Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Yusoff NH, Suhaimi FW, Vadivelu RK, Hassan Z, Rümler A, Rotter A, et al.
    Addict Biol, 2016 Jan;21(1):98-110.
    PMID: 25262913 DOI: 10.1111/adb.12185
    Mitragynine is the major psychoactive alkaloid of the plant kratom/ketum. Kratom is widely used in Southeast Asia as a recreational drug, and increasingly appears as a pure compound or a component of 'herbal high' preparations in the Western world. While mitragynine/kratom may have analgesic, muscle relaxant and anti-inflammatory effects, its addictive properties and effects on cognitive performance are unknown. We isolated mitragynine from the plant and performed a thorough investigation of its behavioural effects in rats and mice. Here we describe an addictive profile and cognitive impairments of acute and chronic mitragynine administration, which closely resembles that of morphine. Acute mitragynine has complex effects on locomotor activity. Repeated administration induces locomotor sensitization, anxiolysis and conditioned place preference, enhances expression of dopamine transporter- and dopamine receptor-regulating factor mRNA in the mesencephalon. While there was no increase in spontaneous locomotor activity during withdrawal, animals showed hypersensitivity towards small challenging doses for up to 14 days. Severe somatic withdrawal signs developed after 12 hours, and increased level of anxiety became evident after 24 hours of withdrawal. Acute mitragynine independently impaired passive avoidance learning, memory consolidation and retrieval, possibly mediated by a disruption of cortical oscillatory activity, including the suppression of low-frequency rhythms (delta and theta) in the electrocorticogram. Chronic mitragynine administration led to impaired passive avoidance and object recognition learning. Altogether, these findings provide evidence for an addiction potential with cognitive impairments for mitragynine, which suggest its classification as a harmful drug.
    Matched MeSH terms: Dopamine Plasma Membrane Transport Proteins/genetics
  2. Khosravi Y, Vellasamy KM, Mariappan V, Ng SL, Vadivelu J
    ScientificWorldJournal, 2014;2014:132971.
    PMID: 25379514 DOI: 10.1155/2014/132971
    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in a timely manner. In this study, susceptibilities of 81 B. pseudomallei isolates to nine different antimicrobial agents were determined using the disk diffusion method, broth microdilution test and Etest. Highest percentage of susceptibility was demonstrated to CAZ, amoxicillin/clavulanic acid, meropenem, imipenem, and trimethoprim/sulfamethoxazole. Although these drugs demonstrated the highest percentage of susceptibility in B. pseudomallei, the overall results underline the importance of the emergence of resistance in this organism. PCR results showed that, of the 81 B. pseudomallei, six multidrug resistant (MDR) isolates carried bpeB, amrB, and BPSS1119 and penA genes. Genotyping of the isolates using random amplified polymorphic DNA analysis showed six different PCR fingerprinting patterns generated from the six MDR isolates clusters (A) and eight PCR fingerprinting patterns generated for the remaining 75 non-MDR isolates clusters (B).
    Matched MeSH terms: Membrane Transport Proteins/genetics*
  3. Sinding MS, Gopalakrishnan S, Ramos-Madrigal J, de Manuel M, Pitulko VV, Kuderna L, et al.
    Science, 2020 06 26;368(6498):1495-1499.
    PMID: 32587022 DOI: 10.1126/science.aaz8599
    Although sled dogs are one of the most specialized groups of dogs, their origin and evolution has received much less attention than many other dog groups. We applied a genomic approach to investigate their spatiotemporal emergence by sequencing the genomes of 10 modern Greenland sled dogs, an ~9500-year-old Siberian dog associated with archaeological evidence for sled technology, and an ~33,000-year-old Siberian wolf. We found noteworthy genetic similarity between the ancient dog and modern sled dogs. We detected gene flow from Pleistocene Siberian wolves, but not modern American wolves, to present-day sled dogs. The results indicate that the major ancestry of modern sled dogs traces back to Siberia, where sled dog-specific haplotypes of genes that potentially relate to Arctic adaptation were established by 9500 years ago.
