Methylene blue is a refractory pollutant commonly present in textile wastewater. This study tests the feasibility of TiO2/graphene oxide (GO) composite in enhancing photocatalytic degradation of MB in synthetic wastewater with respect to scientific and engineering aspects. To enhance its removal, we vary the composition of the composite based on the TiO2 weight. Under UV-vis irradiation, the effects of photocatalyst's dose, pH, and reaction time on MB removal by the composites are evaluated under optimum conditions, while any changes in their physico-chemical properties before and after treatment are analyzed by using TEM, SEM, XRD, FTIR and BET. The photodegradation pathways of the target pollutant by the composite and its removal mechanisms are also elaborated. It is found that the same composite with a 1:2 wt ratio of GO/TiO2 has the largest surface area of 104.51 m2/g. Under optimum reactions (0.2 g/L of dose, pH 10, and 5 mg/L of pollutant's concentration), an almost complete MB removal could be attained within 4 h. This result is higher than that of the TiO2 alone (30%) under the same conditions. Since the treated effluents could meet the strict discharge standard limit of ≤0.2 μg/L set by China's regulation, subsequent biological treatments are unnecessary for completing biodegradation of remaining oxidation by-products in the wastewater effluents.
In this present study, silver (Ag) and titanium dioxide (TiO2) nanoparticles were successfully deposited on coconut shell-derived activated carbon (CSAC), to synthesize a novel nanocomposite (CSAC@AgNPs@TiO2NPs) for the adsorption of Methylene Blue (MB) dye from aqueous solution. The fabricated CSAC@AgNPs@TiO2NPs nanocomposite was analyzed by Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscope (TEM) equipped with Energy Dispersive X-ray spectroscopy (EDS) detector, X-ray Photoelectron Spectroscope (XPS), and Brunauer-Emmett-Teller (BET). The successful deposition of AgNPs and TiO2NPs on CSAC surface was revealed by the TEM/EDX, SEM, and XPS analysis. The mesopore structure of CSAC@AgNPs@TiO2NPs has a BET surface area of 301 m2/g. The batch adsorption studies were conducted and the influence of different parameters, i.e., adsorbent dose, adsorption time, initial dye concentration, pH and temperature were investigated. The nonlinear isotherm and kinetic modelling demonstrated that adsorption data were best fitted by Sips isotherm and pseudo-second-order models, respectively. The maximum adsorption capacity of MB onto CSAC@AgNPs@TiO2NPs by the Sips model was 184 mg/g. Thermodynamic results revealed that the adsorption was endothermic, spontaneous and physical in nature. CSAC@AgNPs@TiO2NPs revealed that MB absorption by CSAC@AgNPs@TiO2NPs was spontaneous and endothermic. The uptake capacity of MB was influenced significantly by the presence of competing ions including, NO3-, HCO3, Ca2+, and Na+. Repeated tests indicated that the CSAC@AgNPs@TiO2NPs can be regenerated and reused six times before being discarded. The primary separation mechanism between MB dye and CSAC@AgNPs@TiO2NPs was the electrostatic interaction. Thus, CSAC@AgNPs@TiO2NPs was an outstanding material, which displayed good applicability in real water with ≥ 97% removal of MB dye.
Exposure of synthetic dye, such as methylene blue (MB), in water bodies led to a serious threat to living things because they are toxic and non-degradable. Amongst the introduced dye removal methods, membrane separation process can be considered a powerful technique for treating dye contamination. However, this method commonly suffered from drawbacks, such as short membrane lifetime, low permeability and selectivity. To overcome these issues, graphene oxide (GO) and titanium dioxide (TiO2) were used as additives to fabricate polyethersulfone (PES)- and polyvinylidene fluoride (PVDF)-based hybrid membranes via non-solvent-induced phase separation method. Prior to membrane fabrication, GO was synthesised via electrochemical exfoliation method assisted by customised triple-tail surfactant. The potential of PES- and PVDF-based hybrid membranes for wastewater treatment has been discussed widely. However, direct comparison between these two polymeric membranes is not critically discussed for MB dye separation application yet. Therefore, this study is aimed at evaluating the performance of different types of polymers (e.g. PES and PVDF) in terms of membrane morphology, properties, dye rejection and antifouling ability. Results showed that the incorporation of GO and TiO2 alters the morphology of the fabricated membranes and affects dye rejection further, as well as their antifouling performance. In contrast with pristine membrane, PES-GO/TiO2 and PVDF-GO/TiO2 possessed high hydrophilicity, as indicated by their low contact angle (67.38° and 62.12°, respectively). Based on this study, PVDF-GO/TiO2 showed higher porosity value (94.88%), permeability (87.32 L/m2hMPa) and MB rejection rate (92.63%), as well as flux recovery ratio value of > 100% as compared with others. Overall, the incorporation of GO and TiO2 with PVDF polymer are proven to be effective hybrid materials of membrane fabrication for dye rejection application in the near future. The polymer material's intrinsic properties can affect the attributes of the fabricated membrane.
