Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Huat TJ, Khan AA, Abdullah JM, Idris FM, Jaafar H
    Int J Mol Sci, 2015;16(5):9693-718.
    PMID: 25938966 DOI: 10.3390/ijms16059693
    Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation, microarray analysis using GeneChip miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs, 30 were consistently expressed for minimum of two consecutive time intervals. In Group B, only miR-496 was up-regulated and 12 microRNAs, including the let-7 family, miR-1224, miR-125a-3p, miR-214, miR-22, miR-320, miR-708, and miR-93, were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22, miR-214, miR-125a-3p, miR-320 and let-7 family) are associated with reduction of apoptosis. Here, we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
    Matched MeSH terms: MicroRNAs/metabolism
  2. Plieskatt JL, Rinaldi G, Feng Y, Levine PH, Easley S, Martinez E, et al.
    J Transl Med, 2014;12:3.
    PMID: 24393330 DOI: 10.1186/1479-5876-12-3
    Nasopharyngeal carcinoma (NPC) is a solid tumor of the head and neck. Multimodal therapy is highly effective when NPC is detected early. However, due to the location of the tumor and the absence of clinical signs, early detection is difficult, making a biomarker for the early detection of NPC a priority. The dysregulation of small non-coding RNAs (miRNAs) during carcinogenesis is the focus of much current biomarker research. Herein, we examine several miRNA discovery methods using two sample matrices to identify circulating miRNAs (c-miRNAs) associated with NPC.
    Matched MeSH terms: MicroRNAs/metabolism
  3. Wong PF, Jamal J, Tong KL, Khor ES, Yeap CE, Jong HL, et al.
    Microvasc Res, 2017 11;114:26-33.
    PMID: 28595801 DOI: 10.1016/j.mvr.2017.06.002
    miRNAs are important regulators of cellular senescence yet the extent of their involvement remains to be investigated. We sought to identify miRNAs that are involved in cytokine-induced premature senescence (CIPS) in endothelial cells. CIPS was established in young human pulmonary microvascular endothelial cells (HMVEC-Ls) following treatment with a sublethal dose (20ng/ml) of tumor necrosis factor alpha (TNF-α) for 15days. In parallel, HMVEC-Ls were grown and routinely passaged until the onset of replicative senescence (RS). Differential expression analysis following miRNA microarray profiling revealed an overlapped of eight deregulated miRNAs in both the miRNA profiles of RS and TNF-α-induced premature senescence cells. Amongst the deregulated miRNAs were members of the miR 17-92 cluster which are known regulators of angiogenesis. The role of hsa-miR-20b in TNF-α-induced premature senescence, a paralog member of the miR 17-92 cluster, was further investigated. Biotin-labeled hsa-miR-20b captured the enriched transcripts of retinoblastoma-like 1 (RBL1), indicating that RBL1 is a target of hsa-miR-20b. Knockdown of hsa-miR-20b attenuated premature senescence in the TNF-α-treated HMVEC-Ls as evidenced by increased cell proliferation, increased RBL1 mRNA expression level but decreased protein expression of p16INK4a, a cellular senescence marker. These findings provide an early insight into the role of hsa-miR-20b in endothelial senescence.
    Matched MeSH terms: MicroRNAs/metabolism*
  4. Rapalli VK, Singhvi G, Dubey SK, Gupta G, Chellappan DK, Dua K
    Biomed Pharmacother, 2018 Oct;106:707-713.
