Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Zulkifly S, Hanshew A, Young EB, Lee P, Graham ME, Graham ME, et al.
    Am J Bot, 2012 Sep;99(9):1541-52.
    PMID: 22947483 DOI: 10.3732/ajb.1200161
    The filamentous chlorophyte Cladophora produces abundant nearshore populations in marine and freshwaters worldwide, often dominating periphyton communities and producing nuisance growths under eutrophic conditions. High surface area and environmental persistence foster such high functional and taxonomic diversity of epiphytic microfauna and microalgae that Cladophora has been labeled an ecological engineer. We tested the hypotheses that (1) Cladophora supports a structurally and functionally diverse epiphytic prokaryotic microbiota that influences materials cycling and (2) mutualistic host-microbe interactions occur. Because previous molecular sequencing-based analyses of the microbiota of C. glomerata found as western Lake Michigan beach drift had identified pathogenic associates such as Escherichia coli, we also asked if actively growing lentic C. glomerata harbors known pathogens.
    Matched MeSH terms: Metagenome/genetics*
  2. Yap IK, Kho MT, Lim SH, Ismail NH, Yam WK, Chong CW
    Mol Biosyst, 2015 Jan;11(1):297-306.
    PMID: 25382376 DOI: 10.1039/c4mb00463a
    Understanding the basal gut bacterial community structure and the host metabolic composition is pivotal for the interpretation of laboratory treatments designed to answer questions pertinent to host-microbe interactions. In this study, we report for the first time the underlying gut microbiota and systemic metabolic composition in BALB/c mice during the acclimatisation period. Our results showed that stress levels were reduced in the first three days of the study when the animals were subjected to repetitive handling daily but the stress levels were increased when handling was carried out at lower frequencies (weekly). We also observed a strong influence of stress on the host metabolism and commensal compositional variability. In addition, temporal biological compartmental variations in the responses were observed. Based on these results, we suggest that consistency in the frequency and duration of laboratory handling is crucial in murine models to minimise the impact of stress levels on the commensal and host metabolism dynamics. Furthermore, caution is advised in consideration of the temporal delay effect when integrating metagenomics and metabonomics data across different biological matrices (i.e. faeces and urine).
    Matched MeSH terms: Metagenome
  3. Wilson JJ, Brandon-Mong GJ, Gan HM, Sing KW
    PMID: 29591722 DOI: 10.1080/24701394.2018.1455189
    Consensus on the optimal high-throughput sequencing (HTS) approach to examine biodiversity in mixed terrestrial arthropod samples has not been reached. Metatranscriptomics could increase the proportion of taxonomically informative mitochondrial reads in HTS outputs but has not been investigated for terrestrial arthropod samples. We compared the efficiency of 16S rRNA metabarcoding, metagenomics and metatranscriptomics for detecting species in a mixed terrestrial arthropod sample (pooled DNA/RNA from 38 taxa). 16S rRNA metabarcoding and nuclear rRNA-depleted metatranscriptomics had the highest detection rate with 97% of input species detected. Based on cytochrome c oxidase I, metagenomics had the highest detection rate with 82% of input species detected, but metatranscriptomics produced a larger proportion of reads matching (Sanger) reference sequences. Metatranscriptomics with nuclear rRNA depletion may offer advantages over metabarcoding through reducing the number of spurious operational taxonomic units while retaining high detection rates, and offers natural enrichment of mitochondrial sequences which may enable increased species detection rates compared with metagenomics.
    Matched MeSH terms: Metagenome*
  4. Waiho K, Abd Razak MS, Abdul Rahman MZ, Zaid Z, Ikhwanuddin M, Fazhan H, et al.
    PeerJ, 2023;11:e15758.
    PMID: 37790619 DOI: 10.7717/peerj.15758