    Matched MeSH terms: Mitochondrial Membrane Transport Proteins/genetics
  4. Mandal T, Bairy LK, Sharma PSVN
    Eur J Clin Pharmacol, 2020 Jun;76(6):807-814.
    PMID: 32253447 DOI: 10.1007/s00228-020-02866-4
    PURPOSE: Ethnicity plays a key role in deciding the direction of the association between serotonin transporter gene polymorphisms and treatment response of selective serotonin reuptake inhibitors (SSRIs). The present study explored the association of 5HTTLPR and 5HTTLPR-rs25531 polymorphisms with the treatment response of escitalopram in South Indian patients with major depressive disorder.

    METHODS: A total of 148 depressive patients receiving escitalopram 10-20 mg/day were genotyped for 5HTTLPR and rs25531 polymorphisms. Clinical assessment was done at baseline and after 4, 8, and 12 weeks using the 17-item Hamilton Depression Rating Scale (HDRS-17), Montgomery-Asberg Depression Rating Scale (MADRS), and Clinical Global Impression Scale (CGI). At the end of week 12, patients were defined as responders and non-responders based on HDRS17 and MADRS scores. Chi-square test and logistic regression analysis were performed to investigate the genotypic influence on treatment response. Comparison of continuous variables among different groups was done using Student's t test or one-way ANOVA.

    RESULTS: Out of 148 study subjects, 65 (43.9%) were responders and 83 (56.08%) were non-responders. We observed a significant (p value

    Matched MeSH terms: Serotonin Plasma Membrane Transport Proteins/genetics*
  5. Gan CS, Yusof R, Othman S
    Acta Trop, 2015 Sep;149:8-14.
    PMID: 25981524 DOI: 10.1016/j.actatropica.2015.05.005
    Dengue virus (DV) infection demonstrates an intriguing virus-induced intracellular membrane alteration that results in the augmentation of major histocompatibility complex (MHC) class I-restricted antigen presentation. As oppose to its biological function in attracting CD8(+) T-cells, this phenomenon appears to facilitate the immune evasion. However, the molecular events that attribute to the dysregulation of the antigen presenting mechanism (APM) by DV remain obscure. In this study, we aimed to characterize the host cell APM upon infection with all serotypes of whole DV. Cellular RNA were isolated from infected cells and the gene expressions of LMP2, LMP7, TAP1, TAP2, TAPBP, CALR, CANX, PDIA3, HLA-A and HLA-B were analyzed via quantitative PCR. The profiles of the gene expression were further validated. We showed that all four DV serotypes modulate host APM at the proteasomal level with DV2 showing the most prominent expression profile.
    Matched MeSH terms: Membrane Transport Proteins/genetics
  6. Wong EW, Yusof MY, Mansor MB, Anbazhagan D, Ong SY, Sekaran SD
    Singapore Med J, 2009 Aug;50(8):822-6.
    PMID: 19710984
    The AdeABC pump of Acinetobacter spp. confers resistance to various antibiotic classes. This pump is composed of the AdeA, AdeB, and AdeC proteins where AdeB is a member of the resistance-nodulation-division efflux pump superfamily. The adeA, adeB, and adeC genes are contiguous and adjacent to adeS and adeR, which are transcribed in the opposite direction and which specify proteins homologous to sensors and regulators of two-component systems, respectively. In this study, an attempt is made to elucidate the role of the AdeABC efflux pump in carbapenem resistance in Acinetobacter spp.
    Matched MeSH terms: Membrane Transport Proteins/genetics*
  7. Hasan MJ, Shamsuzzaman SM
    Malays J Pathol, 2017 Dec;39(3):277-283.
    PMID: 29279590
    BACKGROUND: The adeB gene in Acinetobacter baumannii regulates the bacterial internal drug efflux pump that plays a significant role in drug resistance. The aim of our study was to determine the occurrence of adeB gene in multidrug resistant and New Delhi metallo-beta-lactamase-1 (NDM- 1) gene in imipenem resistant Acinetobacter baumannii isolated from wound swab samples in a tertiary care hospital of Bangladesh.