    PMID: 29990862 DOI: 10.1016/j.biopha.2018.06.136
    Psoriasis is a chronic autoimmune skin disorder affecting 2-3% of the world population. It has characteristic features such as increased keratinocyte proliferation and production of inflammatory mediators. The treatment involves various strategies including topical, systemic, phototherapy and biologics. Topical therapies are preferred for mild to moderate psoriasis conditions over the systemic therapies which are ideal in severe disease conditions. The systemic therapies include immunosuppressants, biological agents and recently approved phosphodiesterase-4 (PDE4) inhibitors. There are various limitations associated with the existing therapies where the new findings in the pathogenesis of psoriasis are paving a path for newer therapeutics to target at the molecular level. Various small molecules, PDE-4 inhibitors, biologics, and immunomodulator proved efficacious including the new molecules targeting Janus kinases (JAK) inhibitors that are under investigation. Furthermore, the role of genetic and miRNAs in psoriasis is still not completely explored and may further help in improving the treatment efficacy. This review provides an insight into various emerging therapies along with currently approved treatments for psoriasis.
    Matched MeSH terms: MicroRNAs/metabolism
  5. Yong FL, Wang CW, Roslani AC, Law CW
    Int J Mol Sci, 2014 Jul 02;15(7):11713-29.
    PMID: 24992592 DOI: 10.3390/ijms150711713
    Recent advances in microRNAome have made microRNAs (miRNAs) a compelling novel class of biomarker in cancer biology. In the present study, the role of miR-23a in the carcinogenesis of colorectal cancer (CRC) was investigated. Cell viability, apoptosis, and caspase 3/7 activation analyses were conducted to determine the potentiality of apoptosis resistance function of miR-23a in CRC. Luciferase assay was performed to verify a putative target site of miR-23a in the 3'-UTR of apoptosis protease activating factor 1 (APAF1) mRNA. The expression levels of miR-23a and APAF1 in CRC cell lines (SW480 and SW620) and clinical samples were assessed using reverse transcription-quantitative real-time PCR (RT-qPCR) and Western blot. We found that the inhibition of miR-23a in SW480 and SW620 cell lines resulted in significant reduction of cell viability and promotion of cell apoptosis. Moreover, miR-23a up-regulation was coupled with APAF1 down-regulation in CRC tissue samples. Taken together, miR-23a was identified to regulate apoptosis in CRC. Our study highlights the potential application of miR-23a/APAF1 regulation axis in miRNA-based therapy and prognostication.
    Matched MeSH terms: MicroRNAs/metabolism*
  6. Khee SG, Yusof YA, Makpol S
    Oxid Med Cell Longev, 2014;2014:725929.
    PMID: 25132913 DOI: 10.1155/2014/725929
    Emerging evidences highlight the implication of microRNAs as a posttranscriptional regulator in aging. Several senescence-associated microRNAs (SA-miRNAs) are found to be differentially expressed during cellular senescence. However, the role of dietary compounds on SA-miRNAs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF) on SA-miRNAs (miR-20a, miR-24, miR-34a, miR-106a, and miR-449a) and established target genes of miR-34a (CCND1, CDK4, and SIRT1) during replicative senescence of human diploid fibroblasts (HDFs). Primary cultures of HDFs at young and senescent were incubated with TRF at 0.5 mg/mL. Taqman microRNA assay showed significant upregulation of miR-24 and miR-34a and downregulation of miR-20a and miR-449a in senescent HDFs (P < 0.05). TRF reduced miR-34a expression in senescent HDFs and increased miR-20a expression in young HDFs and increased miR-449a expression in both young and senescent HDFs. Our results also demonstrated that ectopic expression of miR-34a reduced the expression of CDK4 significantly (P < 0.05). TRF inhibited miR-34a expression thus relieved its inhibition on CDK4 gene expression. No significant change was observed on the expression of CCND1, SIRT1, and miR-34a upstream transcriptional regulator, TP53. In conclusion tocotrienol-rich fraction prevented cellular senescence of human diploid fibroblasts via modulation of SA-miRNAs and target genes expression.
    Matched MeSH terms: MicroRNAs/metabolism*
  7. Phuah NH, In LL, Azmi MN, Ibrahim H, Awang K, Nagoor NH
    Reprod Sci, 2013 May;20(5):567-78.
