Shibamoto T
    J Diet Suppl, 2011 Sep;8(3):293-310.
    PMID: 22432728 DOI: 10.3109/19390211.2011.593618
    In order to investigate the role of roasting conditions in antioxidant formation, methanol and hot water extracts from Robusta coffee beans roasted for various lengths of time and at various temperatures were analyzed for total phenolic acid, chlorogenic acid, and caffeine content, as well as for their antioxidant activities using 1,1-diphenyl-2-picryhydrazyl (DPPH), thiobarbituric acid (TBA), and malonaldehyde/gas chromatography (MA/GC) assays. The amount of total phenolics in methanol extracts decreased linearly over the roasting temperature from 63.51 ± 0.77 mg chlorogenic acid equivalent (CAE)/g coffee beans (roasted at 200°C) to 42.56 ± 0.33 mg CAE/g coffee beans (roasted at 240°C). The total chlorogenic acid content decreased when the roasting time was increased from 78.33 ± 1.41 mg/g (green coffee beans) to 4.31 ± 0.23 mg/g (roasted for 16 min at 250°C). All methanol extracts from roasted coffee beans possessed over 90% antioxidant activities in the DPPH assay. The antioxidant activity of methanol extracts ranged from 41.38 ± 1.77% (roasted at 250°C for 10 min) to 98.20 ± 1.49% (roasted at 230°C for 16 min) as tested by the TBA assay. The antioxidant activity of methanol extracts of green coffee beans and roasted coffee beans ranged from 93.01% (green coffee beans) to 98.62 ± 1.32% (roasted at 250°C for 14 min) in the MA/GC assays. All hot water extracts exhibited moderate pro-oxidant activities in TBA and MA/GC assays. The results indicated that roasting conditions of coffee beans play an important role in the formation of antioxidants in brewed coffee, which can be dietary supplements having beneficial effect to human health.
    Matched MeSH terms: Malondialdehyde/metabolism
  18. Rayegan S, Dehpour AR, Sharifi AM
    Metab Brain Dis, 2017 02;32(1):41-49.
    PMID: 27476541 DOI: 10.1007/s11011-016-9883-1
    Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.
    Matched MeSH terms: Malondialdehyde/metabolism
  19. Bahrampour Juybari K, Kamarul T, Najafi M, Jafari D, Sharifi AM
    Cell Tissue Res, 2018 08;373(2):407-419.
    PMID: 29582166 DOI: 10.1007/s00441-018-2825-y
    Strategies based on mesenchymal stem cell (MSC) therapy for restoring injured articular cartilage are not effective enough in osteoarthritis (OA). Due to the enhanced inflammation and oxidative stress in OA microenvironment, differentiation of MSCs into chondrocytes would be impaired. This study aims to explore the effects of diallyl disulfide (DADS) on IL-1β-mediated inflammation and oxidative stress in human adipose derived mesenchymal stem cells (hADSCs) during chondrogenesis. MTT assay was employed to examine the effects of various concentrations of DADS on the viability of hADSCs at different time scales to obtain non-cytotoxic concentration range of DADS. The effects of DADS on IL-1β-induced intracellular ROS generation and lipid peroxidation were evaluated in hADSCs. Western blotting was used to analyze the protein expression levels of IκBα (np), IκBα (p), NF-κB (np) and NF-κB (p). Furthermore, the gene expression levels of antioxidant enzymes in hADSCs and chondrogenic markers at days 7, 14 and 21 of differentiation were measured using qRT-PCR. The results showed that addition of DADS significantly enhanced the mRNA expression levels of antioxidant enzymes as well as reduced ROS elevation, lipid peroxidation, IκBα activation and NF-κB nuclear translocation in hADSCs treated with IL-1β. In addition, DADS could significantly increase the expression levels of IL-1β-induced impaired chondrogenic marker genes in differentiated hADSCs. Treatment with DADS may provide an effective approach to prevent the pro-inflammatory cytokines and oxidative stress as catabolic causes of chondrocyte cell death and enhance the protective anabolic effects by promoting chondrogenesis associated gene expressions in hADSCs exposed to OA condition.
    Matched MeSH terms: Malondialdehyde/metabolism
  20. Tan BL, Norhaizan ME, Huynh K, Yeap SK, Hazilawati H, Roselina K
    World J Gastroenterol, 2015 Aug 7;21(29):8826-35.
    PMID: 26269672 DOI: 10.3748/wjg.v21.i29.8826
    To investigate the mechanistic action of brewers' rice in regulating the Wnt/nuclear factor-kappa B (NF-κB)/Nrf2-signaling pathways during colon carcinogenesis in male Sprague-Dawley rats.
    Matched MeSH terms: Malondialdehyde/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links