    Biofloc technology improves water quality and promote the growth of beneficial bacteria community in shrimp culture. However, little is known about the bacteria community structure in both water and gut of cultured organisms. To address this, the current study characterised the metagenomes derived from water and shrimp intestine samples of novel Rapid BFTTM with probiotic and clearwater treatments using 16S V4 region and full length 16S sequencing. Bacteria diversity of water and intestine samples of Rapid BFTTM and probiotic treatments were similar. Based on the 16S V4 region, water samples of >20 μm biofloc had the highest abundance of amplicon sequence variant (ASV). However, based on full length 16S, no clear distinction in microbial diversity was observed between water samples and intestine samples. Proteobacteria was the most abundant taxon in all samples based on both 16S V4 and full length 16S sequences. Vibrio was among the highest genus based on 16S V4 region but only full length 16S was able to discern up to species level, with three Vibrios identified-V. harveyi, V. parahaemolyticus and V. vulnificus. Vibrio harveyi being the most abundant species in all treatments. Among water samples, biofloc water samples had the lowest abundance of all three Vibrios, with V. vulnificus was present only in bioflocs of <20 μm. Predicted functional profiles of treatments support the beneficial impacts of probiotic and biofloc inclusion into shrimp culture system. This study highlights the potential displacement of opportunistic pathogens by the usage of biofloc technology (Rapid BFTTM) in shrimp culture.
    Matched MeSH terms: Metagenome
  5. Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM
    Biotechnol Adv, 2015 Nov 1;33(6 Pt 1):633-47.
    PMID: 25911946 DOI: 10.1016/j.biotechadv.2015.04.007
    Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era.
    Matched MeSH terms: Metagenome
  6. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, et al.
    Mol Ecol, 2016 May;25(10):2244-57.
    PMID: 26994316 DOI: 10.1111/mec.13620
    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes.
    Matched MeSH terms: Metagenome
  7. Tan SC, Chong CW, Yap IKS, Thong KL, Teh CSJ
    Sci Rep, 2020 Jun 02;10(1):8997.
    PMID: 32488118 DOI: 10.1038/s41598-020-65891-4
    The gastrointestinal tract of humans and swine consist of a wide range of bacteria which interact with hosts metabolism. Due to the differences in co-evolution and co-adaptation, a large fraction of the gut microbiome is host-specific. In this study, we evaluated the effect of close human-animal interaction to the faecal metagenome and metabonome of swine, farmer and human control. Three distinct clusters were observed based on T-RFLP-derived faecal microbial composition. However, 16S-inferred faecal microbiota and metabolic profiles showed that only human control was significantly different from the swine (P 
    Matched MeSH terms: Metagenome/genetics
  8. Sun F, Wang C, Chen H, Zheng Z
    Curr Microbiol, 2020 May;77(5):816-825.
    PMID: 31927597 DOI: 10.1007/s00284-019-01862-x
    Enteromorpha prolifera blooms considerably affected coastal environments in recent years. However, the effects of E. prolifera on microbial ecology and function remained unknown. In this study, metagenomic sequencing was used to investigate the effect of E. prolifera bloom on the microbial communities and functional genes in an aquaculture environment. Results showed that E. prolifera bloom could significantly alter the microbial composition and abundance, and heterotrophic bacteria comprised the major groups in the E. prolifera bloom pond, which was dominated by Actinomycetales and Flavobacteriales. The study indicated that viruses played an important role in shaping the microbial community and diversity during E. prolifera bloom. These viruses affected various dominant microbial taxa (such as Rhodobacteraceae, Synechococcus, and Prochlorococcus), which produced an obvious impact on potential nutrient transformation. Functional annotation analysis indicated that E. prolifera bloom would considerably shift the metabolism function by altering the structure and abundance of the microbial community. E. prolifera bloom pond had the low ability of potential metabolic capabilities of nitrogen, sulfur, and phosphate, whereas promoted gene abundance of genetic information processing. These changes in the microbial community and function could produce serious effect on aquaculture ecosystem.
    Matched MeSH terms: Metagenome*; Metagenomics
  9. Saad N, Olmstead JW, Varsani A, Polston JE, Jones JB, Folimonova SY, et al.
    Viruses, 2021 Jun 18;13(6).
    PMID: 34207047 DOI: 10.3390/v13061165