    PMID: 23012319 DOI: 10.1177/1933719112459220
    The aims of this study were to investigate the combined effects of a natural compound 1'S-1'-acetoxychavicol acetate (ACA) with cisplatin (CDDP) on HPV-positive human cervical carcinoma cell lines (Ca Ski-low cisplatin sensitivity and HeLa-high cisplatin sensitivity), and to identify microRNAs (miRNAs) modulated in response toward ACA and/or CDDP. It was revealed that both ACA and CDDP induced dose- and time-dependent cytotoxicity when used as a stand-alone agent, while synergistic effects were observed when used in combination with a combination index (CI) value of 0.74 ± 0.01 and 0.85 ± 0.01 in Ca Ski and HeLa cells, respectively. A total of 25 miRNAs were found to be significantly differentially expressed in response to ACA and/or CDDP. These include hsa-miR-138, hsa-miR-210, and hsa-miR-744 with predicted gene targets involved in signaling pathways regulating apoptosis and cell cycle progression. In conclusion, ACA acts as a chemosensitizer which synergistically potentiates the cytotoxic effect of CDDP in cervical cancer cells. The altered miRNA expression upon administration of ACA and/or CDDP suggests that miRNAs play an important role in anticancer drug responses, which can be manipulated for therapeutic purposes.
    Matched MeSH terms: MicroRNAs/metabolism*
  8. Wong MM, Cannon CH, Wickneswari R
    BMC Genomics, 2011;12:342.
    PMID: 21729267 DOI: 10.1186/1471-2164-12-342
    Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants.
    Matched MeSH terms: MicroRNAs/metabolism
  9. Lee WS, Gudimella R, Wong GR, Tammi MT, Khalid N, Harikrishna JA
    PLoS One, 2015;10(5):e0127526.
    PMID: 25993649 DOI: 10.1371/journal.pone.0127526
    Physiological responses to stress are controlled by expression of a large number of genes, many of which are regulated by microRNAs. Since most banana cultivars are salt-sensitive, improved understanding of genetic regulation of salt induced stress responses in banana can support future crop management and improvement in the face of increasing soil salinity related to irrigation and climate change. In this study we focused on determining miRNA and their targets that respond to NaCl exposure and used transcriptome sequencing of RNA and small RNA from control and NaCl-treated banana roots to assemble a cultivar-specific reference transcriptome and identify orthologous and Musa-specific miRNA responding to salinity. We observed that, banana roots responded to salinity stress with changes in expression for a large number of genes (9.5% of 31,390 expressed unigenes) and reduction in levels of many miRNA, including several novel miRNA and banana-specific miRNA-target pairs. Banana roots expressed a unique set of orthologous and Musa-specific miRNAs of which 59 respond to salt stress in a dose-dependent manner. Gene expression patterns of miRNA compared with those of their predicted mRNA targets indicated that a majority of the differentially expressed miRNAs were down-regulated in response to increased salinity, allowing increased expression of targets involved in diverse biological processes including stress signaling, stress defence, transport, cellular homeostasis, metabolism and other stress-related functions. This study may contribute to the understanding of gene regulation and abiotic stress response of roots and the high-throughput sequencing data sets generated may serve as important resources related to salt tolerance traits for functional genomic studies and genetic improvement in banana.
    Matched MeSH terms: MicroRNAs/metabolism
  10. Gao Y, Zhang W, Liu C, Li G
    Sci Rep, 2019 12 11;9(1):18844.