A facile and cost-effective hydrothermal followed by precipitation method is employed to synthesize visible light-driven ZnS-Ag ternary composites supported on carbon aerogel (CA). Extensive studies were conducted on the structural, morphological, and optical properties, confirming the successful formation of ternary nanocomposites. The obtained results evidently demonstrate the successful loading of ZnS and Ag onto the surface of the CA. High-resolution transmission electron microscopy analysis revealed that ZnS and Ag nanoparticles (AgNPs) were uniformly distributed on the surface of the CA with an average diameter of 18 nm. The biomass-derived CA, containing a hierarchical porous nano-architecture and an abundant number of -NH2 functional groups on the surface, can greatly prevent the agglomeration, stability and reduce particle size. Brunauer-Emmett-Teller analysis results indicated specific surface areas of 4.62 m2 g-1 for the CA, 48.50 m2 g-1 for the CA/ZnS composite, and 62.62 m2 g-1 for the CA/ZnS-Ag composite. These values demonstrate an increase in surface area upon the incorporation of ZnS and Ag into the CA matrix. Under visible light irradiation, the synthesized CA/ZnS-Ag composites displayed remarkably improved photodegradation efficiency of methylene blue (MB). Among the tested samples, the CA/ZnS-Ag composites exhibited the highest percentage of photodegradation efficiency, surpassing ZnS, CA, and CA/ZnS. The obtained percentages of degradation efficiency for CA, ZnS, CA/ZnS, and CA/ZnS-Ag composites were determined as 26.60%, 52.12%, 68.39%, and 98.64%, respectively. These results highlight the superior photocatalytic performance of the CA/ZnS-Ag composites in the degradation of MB under visible light conditions. The superior efficiency of the CA/ZnS-Ag composite can be attributed to multiple factors, including its elevated specific surface area, inhibition of electron-hole pair recombination, and enhanced photon absorption within the visible light spectrum. The CA/ZnS-Ag composites displayed consistent efficiency over multiple cycles, confirming their stable performance, reusability, and enduring durability, thereby showcasing the robust nature of this composite material.
Methaemoglobinaemia is an uncommon but potentially serious condition. It can be caused by congenital or acquired cause. Drug-induced methaemoglobinaemia is the commonest cause of acquired methaemoglobinaemia. The clinical signs and symptoms of methaemoglobinaemia include dyspnoea, desaturation, presence of saturation gap, headache, nausea and seizures depending on level of serum methaemoglobinaemia. We illustrate a case of dapsone-induced methaemoglobinaemia and its successful treatment by intravenous methylene blue.
This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m(2) g(-1)). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.
Activated carbons are regularly used the treatment of dye wastewater. They can be produced from various organics materials having high level of carbon content. In this study, a novel Pinang frond activated carbon (PFAC) was produced at various CO₂ flow rates in the range of 150-600 mL/min at activation temperature of 800°C for 3 hours. The optimum PFAC sample is found on CO₂ flow rate of 300 mL/min which gives the highest BET surface area and pore volume of 958 m²/g and 0.5469 mL/g, respectively. This sample shows well-developed pore structure with high fixed carbon content of 79.74%. The removal of methylene blue (MB) by 95.8% for initial MB concentration of 50 mg/L and 72.6% for 500 mg/L is achieved via this sample. The PFAC is thus identified to be a suitable adsorbent for removing MB from aqueous solution.
This study evaluated the characteristics of zinc chloride modified vitex doniana seed activated carbon (VDZnCl2) for the removal of methylene blue. VDZnCl2 was characterized for textural properties, surface morphology and surface chemistry. Batch adsorption of methylene blue by VDZnCl2 was evaluated for the effects of concentration, contact time, adsorbent dosage, and solution pH. The surface area increased from 14 to 933 m2/g with porous texture to facilitate adsorption. The SEM micrograph showed varieties of pores with widened cavities. The FTIR spectra showed the characteristics of O-H and C=C groups commonly found in carbonaceous materials. The maximum methylene blue adsorption was recorded as 238 mg/g at concentration range of 1-800 mg/L and VDZnCl2 dosage of 50 mg. Sips isotherm fitted well with the equilibrium data, suggesting that the adsorption by VDZnCl2 was a physical process onto its heterogeneous surface, while the applicability of pseudo-first-order kinetics implies that external diffusion was the rate controlling mechanism. The performance put up by VDZnCl2 suggested that it is a potential adsorbent substitute for dye wastewater treatment.