    METHODS: A total of 345 wound swab samples were tested for bacterial pathogens. Acinetobacter baumannii was identified by culture and biochemical tests. Antimicrobial susceptibility pattern was determined by the disc diffusion method according to CLSI standards. Extended spectrum beta-lactamases were screened using the double disc synergy technique. Gene encoding AdeB efflux pump and NDM-1 were detected by Polymerase Chain Reaction (PCR).

    RESULTS: A total 22 (6.37%) Acinetobacter baumannii were identified from 345 wound swab samples and 20 (91%) of them were multidrug resistant. High resistance rates to some antibiotics were seen namely, cefotaxime (95%), amoxyclavulanic acid (90%) and ceftriaxone (82%). All the identified Acinetobacter baumannii were sensitive to colistin and 82% to imipenem. Two (9%) ESBL producing Acinetobacter baumannii strains were detected. adeB gene was detected in 16 (80%) out of 20 multidrug resistant Acinetobacter baumannii. 4 (18%) of 22 Acinetobacter baumannii were imipenem resistant. NDM-1 gene was detected in 2 (50%) of the imipenem resistant strains of Acinetobacter baumannii.

    CONCLUSION: The results of this study provide insight into the role of adeB gene as a potential regulator of drug resistance in Acinetobacter baumanni in Bangladesh. NDM-1 gene also contributes in developing such resistance for Acinetobacter baumannii.

    Matched MeSH terms: Membrane Transport Proteins/genetics*
  8. Mungthin M, Intanakom S, Suwandittakul N, Suida P, Amsakul S, Sitthichot N, et al.
    Malar J, 2014;13:117.
    PMID: 24670242 DOI: 10.1186/1475-2875-13-117
    Drug resistance in Plasmodium falciparum is a major problem in malaria control especially along the Thai-Myanmar and Thai-Cambodia borders. To date, a few molecular markers have been identified for anti-malarial resistance in P. falciparum, including the P. falciparum chloroquine resistance transporter (pfcrt) and the P. falciparum multidrug resistance 1 (pfmdr1). However no information is available regarding the distribution pattern of these gene polymorphisms in the parasites from the Thai-Malaysia border. This study was conducted to compare the distribution pattern of the pfcrt and pfmdr1 polymorphisms in the parasites from the lower southern provinces, Thai-Malaysia border and the upper southern provinces, Thai-Myanmar border. In addition, in vitro sensitivities of anti-malarial drugs including chloroquine, mefloquine, quinine, and artesunate were determined.
    Matched MeSH terms: Membrane Transport Proteins/genetics*
  9. Soga T, Wong DW, Putteeraj M, Song KP, Parhar IS
    Neuroscience, 2012 Dec 6;225:172-84.
    PMID: 22960312 DOI: 10.1016/j.neuroscience.2012.08.061
    Postnatal treatment with selective serotonin reuptake inhibitors (SSRIs) has been found to affect brain development and the regulation of reproduction in rodent models. The normal masculinization process in the brain requires a transient decrease in serotonin (5-HT) levels in the brain during the second postnatal week. Strict regulation of androgen receptor (AR) and gonadotropin-releasing hormone (GnRH) expression is important to control male reproductive activity. Therefore, this study was designed to examine the effects of a potent SSRI (citalopram) on male sexual behavior and expression levels of AR and GnRH in adult male mice receiving either vehicle or citalopram (10mg/kg) daily during postnatal days 8-21. The citalopram-treated male mice showed altered sexual behavior, specifically a significant reduction in the number of intromissions preceding ejaculation compared with the vehicle-treated mice. The citalopram-treated male mice displayed elevated anxiety-like behavior in an open field test and lower locomotor activity in their home cage during the subjective night. Although there was no change in GnRH and AR mRNA levels in the preoptic area (POA), quantified by real-time polymerase chain reaction, immunostained AR cell numbers in the medial POA were decreased in the citalopram-treated male mice. These results suggest that the early-life inhibition of 5-HT transporters alters the regulation of AR expression in the medial POA, likely causing decreased sexual behavior and altered home cage activity in the subjective night.