    PMID: 31827114 DOI: 10.1038/s41598-019-54289-6
    Resistance to tamoxifen is a major clinical challenge. Research in recent years has identified epigenetic changes as mediated by dysregulated miRNAs that can possibly play a role in resistance to tamoxifen in breast cancer patients expressing estrogen receptor (ER). We report here elevated levels of EMT markers (vimentin and ZEB1/2) and reduced levels of EMT-regulating miR-200 (miR-200b and miR-200c) in ER-positive breast cancer cells, MCF-7, that were resistant to tamoxifen, in contrast with the naïve parental MCF-7 cells that were sensitive to tamoxifen. Further, we established regulation of c-MYB by miR-200 in our experimental model. C-MYB was up-regulated in tamoxifen resistant cells and its silencing significantly decreased resistance to tamoxifen and the EMT markers. Forced over-expression of miR-200b/c reduced c-MYB whereas reduced expression of miR-200b/c resulted in increased c-MYB We further confirmed the results in other ER-positive breast cancer cells T47D cells where forced over-expression of c-MYB resulted in induction of EMT and significantly increased resistance to tamoxifen. Thus, we identify a novel mechanism of tamoxifen resistance in breast tumor microenvironment that involves miR-200-MYB signaling.
    Matched MeSH terms: MicroRNAs/metabolism*
  11. Lai MI, Wendy-Yeo WY, Ramasamy R, Nordin N, Rosli R, Veerakumarasivam A, et al.
    J Assist Reprod Genet, 2011 Apr;28(4):291-301.
    PMID: 21384252 DOI: 10.1007/s10815-011-9552-6
    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
    Matched MeSH terms: MicroRNAs/metabolism
  12. Jiang H, Bai L, Ji L, Bai Z, Su J, Qin T, et al.
    J Virol, 2020 07 16;94(15).
    PMID: 32461319 DOI: 10.1128/JVI.00294-20
    Japanese encephalitis virus (JEV) infection alters microRNA (miRNA) expression in the central nervous system (CNS). However, the mechanism contributing to miRNA regulation in the CNS is not known. We discovered global degradation of mature miRNA in mouse brains and neuroblastoma (NA) cells after JEV infection. Integrative analysis of miRNAs and mRNAs suggested that several significantly downregulated miRNAs and their targeted mRNAs were clustered into an inflammation pathway. Transfection with miRNA 466d-3p (miR-466d-3p) decreased interleukin-1β (IL-1β) expression and inhibited JEV replication in NA cells. However, miR-466d-3p expression increased after JEV infection in the presence of cycloheximide, indicating that viral protein expression reduced miR-466d-3p expression. We generated all the JEV coding proteins and demonstrated NS3 helicase protein to be a potent miRNA suppressor. The NS3 proteins of Zika virus, West Nile virus, and dengue virus serotype 1 (DENV-1) and DENV-2 also decreased miR-466d-3p expression. Results from helicase-blocking assays and in vitro unwinding assays demonstrated that NS3 could unwind pre-miR-466d and induce miRNA dysfunction. Computational models and an RNA immunoprecipitation assay revealed arginine-rich domains of NS3 to be crucial for pre-miRNA binding and degradation of host miRNAs. Importantly, site-directed mutagenesis of conserved residues in NS3 revealed that R226G and R202W reduced the binding affinity and degradation of pre-miR-466d. These results expand the function of flavivirus helicases beyond unwinding duplex RNA to degrade pre-miRNAs. Hence, we revealed a new mechanism for NS3 in regulating miRNA pathways and promoting neuroinflammation.IMPORTANCE Host miRNAs have been reported to regulate JEV-induced inflammation in the CNS. We found that JEV infection could reduce expression of host miRNA. The helicase region of the NS3 protein bound specifically to miRNA precursors and could lead to incorrect unwinding of miRNA precursors, thereby reducing the expression of mature miRNAs. This observation led to two major findings. First, our results suggested that JEV NS3 protein induced miR-466d-3p degradation, which promoted IL-1β expression and JEV replication. Second, arginine molecules on NS3 were the main miRNA-binding sites, because we demonstrated that miRNA degradation was abolished if arginines at R226 and R202 were mutated. Our study provides new insights into the molecular mechanism of JEV and reveals several amino acid sites that could be mutated for a JEV vaccine.