Optimization of decolorization of methylene blue (MB) dye by lignin peroxidase (LiP) enzyme produced by white-rot fungus Phanerochaete chrysosporium using sewage treatment plant (STP) sludge as a major substrate was carried out in the laboratory. Optimization by the one-factor-at-a-time (OFAT) and statistical approach was carried out to determine the process conditions on optimum decolorization of MB dye using LiP enzyme in static mode. The OFAT method indicated that the optimum conditions for decolorization of MB dye (removal: 14-40%) was at temperature 55 degrees C, pH 5.0 with hydrogen peroxide (H(2)O(2)) concentration 4.0mM, MB dye concentration 20mg/L and LiP activity 0.487U/ml. The addition of veratryl alcohol to the reaction mixtures did not contribute any further increases in decolorization. The initial concentration of MB and the activity of LiP enzyme were further optimized using response surface methodology (RSM). The contour and surface plots suggested that the optimum initial concentration of MB and LiP activity predicted were 15mg/L and 0.687U/ml, respectively for the removal of 65%. The validation of the model showed that the decolorization process gave the higher removal of 90% in agitation mode compared to the static mode with 65% for 60min of incubation time by LiP enzyme.
A high-performance porous biochar adsorbent prepared by facile thermal pyrolysis of seaweed (Gelidiella acerosa) is reported. The textural characteristics of the prepared seaweed biochar (SWBC) and the performance in the adsorption of methylene blue (MB) dye were evaluated. The batch experiment for the adsorption of MB was conducted under different parameters, such as temperature, pH, and initial concentration of MB in the range of 25-400 mg/L. The developed SWBC exhibited a relatively high surface area, average pore size, and pore volume of 926.39 m2/g, 2.45 nm, and 0.57 cm3/g, respectively. The high surface area and pristine mineral constituents of the biochar promoted a high adsorption capacity of 512.67 mg/g of MB at 30 °C. The adsorption isotherm and kinetics data best fitted the Langmuir and pseudo-second-order equations. The results indicate that SWBC is efficient for MB adsorption and could be a potential adsorbent for wastewater treatment.
In this work, an activated electric arc furnace slag (A-EAFS) was investigated as an effective Fenton catalyst for the photodegradation of methylene blue (MB) and acid blue 29 (AB29). Fourier transform infrared spectroscopy and UV-visible absorption analyses indicated that A-EAFS offers additional Fe3O4 because of the changes in the iron oxide phase and the favorable response to visible light. It has been found that the highest degradation efficiency can reach up to 94% for MB under optimal conditions of 1 g L-1 of A-EAFS, 20 mM H2O2, and pH 3. The optimal conditions for AB29 were 0.1 g L-1 A-EAFS, 4 mM H2O2, and pH 3 to reach 98% degradation efficiency. Visible light enhanced the degradation of both dyes. In addition, A-EAFS, could be easily separated magnetically, exhibited good chemical stability after seven successive photodegradation cycles.
Currently, heavy metals and dyes are some of the most critical pollutants in the aquatic environment. So, in this paper "waste-to-resource conversion", as a new application of modified mine silicate waste to remove Pb2+ ion and methylene blue (MB) dye, adsorption properties, mechanism of action and recycling were studied. Silicate wastes are located in the alteration zone and the margin of molybdenum ore, these wastes are under the influence of hydrothermal solutions which are impregnated with iron and manganese ions. Hence, acid and base modifications have been commonly used. So, in this study, a highly porous nanostructure of modified silicate waste was used to remove MB and Pb2+ ion, in subsequent to our previous study on the application of the raw material of the same in the removal of malachite green. Acid, base, and acid/base treatments were used to activate and modify the adsorbent. Results show a significantly higher potential of modified adsorbent in the removal of MB and Pb2+ compared to the raw material. According to the isotherm and kinetic studies for MB and Pb2+ the Langmuir and Temkin and pseudo-second-order models were investigated with experimental data. Modified nanomaterial was used for several adsorption and desorption processes, without a significant decrease in the capability of the adsorbent in the removal of MB and Pb2+ pollutants. Leached iron and manganese ions (as production of modification) are deposited in the form of sludge using a simple pH adjustment and precipitation process and can be used to recover iron and manganese metals in the long run. The comparison of monolayer adsorption capacity using for Pb2+ ion and MB dye are as ((untreated SW: 29.41, 1.05); (NaOH treated: 21.74, 100); (Nitric Acid treated: 16.67, 142.86); (Citric Acid treated: 40, 125); (Nitric/Citric Acids treated: 15.63, 111.11) and (Nitric/Citric Acids/NaOH treated: 15.15, 83.33)), respectively. Higher adsorption capacity and re-generable properties of this adsorbent suggest the usage of this natural and abundant mine waste to treat wastewater containing toxic elements and dyes.