    Southern highbush blueberry (interspecific hybrids of Vaccinium corymbosum L.) is cultivated near wild V. corymbosum as well as closely related species in Florida, USA. The expansion of blueberry cultivation into new areas in Florida and deployment of new cultivars containing viruses can potentially increase the diversity of viruses in wild and cultivated V. corymbosum. In this study, viral diversity in wild and cultivated blueberries (V. corymbosum) is described using a metagenomic approach. RNA viromes from V. corymbosum plants collected from six locations (two cultivated and four wild) in North Central Florida were generated by high throughput sequencing (HTS) and analyzed using a bioinformatic analysis pipeline. De novo assembled contigs obtained from viromes of both commercial and wild sites produced sequences with similarities to plant virus species from a diverse range of families (Amalgaviridae, Caulimoviridae, Endornaviridae, Ophioviridae, Phenuiviridae, and Virgaviridae). In addition, this study has enabled the identification of blueberry latent virus (BlLV) and blueberry mosaic associated ophiovirus (BlMaV) for the first time in Florida, as well as a tentative novel tepovirus (blueberry virus T) (BlVT) in blueberry. To the best of our knowledge, this is the first study that compares viral diversity in wild and cultivated blueberry using a metagenomic approach.
    Matched MeSH terms: Metagenome*; Metagenomics/methods*
  10. Rompalo A
    J Clin Invest, 2011 Dec;121(12):4580-3.
    PMID: 22133882 DOI: 10.1172/JCI61592
    Sexually transmitted infections (STIs) have plagued humans for millennia and can result in chronic disease, pregnancy complications, infertility, and even death. Recent technological advances have led to a better understanding of the causative agents for these infections as well as aspects of their pathogenesis that might represent novel therapeutic targets. The articles in this Review Series provide excellent updates on the recent advances in understanding of the pathogenesis of some very important and persistent STIs and discuss the importance of considering each pathogen in the broader context of the environment of the individual who it infects.
    Matched MeSH terms: Metagenome
  11. Okomoda VT, Nurul ANA, Danish-Daniel AM, Oladimeji AS, Abol-Munafi AB, Alabi KI, et al.
    Data Brief, 2020 Oct;32:106120.
    PMID: 32817873 DOI: 10.1016/j.dib.2020.106120
    The Labroides dimidiatus is known as the "doctor fish" because of its role in removing parasites and infectious pathogens from the body of other fishes. This important role played both in wild and captive conditions could represent a novel form of parasitic transmission process mediated by the cleaning activity of the fish. Yet, there is a paucity of data on the microflora associated with this fish which is important for tracking disease infection and generally monitoring the health status of the fish. This article, therefore, represents the first dataset for the microbiota composition of wild and captive L. dimidiatus. Wild fish samples and carriage water were gotten in Terengganu Malaysia around the corals of the Karah Island. The captive sample, however, was obtained from well-known ornamental fish suppliers in Terengganu Malaysia. Thereafter, bacteria present on the skin, in the stomach and the aquarium water were enumerated using culture-independent approaches and Next Generation Sequencing (NGS) technology. Data obtained from the three metagenomic libraries using NGS analysis gave 1,426,740 amplicon sequence reads which are composed of 508 operational taxonomic units (OTUs) for wild samples and 3,238,564 valid reads and 828 OTUs for captive samples. All sequence reads were deposited in the GeneBank (Accession numbers SAMN14260247, SAMN14260248, SAMN14260249, SAMN14260250, SAMN14260251, and SAMN14260252). The dataset presented is associated with the research article "16S rDNA-Based Metagenomic Analysis of Microbial Communities Associated with Wild Labroides dimidiatus From Karah Island, Terengganu, Malaysia" [1]. The microbiota data presented in this article can be used to monitor the health and wellbeing of the ornamental fish, especially under captivity, hence preventing possible cross-infection.
    Matched MeSH terms: Metagenome
  12. Mollerup S, Asplund M, Friis-Nielsen J, Kjartansdóttir KR, Fridholm H, Hansen TA, et al.
    J Infect Dis, 2019 09 13;220(8):1312-1324.
    PMID: 31253993 DOI: 10.1093/infdis/jiz318
    BACKGROUND: Viruses and other infectious agents cause more than 15% of human cancer cases. High-throughput sequencing-based studies of virus-cancer associations have mainly focused on cancer transcriptome data.