    Matched MeSH terms: MicroRNAs/metabolism*
  13. Guo L, Zheng X, Wang E, Jia X, Wang G, Wen J
    Biomed Pharmacother, 2020 May;125:109784.
    PMID: 32092815 DOI: 10.1016/j.biopha.2019.109784
    Doxorubicin (DOX) is an eff ;ective chemotherapeutic drug to suppress the progression of various types of tumors. However, its clinical application has been largely limited due to its potential cardiotoxicity. MicroRNAs (miRNAs) are emerged as critical regulators of cardiac injury. This study was aimed to explore the effects of irigenin (IR), as an isoflavonoid isolated from the rhizome of Belamcanda chinensis, on DOX-induced cardiotoxicity using the in vivo and in vitrostudies. The results indicated that DOX-induced fibrosis, cardiac dysfunction and injury were markedly attenuated by IR through reducing apoptosis, oxidative stress and inflammation in heart tissue samples. Importantly, DOX resulted in a remarkable decrease of miR-425 in heart tissues and cells, which was significantly rescued by IR. Receptor-interacting protein kinase 1 (RIPK1) was discovered to be a direct target of miR-425. DOX induced over-expression of RIPK1 both in vivo and in vitro, which were greatly decreased by IR. Transfection with miR-425 mimic could inhibit RIPK1 expression, whereas reducing miR-425 increased RIPK1 expression levels. In parallel to miR-425 over-expression, RIPK1 knockdown could attenuate apoptosis, reactive oxygen species (ROS) production and inflammation in HL-1 cells. However, over-expression of RIPK1 markedly abolished miR-425 mimic-induced apoptosis, ROS accumulation and inflammatory response in DOX-exposed cells. Herein, miR-425 could ameliorate cardiomyocyte injury through directly targeting RIPK1. Furthermore, activation of miR-425 by IR markedly improved DOX-induced cardiotoxicity, and therefore IR could be considered as a promising therapeutic agent for the treatment of cardiac injury.
    Matched MeSH terms: MicroRNAs/metabolism*
  14. Muhammad Yusuf AN, Raja Ali RA, Muhammad Nawawi KN, Mokhtar NM
    Malays J Pathol, 2020 Dec;42(3):377-384.
    PMID: 33361718
    INTRODUCTION: Recent studies have published the roles of exosomal miRNAs in the pathogenesis of various type of malignancies and can be developed as potential biomarkers for diagnostic, prognostic and therapeutic purposes. The aim of this study was to identify the expression level of selected miRNAs (miR-182, miR-301a, and miR-373) in exosomes of the serum and ascitic fluid in patients with non-alcoholic steatohepatitis (NASH)-related liver cirrhosis with or without hepatocellular carcinoma (HCC).

    MATERIALS AND METHODS: A literature search was performed to identify potential miRNAs involved in the pathogenesis of HCC. Unpaired serum and ascitic fluid were obtained from 52 patients with NASH related liver cirrhosis (n=26 for each group of with and without HCC). Exosomal miRNA was isolated from all samples. Expression levels of miR-182, miR-301a and miR- 373 were determined using quantitative real-time PCR.

    RESULTS: Serum-derived exosomal mir-182, miR-301a and miR-373 were significantly up-regulated with fold change of 1.77, 2.52, and 1.67 (p< 0.05) respectively in NASH-induced liver cirrhosis with HCC as compared to NASH-induced liver cirrhosis without HCC. We identified the expression levels of ascitic fluid-derived exosomal mir-182, miR-301a, and miR-373 were significantly up-regulated with fold change of 1.6, 1.94 and 2.13 respectively in NASH-induced liver cirrhosis with HCC as compared to NASH-induced liver cirrhosis without HCC (p <0.05). There was poor correlation expression of all the selected exosomal miRNA between serum- and ascitic fluid-derived in HCC group.

    CONCLUSIONS: This preliminary data showed significant increase in the expression levels of exosomal miR-182, miR-301a and miR- 373 in both serum and ascetic fluid suggesting the possible roles of these miRNAs as circulating biomarkers for NASH-induced liver cirrhosis with hepatocellular carcinoma.