    Matched MeSH terms: Serotonin Plasma Membrane Transport Proteins/genetics
  10. Ebrahimi R, Faseleh Jahromi M, Liang JB, Soleimani Farjam A, Shokryazdan P, Idrus Z
    Biomed Res Int, 2015;2015:149745.
    PMID: 25695048 DOI: 10.1155/2015/149745
    Lead- (Pb-) induced oxidative stress is known to suppress growth performance and feed efficiency in broiler chickens. In an attempt to describe the specific underlying mechanisms of such phenomenon we carried out the current study. Ninety-six one-day-old broiler chicks were randomly assigned to 2 dietary treatment groups of 6 pen replicates, namely, (i) basal diet containing no lead supplement (control) and (ii) basal diet containing 200 mg lead acetate/kg of diet. Following 3 weeks of experimental period, jejunum samples were collected to examine the changes in gene expression of several nutrient transporters, antioxidant enzymes, and heat shock protein 70 (Hsp70) using quantitative real-time PCR. The results showed that addition of lead significantly decreased feed intake, body weight gain, and feed efficiency. Moreover, with the exception of GLUT5, the expression of all sugar, peptide, and amino acid transporters was significantly downregulated in the birds under Pb induced oxidative stress. Exposure to Pb also upregulated the antioxidant enzymes gene expression together with the downregulation of glutathione S-transferase and Hsp70. In conclusion, it appears that Pb-induced oxidative stress adversely suppresses feed efficiency and growth performance in chicken and the possible underlying mechanism for such phenomenon is downregulation of major nutrient transporter genes in small intestine.
    Matched MeSH terms: Membrane Transport Proteins/genetics*
  11. Saiful AJ, Mastura M, Zarizal S, Mazurah MI, Shuhaimi M, Ali AM
    J Basic Microbiol, 2008 Aug;48(4):245-51.
    PMID: 18720500 DOI: 10.1002/jobm.200700387
    Efflux-mediated resistance has been recognized as an important contributor of antibiotic resistance in bacteria, especially in methicillin-resistant Staphylococcus aureus (MRSA) isolates. This study was carried out to detect and analyze efflux genes (norA and mdeA) and active efflux activity in a collection of Malaysian MRSA and methicillin-sensitive S. aureus (MSSA) clinical isolates. Nineteen isolates including three ATCC S. aureus reference strains were subjected to PCR detection and DNA sequence analysis for norA and mdeA and active efflux detection using modified minimum inhibitory concentration (MIC) assay. From the 19 isolates, 18 isolates harboured the mdeA gene while 16 isolates contained norA gene. DNA sequence analysis reveals 98-100% correlation between the PCR product and the published DNA sequences in GenBank. In addition, 16 isolates exhibited active efflux activity using the ethidium bromide (EtBr)-reserpine combination MIC assay. To our knowledge, this is the first report on the detection of efflux genes and active efflux activity amongst Malaysian clinical isolates of MRSA/MSSA. Detection of active efflux activity may explain the previous report on efflux-mediated drug resistance profile amongst the local clinical isolates.
    Matched MeSH terms: Membrane Transport Proteins/genetics*
  12. Chow YP, Abdul Murad NA, Mohd Rani Z, Khoo JS, Chong PS, Wu LL, et al.
    Orphanet J Rare Dis, 2017 Feb 21;12(1):40.
    PMID: 28222800 DOI: 10.1186/s13023-017-0575-7
    BACKGROUND: Pendred syndrome (PDS, MIM #274600) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss and goiter. In this study, we describing the possible PDS causal mutations in a Malaysian family with 2 daughters diagnosed with bilateral hearing loss and hypothyroidism.