    METHODS: In this study, we applied a diverse selection of presequencing enrichment methods targeting all major viral groups, to characterize the viruses present in 197 samples from 18 sample types of cancerous origin. Using high-throughput sequencing, we generated 710 datasets constituting 57 billion sequencing reads.

    RESULTS: Detailed in silico investigation of the viral content, including exclusion of viral artefacts, from de novo assembled contigs and individual sequencing reads yielded a map of the viruses detected. Our data reveal a virome dominated by papillomaviruses, anelloviruses, herpesviruses, and parvoviruses. More than half of the included samples contained 1 or more viruses; however, no link between specific viruses and cancer types were found.

    CONCLUSIONS: Our study sheds light on viral presence in cancers and provides highly relevant virome data for future reference.

    Matched MeSH terms: Metagenome/genetics*
  13. Mohamed Ramli N, Giatsis C, Md Yusoff F, Verreth J, Verdegem M
    PLoS One, 2018;13(4):e0195862.
    PMID: 29659617 DOI: 10.1371/journal.pone.0195862
    The experimental set-up of this study mimicked recirculating aquaculture systems (RAS) where water quality parameters such as dissolved oxygen, pH, temperature, and turbidity were controlled and wastes produced by fish and feeding were converted to inorganic forms. A key process in the RAS was the conversion of ammonia to nitrite and nitrite to nitrate through nitrification. It was hypothesized that algae inclusion in RAS would improve the ammonia removal from the water; thereby improving RAS water quality and stability. To test this hypothesis, the stability of the microbiota community composition in a freshwater RAS with (RAS+A) or without algae (RAS-A) was challenged by introducing an acute pH drop (from pH 7 to 4 during three hours) to the system. Stigeoclonium nanum, a periphytic freshwater microalga was used in this study. No significant effect of the algae presence was found on the resistance to the acute pH drop on ammonia conversion to nitrite and nitrite conversion to nitrate. Also the resilience of the ammonia conversion to the pH drop disruption was not affected by the addition of algae. This could be due to the low biomass of algae achieved in the RAS. However, with regard to the conversion step of nitrite to nitrate, RAS+A was significantly more resilient than RAS-A. In terms of overall bacterial communities, the composition and predictive function of the bacterial communities was significantly different between RAS+A and RAS-A.
    Matched MeSH terms: Metagenome
  14. Ma T, Jin H, Kwok LY, Sun Z, Liong MT, Zhang H
    Neurobiol Stress, 2021 May;14:100294.
    PMID: 33511258 DOI: 10.1016/j.ynstr.2021.100294
    Stress has been shown to disturb the balance of human intestinal microbiota and subsequently causes mental health problems like anxiety and depression. Our previous study showed that ingesting the probiotic strain, Lactobacillus (L.) plantarum P-8, for 12 weeks could alleviate stress and anxiety of stressed adults. The current study was a follow-up work aiming to investigate the functional role of the gut metagenomes in the observed beneficial effects. The fecal metagenomes of the probiotic (n = 43) and placebo (n = 36) receivers were analyzed in depth. The gut microbiomes of the placebo group at weeks 0 and 12 showed a significantly greater Aitchison distance (P 
    Matched MeSH terms: Metagenome
  15. Loughman A, Ponsonby AL, O'Hely M, Symeonides C, Collier F, Tang MLK, et al.
    EBioMedicine, 2020 Feb;52:102640.
    PMID: 32062351 DOI: 10.1016/j.ebiom.2020.102640
    BACKGROUND: Despite intense interest in the relationship between gut microbiota and brain development, longitudinal data from human studies are lacking. This study aimed to investigate the relationship between the composition of gut microbiota during infancy and subsequent behavioural outcomes.