    Matched MeSH terms: MicroRNAs/metabolism*
  15. Sim MS, Soga T, Pandy V, Wu YS, Parhar IS, Mohamed Z
    Metab Brain Dis, 2017 Dec;32(6):1767-1783.
    PMID: 28681200 DOI: 10.1007/s11011-017-0061-x
    Methamphetamine (METH) is a highly addictive psycho-stimulant that induces behavioral changes due to high level of METH-induced dopamine in the brain. Nucleus accumbens (NAc) plays an important role in these changes, especially in drug addiction. However, little is known about the underlying molecular mechanisms of METH-induced addiction. The objective of this study was to establish a behavioral model of METH use and addiction using escalating doses of METH over 15 days and to determine the global miRNA expression profiling in NAc of METH-addicted rats. In the behavioral study, the experimental rats were divided into 3 groups of 9 each: a control group, a single dose METH (5 mg/kg) treatment group and a continuous 15 alternate days METH (0.25, 0.5, 1, 2, 3, 4, 5 mg/kg) treatment group. Following that, six rats in each group were randomly selected for global miRNA profiling. Addiction behavior in rats was established using Conditioned Place Preference task. The analysis of the miRNA profiling in the NAc was performed using Affymetric microarray GeneChip® System. The findings indicated that a continuous 15 alternate days METH treatment rats showed a preference for the drug-paired compartment of the CPP. However, a one-time acute treatment with 5 mg/kg METH did not show any significant difference in preference when compared with controls. Differential profiling of miRNAs indicated that 166 miRNAs were up-regulated and 4 down-regulated in the chronic METH-treatment group when compared to controls. In comparing the chronic treatment group with the acute treatment group, 52 miRNAs were shown to be up-regulated and 7 were down-regulated. MiRNAs including miR-496-3p, miR-194-5p, miR-200b-3p and miR-181a-5p, were found to be significantly associated with METH addiction. Canonical pathway analysis revealed that a high number of METH addiction-related miRNAs play important roles in the MAPK, CREB, G-Protein Couple Receptor and GnRH Signaling pathways. Our results suggest that dynamic changes occur in the expression of miRNAs following METH exposure and addiction.
    Matched MeSH terms: MicroRNAs/metabolism*
  16. Nguyen DDN, Zain SM, Kamarulzaman MH, Low TY, Chilian WM, Pan Y, et al.
    Am J Physiol Heart Circ Physiol, 2021 10 01;321(4):H770-H783.
    PMID: 34506226 DOI: 10.1152/ajpheart.00058.2021
    Vascular aging is highly associated with cardiovascular morbidity and mortality. Although the senescence of vascular smooth muscle cells (VSMCs) has been well established as a major contributor to vascular aging, intracellular and exosomal microRNA (miRNA) signaling pathways in senescent VSMCs have not been fully elucidated. This study aimed to identify the differential expression of intracellular and exosomal miRNA in human VSMCs (hVSMCs) during replicative senescence. To achieve this aim, intracellular and exosomal miRNAs were isolated from hVSMCs and subsequently subjected to whole genome small RNA next-generation sequencing, bioinformatics analyses, and qPCR validation. Three significant findings were obtained. First, senescent hVSMC-derived exosomes tended to cluster together during replicative senescence and the molecular weight of the exosomal protein tumor susceptibility gene 101 (TSG-101) increased relative to the intracellular TSG-101, suggesting potential posttranslational modifications of exosomal TSG-101. Second, there was a significant decrease in both intracellular and exosomal hsa-miR-155-5p expression [n = 3, false discovery rate (FDR) < 0.05], potentially being a cell type-specific biomarker of hVSMCs during replicative senescence. Importantly, hsa-miR-155-5p was found to associate with cell-cycle arrest and elevated oxidative stress. Lastly, miRNAs from the intracellular pool, that is, hsa-miR-664a-3p, hsa-miR-664a-5p, hsa-miR-664b-3p, hsa-miR-4485-3p, hsa-miR-10527-5p, and hsa-miR-12136, and that from the exosomal pool, that is, hsa-miR-7704, were upregulated in hVSMCs during replicative senescence (n = 3, FDR < 0.05). Interestingly, these novel upregulated miRNAs were not functionally well annotated in hVSMCs to date. In conclusion, hVSMC-specific miRNA expression profiles during replicative senescence potentially provide valuable insights into the signaling pathways leading to vascular aging.NEW & NOTEWORTHY This is the first study on intracellular and exosomal miRNA profiling on human vascular smooth muscle cells during replicative senescence. Specific dysregulated sets of miRNAs were identified from human vascular smooth muscle cells. Hsa-miR-155-5p was significantly downregulated in both intracellular and exosomal hVSMCs, suggesting its crucial role in cellular senescence. Hsa-miR-155-5p might be the mediator in linking cellular senescence to vascular aging and atherosclerosis.