    METHODS AND RESULTS: Whole exome sequencing was performed on 2 sisters with PDS and their unaffected parents. Our results showed that both sisters inherited monoallelic mutations in the 2 known PDS genes, SLC26A4 (ENST00000265715:c.1343C > T, p.Ser448Leu) and GJB2 (ENST00000382844:c.368C > A, p.Thr123Asn) from their father, as well as another deafness-related gene, SCARB2 (ENST00000264896:c.914C > T, p.Thr305Met) from their mother. We postulated that these three heterozygous mutations in combination may be causative to deafness, and warrants further investigation. Furthermore, we also identified a compound heterozygosity involving the DUOX2 gene (ENST00000603300:c.1588A > T:p.Lys530* and c.3329G > A:p.Arg1110Gln) in both sisters which are inherited from both parents and may be correlated with early onset of goiter. All the candidate mutations were predicted deleterious by in silico tools.

    CONCLUSIONS: In summary, we proposed that PDS in this family could be a polygenic disorder which possibly arises from a combination of heterozygous mutations in SLC26A4, GJB2 and SCARB2 which associated with deafness, as well as compound heterozygous DUOX2 mutations which associated with thyroid dysfunction.

    Matched MeSH terms: Membrane Transport Proteins/genetics
  13. Tan LL, Lau TY, Timothy W, Prabakaran D
    ScientificWorldJournal, 2014;2014:935846.
    PMID: 25574497 DOI: 10.1155/2014/935846
    Chloroquine resistance (CQR) in falciparum malaria was identified to be associated with several mutations in the chloroquine resistance transporter gene (pfcrt) that encodes the transmembrane transporter in digestive vacuole membrane of the parasite. This study aimed to investigate the point mutations across the full-length pfcrt in Plasmodium falciparum isolates in Sabah, Malaysia. A total of 31 P. falciparum positive samples collected from Keningau, Kota Kinabalu, and Kudat, Sabah, were analyzed. pfcrt was PCR amplified and cloned prior to sequence analysis. This study showed that all the previously described 10 point mutations associated with CQR at codons 72, 74, 75, 76, 97, 220, 271, 326, 356, and 371 were found with different prevalence. Besides, two novel point mutations, I166V and H273N, were identified with 22.5% and 19.3%, respectively. Three haplotypes, namely, CVMNK (29%), CVIET (3.2%), and SVMNT (67.7%), were identified. High prevalence of SVMNT among P. falciparum isolates from Sabah showed that these isolates are closer to the P. falciparum isolates from Papua New Guinea rather than to the more proximal Southeast Asian CVIET haplotype. Full-length analysis of pfcrt showed that chloroquine resistant P. falciparum in Sabah is still prevalent despite the withdrawal of chloroquine usage since 1979.
    Matched MeSH terms: Membrane Transport Proteins/genetics*
  14. Kang WT, Vellasamy KM, Chua EG, Vadivelu J
    J Infect Dis, 2015 Mar 1;211(5):827-34.
    PMID: 25165162 DOI: 10.1093/infdis/jiu492
    OBJECTIVES: The bsa locus of Burkholderia pseudomallei encodes several proteins that are components of the type III secretion system (TTSS). BipC was postulated as one of the TTSS-3 effector proteins, but its role in the pathogenesis of B. pseudomallei infection is not well understood. Thus, the aim of this study was to determine its role(s) in the virulence of B. pseudomallei pathogenesis.
    METHODS: A bipC TTSS-3-deficient strain of B. pseudomallei and complemented strains were generated to assess the role of BipC as a type III translocation apparatus. Human cell lines and a mouse model of melioidosis were used for in vitro and in vivo assays, respectively.
    RESULTS: A significant 2-fold reduction was demonstrated in the percentage of adherence, invasion, intracellular survival, and phagosomal escape of the bipC mutant. Interestingly, microscopic studies have shown that BipC was capable of delayed B. pseudomallei actin-based motility. The virulence of the mutant strain in a murine model of melioidosis demonstrated that the bipC mutant was less virulent, compared with the wild type.
    CONCLUSION: The results suggested that BipC possesses virulence determinants that play significant roles in host cell invasion and immune evasion.
    KEYWORDS: BipC; Burkholderia pseudomallei; host cell invasion; type III secretion system; type III translocation apparatus; virulence
    Matched MeSH terms: Membrane Transport Proteins/genetics
  15. Angelopoulou E, Bougea A, Paudel YN, Georgakopoulou VE, Papageorgiou SG, Piperi C
    Medicina (Kaunas), 2023 Jun 13;59(6).