    METHODS: A subcohort of 201 children with behavioural outcome measures was identified within a longitudinal, Australian birth-cohort study. The faecal microbiota were analysed at 1, 6, and 12 months of age. Behavioural outcomes were measured at 2 years of age.

    FINDINGS: In an unselected birth cohort, we found a clear association between decreased normalised abundance of Prevotella in faecal samples collected at 12 months of age and increased behavioural problems at 2 years, in particular Internalizing Problem scores. This association appeared independent of multiple potentially confounding variables, including maternal mental health. Recent exposure to antibiotics was the best predictor of decreased Prevotella.

    INTERPRETATION: Our findings demonstrate a strong association between the composition of the gut microbiota in infancy and subsequent behavioural outcomes; and support the importance of responsible use of antibiotics during early life.

    FUNDING: This study was funded by the National Health and Medical Research Council of Australia (1082307, 1147980, 1129813), The Murdoch Children's Research Institute, Barwon Health, Deakin University, Perpetual Trustees, and The Shepherd Foundation. The funders had no involvement in the data collection, analysis or interpretation, trial design, recruitment or any other aspect pertinent to the study.

    Matched MeSH terms: Metagenome
  16. Lo RKS, Chong KP
    Data Brief, 2020 Aug;31:106030.
    PMID: 32743032 DOI: 10.1016/j.dib.2020.106030
    The oil palm industry, especially in Indonesia and Malaysia is being threatened by Basal Stem Rot (BSR) disease caused by Ganoderma boninense. There is no conclusive remedy in handling this disease effectively. In this study, metagenomics analysis of soil were analyzed for a better understanding of the microbial diversity in relation to BSR disease. Study was conducted in three plantation sites of Sabah, Malaysia which incorporated different disease management and agronomic practices. The estates are located at Sandakan (Kam Cheong Plantation), Lahad Datu (FGV Ladang Sahabat) and Tawau (Warisan Gagah). Soil samples were collected from disease free, high and low BSR incidence plots. Illumina MiSeq metagenomic analysis using V3-V4 region of 16S rRNA gene was employed to study the microbial diversity. Bacteria (97.4%) and Archaea (0.2%) were found majority in kingdom taxonomy level. The most abundant phyla were Proteobacteria, Acidobacteria, Actinobacteria, and Verrucomicrobia. Higher alpha diversity of all species was observed among all tested soil from each estates. Beta analysis was analyzed using non phylogenetic UnifRac matrix and visualized using Principal Coordinates Analysis (PCoA). The tested soil samples in Kam Cheong Plantation were found to have similar bacterial communities. The data provided is useful as an indicator in developing biology controls against Ganoderma boninense.
    Matched MeSH terms: Metagenome
  17. Lim L, Ab Majid AH
    Data Brief, 2020 Jun;30:105575.
    PMID: 32368598 DOI: 10.1016/j.dib.2020.105575
    The metagenomic datasets of the microbial DNA from tropical bed bugs (Cimex hemipterus) after feeding on human blood were presented. Next-generation sequencing of the community DNA was carried out on an Illumina Miseq platform and the raw fastq files were analyzed using QIIME (version 1.9.1). The metagenome of three samples comprised of 108,198 sequences representing 44,646,263 bps with a mean length of 412.63 bps. The sequence data is accessible at the NCBI SRA under the bioproject number PRJNA600667. Community analysis showed Proteobacteria was the most abundance (more than 99%) microbial community that present in the guts of fully fed tropical bed bugs.
    Matched MeSH terms: Metagenome
  18. Liang Z, Shi J, Wang C, Li J, Liang D, Yong EL, et al.
    Appl Environ Microbiol, 2020 11 10;86(23).
    PMID: 32948522 DOI: 10.1128/AEM.01920-20
    Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance.IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.