    Matched MeSH terms: MicroRNAs/metabolism*
  17. Cheng HP, Huang CJ, Tsai ML, Ong HT, Cheong SK, Choo KB, et al.
    Int J Med Sci, 2021;18(8):1798-1809.
    PMID: 33746597 DOI: 10.7150/ijms.50871
    Cell migration and invasion are modulated by epithelial-to-mesenchymal transition (EMT) and the reverse MET process. Despite the detection of microRNA-362 (miR-362, both the miR-362-5p and -3p species) in cancers, none of the identified miR-362 targets is a mesenchymal or epithelial factor to link miR-362 with EMT/MET and metastasis. Focusing on the TGF-β/SMAD signaling pathway in this work, luciferase assays and western blot data showed that miR-362 targeted and negatively regulated expression of SMAD4 and E-cadherin, but not SNAI1, which is regulated by SMAD4. However, miR-362 knockdown also down-regulated SMAD4 and SNAI1, but up-regulated E-cadherin expression. Wound-healing and transwell assays further showed that miR-362 knockdown suppressed cell migration and invasion, effects which were reversed by over-expressing SMAD4 or SNAI1, or by knocking down E-cadherin in the miR-362 knockdown cells. In orthotopic mice, miR-362 knockdown inhibited metastasis, and displayed the same SMAD4 and E-cadherin expression profiles in the tumors as in the in vitro studies. A scheme is proposed to integrate miR-362 negative regulation via SMAD4, and to explain miR-362 positive regulation of SMAD4 via miR-362 targeting of known SMAD4 suppressors, BRK and DACH1, which would have resulted in SMAD4 depletion and annulment of subsequent involvement in TGF-β signaling actions. Hence, miR-362 both negatively and positively regulates SMAD4 expression in TGF-β/SMAD signaling pathway to suppress cell motility and invasiveness and metastasis, and may explain the reported clinical association of anti-miR-362 with suppressed metastasis in various cancers. MiR-362 knockdown in miR-362-positive cancer cells may be used as a therapeutic strategy to suppress metastasis.
    Matched MeSH terms: MicroRNAs/metabolism*
  18. Rasdi Z, Kamaludin R, Ab Rahim S, Syed Ahmad Fuad SB, Othman MHD, Siran R, et al.
    Sci Rep, 2020 Apr 03;10(1):5882.