    PMID: 37374342 DOI: 10.3390/medicina59061138
    Background and Objectives: Parkinson's disease (PD) is a clinically heterogeneous disorder with poorly understood pathological contributing factors. Depression presents one of the most frequent non-motor PD manifestations, and several genetic polymorphisms have been suggested that could affect the depression risk in PD. Therefore, in this review we have collected recent studies addressing the role of genetic factors in the development of depression in PD, aiming to gain insights into its molecular pathobiology and enable the future development of targeted and effective treatment strategies. Materials and Methods: we have searched PubMed and Scopus databases for peer-reviewed research articles published in English (pre-clinical and clinical studies as well as relevant reviews and meta-analyses) investigating the genetic architecture and pathophysiology of PD depression. Results: in particular, polymorphisms in genes related to the serotoninergic pathway (sodium-dependent serotonin transporter gene, SLC6A4, tryptophan hydrolase-2 gene, TPH2), dopamine metabolism and neurotransmission (dopamine receptor D3 gene, DRD3, aldehyde dehydrogenase 2 gene, ALDH2), neurotrophic factors (brain-derived neurotrophic factor gene, BDNF), endocannabinoid system (cannabinoid receptor gene, CNR1), circadian rhythm (thyrotroph embryonic factor gene, TEF), the sodium-dependent neutral amino acid transporter B(0)AT2 gene, SLC6A15), and PARK16 genetic locus were detected as altering susceptibility to depression among PD patients. However, polymorphisms in the dopamine transporter gene (SLC6A3), monoamine oxidase A (MAOA) and B (MAOB) genes, catechol-O-methyltransferase gene (COMT), CRY1, and CRY2 have not been related to PD depression. Conclusions: the specific mechanisms underlying the potential role of genetic diversity in PD depression are still under investigation, however, there is evidence that they may involve neurotransmitter imbalance, mitochondrial impairment, oxidative stress, and neuroinflammation, as well as the dysregulation of neurotrophic factors and their downstream signaling pathways.
    Matched MeSH terms: Serotonin Plasma Membrane Transport Proteins/genetics
  16. Lim CH, Zain SM, Reynolds GP, Zain MA, Roffeei SN, Zainal NZ, et al.
    PMID: 24914473 DOI: 10.1016/j.pnpbp.2014.05.017
    Recent studies have shown that bipolar disorder (BPD) and schizophrenia (SZ) share some common genetic risk factors. This study aimed to examine the association between candidate single nucleotide polymorphisms (SNPs) identified from genome-wide association studies (GWAS) and risk of BPD and SZ. A total of 715 patients (244 BPD and 471 SZ) and 593 controls were genotyped using the Sequenom MassARRAY platform. We showed a positive association between LMAN2L (rs6746896) and risk of both BPD and SZ in a pooled population (P-value=0.001 and 0.009, respectively). Following stratification by ethnicity, variants of the ANK3 gene (rs1938516 and rs10994336) were found to be associated with BPD in Malays (P-value=0.001 and 0.006, respectively). Furthermore, an association exists between another variant of LMAN2L (rs2271893) and SZ in the Malay and Indian ethnic groups (P-value=0.003 and 0.002, respectively). Gene-gene interaction analysis revealed a significant interaction between the ANK3 and LMAN2L genes (empirical P=0.0107). Significant differences were shown between patients and controls for two haplotype frequencies of LMAN2L: GA (P=0.015 and P=0.010, for BPD and SZ, respectively) and GG (P=0.013 for BPD). Our study showed a significant association between LMAN2L and risk of both BPD and SZ.
    Matched MeSH terms: Membrane Transport Proteins/genetics*
  17. Al-Mekhlafi AM, Mahdy MA, Al-Mekhlafi HM, Azazy AA, Fong MY
    Parasit Vectors, 2011;4:94.