Mesoporous activated carbon was prepared using a hydrochar derived from coconut shell waste through hydrothermal carbonization and NaOH chemical activation process (COSHTC). Three sets of activated carbons were obtained with different hydrochar:NaOH impregnation ratios (1:1, 1:2, and 1:3). Among these ratios, 1:3 (COSHTC3) exhibited the optimum adsorption for methylene blue (MB). COSHTC3 adsorbed MB with an initial concentration of 25-250 mg/L at pH 3-11 and 30 °C. The adsorption isotherm of MB on COSHTC3 demonstrated that Langmuir isotherm could be better applied at a maximum monolayer adsorption capacity of 200.01 mg/g at 30 °C. The data was well fitted to the pseudo-second-order (PSO) kinetic model. These results show that the COSHTC3 prepared from low-cost agricultural waste (coconut shell) with average pore diameter 28.6 Å and surface area 876.14 m(2)/g acts as a better adsorbent for removal of cationic dyes and could pave the way for more low-cost adsorbents for dye removal.
Decorating nanomaterials on graphene oxide (GO) can enhance its adsorption capacity and removal efficiency of water pollutants. In this study, for the first time, nano-sized polylactic acid (PLA) has been successfully decorated on the surface of GO through a facile synthesis approach. The adsorptive efficiency of GO-PLA for removing methylene blue (MB) and tetracycline (TC) from an aqueous solution was examined. The characterization confirmed the successful decoration of PLA on GO nanosheets with the nano size of PLA. It was hypothesized that the PLA was decorated on the surface of GO through covalent bonding between oxygen-containing functional groups and lactide molecules. The optimum adsorption parameters determined were at the adsorbent dose of 0.5 g L-1, pH 4, contact time of 120 min, and temperature of 318 K. The pseudo-second-order kinetic model described the contaminants' adsorption behaviour, and the intraparticle diffusion model revealed that both surface adsorption and intraparticle diffusion controlled the adsorption process. Langmuir isotherm model best described the adsorption behaviour of the pollutants on GO-PLA and demonstrated the maximum monolayer uptake capacities of MB (332.5 mg g-1) and TC (223.7 mg g-1). The adsorption results indicated that the uptake capacities of GO-PLA in comparison to GO have increased by approximately 70% and 110% for MB and TC, respectively. These observations reflect the remarkable role of nano-sized PLA that enhanced the adsorption capacity due to its additional functional group and larger surface area.
Calix[4]arene/polyurethane (C4PU) has been synthesized and characterized as an alternative adsorbent for the adsorption of methylene blue (MB) and malachite green (MG) dyes from the aqueous solution. C4PU was synthesized by reacting p-tert-butyl calix[4]arene with hexamethylene diisocyanate (HMDI) as the cross-linking agent. Different polymer ratios were synthesized, and C4PU-4 shows better adsorption than other ratios. The polymer was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) analysis, and point of zero charges (pHPZC). The isotherms and kinetics of the adsorption of MB and MG were studied under a range of experimental conditions, including pH, adsorbent dosage, initial dye concentration, and contact time. The adsorption was determined by the adsorption percentage of MB and MG dyes from the solution. The Langmuir isotherm model best describes the adsorption process for both dyes, and it follows a pseudo-second-order kinetic model, with the maximum adsorption capacity (qmax) of MB and MG, respectively, was found to be 1.991 mg·g-1 and 2.240 mg·g-1.
Sugar molasses from agricultural waste could be a sustainable carbon source for the synthesis of graphene adsorbent introduced in this work. The sugar molasses was successfully converted to graphene-like material and subsequently coated on the sand as graphene sand composite (GSC), as proven by XRD, XPS, Raman spectroscopy, and SEM with EDX mapping analyses. The adsorption performance of GSC was evaluated against the removal of Tetracycline (TC) and methylene blue (MB) pollutants from an aqueous solution in a fixed bed column continuous-flow adsorption setup. The effect of different process conditions: bed height (4-12 cm), influent flow rate (3-7 mL/min), and contaminants' concentration (50-150 ppm) was investigated. The results revealed that column performance was improved by increasing the bed depth and lowering the flow rate and concentration of the pollutants. The best removal efficiency was obtained when the bed height was 12 cm, the influent flow rate of 3 mL/min, and the pollutants' initial concentration was 50 mg/L. Thomas, Adams-Bohart, and Yoon-Nelson models were attempted to fit the breakthrough curves. Regeneration of the GSC indicated the decline of breakthrough time from 240-280 to 180 min, reflecting the decrease in adsorptive sites due to the incomplete regeneration process. Overall, sugar molasses was shown to be a low-cost precursor for synthesizing valuable graphene material in the form of GSC, which can reduce the problem for industrial waste management of sugar molasses, and the GSC could be used as an adsorbent for environmental application.