    Matched MeSH terms: Metagenome*
  19. Lee SC, Tang MS, Lim YA, Choy SH, Kurtz ZD, Cox LM, et al.
    PLoS Negl Trop Dis, 2014 May;8(5):e2880.
    PMID: 24851867 DOI: 10.1371/journal.pntd.0002880
    Soil-transmitted helminths colonize more than 1.5 billion people worldwide, yet little is known about how they interact with bacterial communities in the gut microbiota. Differences in the gut microbiota between individuals living in developed and developing countries may be partly due to the presence of helminths, since they predominantly infect individuals from developing countries, such as the indigenous communities in Malaysia we examine in this work. We compared the composition and diversity of bacterial communities from the fecal microbiota of 51 people from two villages in Malaysia, of which 36 (70.6%) were infected by helminths. The 16S rRNA V4 region was sequenced at an average of nineteen thousand sequences per samples. Helminth-colonized individuals had greater species richness and number of observed OTUs with enrichment of Paraprevotellaceae, especially with Trichuris infection. We developed a new approach of combining centered log-ratio (clr) transformation for OTU relative abundances with sparse Partial Least Squares Discriminant Analysis (sPLS-DA) to enable more robust predictions of OTU interrelationships. These results suggest that helminths may have an impact on the diversity, bacterial community structure and function of the gut microbiota.
    Matched MeSH terms: Metagenome/genetics
  20. Kumar MR, Yeap SK, Mohamad NE, Abdullah JO, Masarudin MJ, Khalid M, et al.
    BMC Complement Med Ther, 2021 Jul 01;21(1):183.
    PMID: 34210310 DOI: 10.1186/s12906-021-03358-3
    BACKGROUND: In recent years, researchers are interested in the discovery of active compounds from traditional remedies and natural sources, as they reveal higher therapeutic efficacies and improved toxicological profiles. Among the various traditional treatments that have been widely studied and explored for their potential therapeutic benefits, kefir, a fermented beverage, demonstrates a broad spectrum of pharmacological properties, including antioxidant, anti-inflammation, and healing activities. These health-promoting properties of kefir vary among the kefir cultures found at the different part of the world as different media and culture conditions are used for kefir maintenance and fermentation.

    METHODS: This study investigated the microbial composition and readily found bioactive compounds in water kefir fermented in Malaysia using 16S rRNA microbiome and UHPLC sequencing approaches. The toxicity effects of the kefir water administration in BALB/c mice were analysed based on the mice survival, body weight index, biochemistry profile, and histopathological changes. The antioxidant activities were evaluated using SOD, FRAP, and NO assays.

    RESULTS: The 16S rRNA amplicon sequencing revealed the most abundant species found in the water kefir was Lactobacillus hilgardii followed by Lactobacillus harbinensis, Acetobacter lovaniensis, Lactobacillus satsumensis, Acetobacter tropicalis, Lactobacillus zeae, and Oenococcus oeni. The UHPLC screening showed flavonoid and phenolic acid derivatives as the most important bioactive compounds present in kefir water which has been responsible for its antioxidant activities. Subchronic toxicity study showed no toxicological signs, behavioural changes, or adverse effects by administrating 10 mL/kg/day and 2.5 mL/kg/day kefir water to the mice. Antioxidants assays demonstrated enhanced SOD and FRAP activities and reduced NO level, especially in the brain and kidney samples.

    CONCLUSIONS: This study will help to intensify the knowledge on the water kefir microbial composition, available phytochemicals and its toxicological and antioxidant effects on BALB/c mice since there are very limited studies on the water kefir grain fermented in Malaysia.

    Matched MeSH terms: Metagenome*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links