    PMID: 32246001 DOI: 10.1038/s41598-020-62420-1
    This study aimed to examine the impact of BPA exposure on pregnancy and foetuses on cardiac tissues and the expression of cardiac microRNAs (miRNAs) related to heart development and diseases. Pregnancy is known to be the "critical windows" in determining the offspring physical and cells development in their life after birth. The increment of the risk of cardiovascular disease (CVD) in a later stage of life has been reported by few studies demonstrated from prenatal exposure of BPA. BPA has been shown to alter miRNAs expression profiles for organ development, regeneration and metabolic functions. These alterations have been associated with the risk of CVDs. However, the associations between pregnancy outcomes and miRNAs expression in cardiac of mother- and foetuses-exposed to BPA are still not entirely explored. In BPA-exposed pregnant rat groups, a significant weight gained was observed in comparison to control (p 
    Matched MeSH terms: MicroRNAs/metabolism*
  19. Phuah NH, Azmi MN, Awang K, Nagoor NH
    Mol Cells, 2017 Apr;40(4):291-298.
    PMID: 28401751 DOI: 10.14348/molcells.2017.2285
    MicroRNAs (miRNAs) are short non-coding RNAs that regulate genes posttranscriptionally. Past studies have reported that miR-210 is up-regulated in many cancers including cervical cancer, and plays a pleiotropic role in carcinogenesis. However, its role in regulating response towards anti-cancer agents has not been fully elucidated. We have previously reported that the natural compound 1'S-1'-acetoxychavicol acetate (ACA) is able to induce cytotoxicity in various cancer cells including cervical cancer cells. Hence, this study aims to investigate the mechanistic role of miR-210 in regulating response towards ACA in cervical cancer cells. In the present study, we found that ACA down-regulated miR-210 expression in cervical cancer cells, and suppression of miR-210 expression enhanced sensitivity towards ACA by inhibiting cell proliferation and promoting apoptosis. Western blot analysis showed increased expression of mothers against decapentaplegic homolog 4 (SMAD4), which was predicted as a target of miR-210 by target prediction programs, following treatment with ACA. Luciferase reporter assay confirmed that miR-210 binds to sequences in 3'UTR of SMAD4. Furthermore, decreased in SMAD4 protein expression was observed when miR-210 was overexpressed. Conversely, SMAD4 protein expression increased when miR-210 expression was suppressed. Lastly, we demonstrated that overexpression of SMAD4 augmented the anti-proliferative and apoptosis-inducing effects of ACA. Taken together, our results demonstrated that down-regulation of miR-210 conferred sensitivity towards ACA in cervical cancer cells by targeting SMAD4. These findings suggest that combination of miRNAs and natural compounds could provide new strategies in treating cervical cancer.
    Matched MeSH terms: MicroRNAs/metabolism*
  20. Nurul-Syakima AM, Yoke-Kqueen C, Sabariah AR, Shiran MS, Singh A, Learn-Han L
    Int J Mol Med, 2011 Sep;28(3):327-36.
    PMID: 21637912 DOI: 10.3892/ijmm.2011.714
    MicroRNAs (miRNAs) are small noncoding RNAs that involved in various cancer-related cellular processes. Diverse studies on expression profiling of miRNAs have been performed and the data showed that some miRNAs are up-regulated or down-regulated in cancer. Until now, there are no data published on the miRNA expression in head and neck cancers from Malaysia. Hence, this study aimed to investigate potentially crucial miRNAs in head and neck cancer patients from Malaysian populations. A global miRNA profiling was performed on 12 samples of head and neck cancer tissue using microarray analysis followed by validation using real-time RT-PCR. Microarray analysis identified 10 miRNAs that could distinguish malignant head and neck cancer lesions from normal tissues; 7 miRNAs (hsa-miR-181a-2*, hsa-miR-29b-1*, hsa-miR-181a, hsa-miR-181b, hsa-miR-744, hsa-miR-1271 and hsa-miR-221*) were up-regulated while 3 miRNAs (hsa-miR-141, hsa-miR-95 and hsa-miR-101) were down-regulated. These miRNAs may contribute in a simple profiling strategy to identify individuals at higher risk of developing head and neck cancers, thus helping in the elucidation of the molecular mechanisms involved in head and neck cancer pathogenesis.
    Matched MeSH terms: MicroRNAs/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links