    PMID: 21619624 DOI: 10.1186/1756-3305-4-94
    Malaria remains a significant health problem in Yemen with Plasmodium falciparum being the predominant species which is responsible for 90% of the malaria cases. Despite serious concerns regarding increasing drug resistance, chloroquine is still used for the prevention and treatment of malaria in Yemen. This study was carried out to determine the prevalence of choloroquine resistance (CQR) of P. falciparum isolated from Yemen based on the pfcrt T76 mutation.
    Matched MeSH terms: Membrane Transport Proteins/genetics*
  18. Norahmad NA, Abdullah NR, Yaccob N, Jelip J, Dony JF, Ruslan KF, et al.
    PMID: 22299399
    Chloroquine (CQ) remains the first line drug for the prevention and treatment of malaria in Malaysia in spite of the fact that resistance to CQ has been observed in Malaysia since the 1960s. CQ-resistance is associated with various mutations in pfcrt, which encodes a putative transporter located in the digestive vacuolar membrane of P. falciparum. Substitution of lysine (K) to threonine (T) at amino acid 76 (K76T) in pfcrt is the primary genetic marker conferring resistance to CQ. To determine the presence of T76 mutation in pfcrt from selected areas of Kalabakan, Malaysia 619 blood samples were screened for P. falciparum, out of which 31 were positive. Blood samples were collected on 3 MM Whatman filter papers and DNA was extracted using QIAmp DNA mini kit. RFLP-PCR for the detection of the CQ-resistant T76 and sensitive K76 genotype was carried out. Twenty-five samples were shown to have the point mutation in pfcrt whereas the remaining samples were classified as CQ-sensitive (wild-type). In view of the fact that CQ is the first line anti-malarial drug in Malaysia, this finding could be an important indication that treatment with CQ may no longer be effective in the future.
    Matched MeSH terms: Membrane Transport Proteins/genetics*
  19. Shamsudin MN, Alreshidi MA, Hamat RA, Alshrari AS, Atshan SS, Neela V
    J Hosp Infect, 2012 Jul;81(3):206-8.
    PMID: 22633074 DOI: 10.1016/j.jhin.2012.04.015
    The minimum inhibitory concentrations (MICs) of 60 meticillin-resistant Staphylococcus aureus (MRSA) isolates from Malaysia to three antiseptic agents - benzalkonium chloride (BZT), benzethonium chloride (BAC) and chlorhexidine digluconate (CHG) - were determined. All isolates had MICs ranging from 0.5 to 2 mg/L. Antiseptic resistance genes qacA/B and smr were detected in 83.3% and 1.6% of the isolates, respectively. Carriage of qacA/B correlated with reduced susceptibility to CHG and BAC. This is the first report of the prevalence of qacA/B and smr gene carriage in Malaysian MRSA isolates, with a high frequency of qacA/B carriage. The presence of these antiseptic resistance genes and associated reduced susceptibility to antiseptic agents may have clinical implications.
    Matched MeSH terms: Membrane Transport Proteins/genetics*
  20. Li L, Tan CM, Koo SH, Chong KT, Lee EJ
    Pharmacogenet Genomics, 2007 Sep;17(9):783-6.
    PMID: 17700367
    The human concentrative nucleoside transporter (hCNT2), also known as SLC28A2, plays an important role in the cellular uptake across intestinal membrane of some naturally occurring nucleosides and nucleoside analogs. This study aims to determine the genetic variability of hCNT2 (SLC28A2) in three major Asian ethnic groups residing in Singapore: Chinese, Malay and Indian, and functionally characterize the variants of hCNT2. Healthy participants (n=96) from each group were screened for genetic variations in the exons of hCNT2 (SLC28A2) using denaturing high performance liquid chromatography and sequencing analyses. A total of 23 polymorphisms were identified in the exonic and flanking intronic regions, and ethnic differences in single nucleotide polymorphism frequencies were evident. Five novel nonsynonymous variants (L12R, R142H, E172D, E385K, M612T) were constructed by mutagenesis and functionally characterized in U-251 cells. Expression of these variants in U-251 cells revealed that all except E385K can uptake various substrates of hCNT2: inosine, ribavirin and uridine.
    Matched MeSH terms: Membrane Transport Proteins/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links