Cu doped InVO4 (xCu-InVO4 (x = 0.06-0.15 wt %) was synthesized by a facile one-pot hydrothermal method for the removal of methylene blue (MB) under LED light irradiation. The X-ray photoelectron spectroscopy (XPS) analysis indicated the coexistence of V5+ and V4+ species due to the O-deficient nature of the xCu-InVO4. The synthesized photocatalysts displayed a morphology of spherical and square shaped particles (20-40 nm) and micro-sized rectangle rods with a length range of 100-200 μm. The xCu-InVO4 exhibited superior adsorption and photodegradation efficiency compared to pristine InVO4 and TiO2 due to the presence of O2 vacancies, V4+/V5+ species, and Cu dopant. The optimum reaction conditions were found to be 5 mg L-1 (MB concentration), pH 6, and 100 mg of photocatalyst mass with a removal efficiency and mineralization degree of 100% and 96.67%, respectively. The main active species responsible for the degradation of MB were •OH radicals and h+. Reusability studies indicated that the 0.13Cu-InVO4 was deactivated after a single cycle of photocatalytic reaction due to significant leaching of V4+ and Cu2+ species.
The vanadium (V) and nitrogen (N) dopants on TiO₂ demonstrated superior photocatalytic performance for the degradation of methylene blue (MB) dye under visible light. The vanadium, V, N-co-doped TiO₂ was synthesized by a modified sol-gel method. It revealed that V and N codoping had a significant effect on the band gap (Eg) of TiO₂, where the pristine TiO₂ possessed a wide band gap (3.18 eV) compared to V-doped TiO₂ (2.89 eV) and N-doped TiO₂ (2.87 eV) while the V, N-co-doped TiO₂ depicted the narrowest band gap (2.65 eV). The greatly increased specific surface area for the V, N-co-doped TiO₂ (103.87 m²/g) as compared to P25 TiO₂ (51.68 m²/g) also contributed to the major improvement in the MB dye degradation efficiency (0.055 min-1). The V, N-co-doped TiO₂ exhibit rapid photocatalytic activity for the degradation of MB with almost 99% of degradation in 120 minutes.
This work is aimed to determine the characteristics of activated carbons derived from palm kernel shell (PKS) by microwave-induced zinc chloride activation for dye removal. Activation was performed in a microwave oven at power intensity of 70% for 10 min. The same procedures were repeated for activation using recycled ZnCl2 solution from the first activation. The activated carbons were characterized according to surface area, morphology, functional groups and batch adsorption. The yield for the first activation was 70.7% with surface area of 858m2/g. It was found that the activated carbon prepared using the recycled ZnCl2 still possesses good surface area for methylene blue removal. The adsorption behaviour of the continuous system was well fitted to and could be satisfactorily described by the Yoon and Nelson model.
Due to growing environmental concerns for better waste management, this study proposes developing a composite aerogel using cellulose nanofibers (CNF) and spent coffee grounds (SCG) through an eco-friendly method for efficient methylene blue (MB) adsorption. Adding SCG to the CNF aerogel altered the physical properties: it increases the volume (4.14 cm3 to 5.25 cm3) and density (0.018 to 0.022 g/cm3) but decrease the water adsorption capacity (2064 % to 1635 %). FTIR spectrum showed distinct functional groups in both all aerogels, showing hydroxyl, glyosidic bonds, and aromatic compounds. Additionally, SCG improved thermal stability of the aerogels. In term of adsorption efficacy, CNF-SCG40% aerogel as exceptionally well. According to Langmuir isotherm models, the adsorption of MB happened in a monolayer, with CNF-SCG40% showing a maximum adsorption capacity of 113.64 mg/g, surpassing CNF aerogel (58.82 mg/g). The study identified that the pseudo-second-order model effectively depicted the adsorption process, indicating a chemical-like interaction. This investigation successfully produced a single-use composite aerogel composed of CNF and SCG using an eco-friendly approach, efficiently adsorbing MB. By utilizing cost-effective materials and eco-friendly methods, this approach offers a sustainable solution for waste management, contributes to an eco-friendly industrial environment, and reduces production expenses and management costs.