Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Chua KB, Lam SK, Sazaly AB, Lim ST, Paranjothy M
    Med J Malaysia, 1999 Mar;54(1):32-6.
    PMID: 10972002
    A provisional clinical diagnosis of exanthem subitum was made in six febrile infants seen in the Paediatric Unit of Assunta Hospital, Petaling Jaya, Malaysia with uvulo-palatoglossal junctional ulcers prior to the eruption of maculopapular rash. On follow-up, all six infants developed maculopapular rash with the subsidence of fever at the end of the fourth febrile day. Human herpesvirus 6 was isolated from the peripheral blood mononuclear cells during the acute phase of the illness and HHV 6 specific genome was also detected in these cells by nested polymerase chain reaction. All the six infants showed seroconversion for both specific IgG and IgM to the isolated virus. This study suggests that the presence of uvulo-palatoglossal junctional ulcers could be a useful early clinical sign of exanthem subitum due to human herpesvirus 6.
    Matched MeSH terms: Monocytes/pathology
  2. Mirsafian H, Ripen AM, Leong WM, Chear CT, Bin Mohamad S, Merican AF
    Sci Rep, 2017 07 28;7(1):6836.
    PMID: 28754963 DOI: 10.1038/s41598-017-06342-5
    X-linked agammaglobulinemia (XLA) is a rare genetic disorder, caused by mutations in BTK (Bruton's Tyrosine Kinase) gene. Deep high-throughput RNA sequencing (RNA-Seq) approach was utilized to explore the possible differences in transcriptome profiles of primary monocytes in XLA patients compared with healthy subjects. Our analysis revealed the differences in expression of 1,827 protein-coding genes, 95 annotated long non-coding RNAs (lncRNAs) and 20 novel lincRNAs between XLA patients and healthy subjects. GO and KEGG pathway analysis of differentially expressed (DE) protein-coding genes showed downregulation of several innate immune-related genes and upregulation of oxidative phosphorylation and apoptosis-related genes in XLA patients compared to the healthy subjects. Moreover, the functional prediction analysis of DE lncRNAs revealed their potential role in regulating the monocytes cell cycle and apoptosis in XLA patients. Our results suggested that BTK mutations may contribute to the dysregulation of innate immune system and increase susceptibility to apoptosis in monocytes of XLA patients. This study provides significant finding on the regulation of BTK gene in monocytes and the potential for development of innovative biomarkers and therapeutic monitoring strategies to increase the quality of life in XLA patients.
    Matched MeSH terms: Monocytes/metabolism
  3. Leong WM, Ripen AM, Mirsafian H, Mohamad SB, Merican AF
    Genomics, 2019 07;111(4):899-905.
    PMID: 29885984 DOI: 10.1016/j.ygeno.2018.05.019
    High-depth next generation sequencing data provide valuable insights into the number and distribution of RNA editing events. Here, we report the RNA editing events at cellular level of human primary monocyte using high-depth whole genomic and transcriptomic sequencing data. We identified over a ten thousand putative RNA editing sites and 69% of the sites were A-to-I editing sites. The sites enriched in repetitive sequences and intronic regions. High-depth sequencing datasets revealed that 90% of the canonical sites were edited at lower frequencies (<0.7). Single and multiple human monocytes and brain tissues samples were analyzed through genome sequence independent approach. The later approach was observed to identify more editing sites. Monocytes was observed to contain more C-to-U editing sites compared to brain tissues. Our results establish comparable pipeline that can address current limitations as well as demonstrate the potential for highly sensitive detection of RNA editing events in single cell type.
    Matched MeSH terms: Monocytes/metabolism
  4. Mirsafian H, Ripen AM, Manaharan T, Mohamad SB, Merican AF
    OMICS, 2016 11;20(11):627-634.
    PMID: 27828772
    Transcriptome analyses based on high-throughput RNA sequencing (RNA-Seq) provide powerful and quantitative characterization of cell types and in-depth understanding of biological systems in health and disease. In this study, we present a comprehensive transcriptome profile of human primary monocytes, a crucial component of the innate immune system. We performed deep RNA-Seq of monocytes from six healthy subjects and integrated our data with 10 other publicly available RNA-Seq datasets of human monocytes. A total of 1.9 billion reads were generated, which allowed us to capture most of the genes transcribed in human monocytes, including 11,994 protein-coding genes, 5558 noncoding genes (including long noncoding RNAs, precursor miRNAs, and others), 2819 pseudogenes, and 7034 putative novel transcripts. In addition, we profiled the expression pattern of 1155 transcription factors (TFs) in human monocytes, which are the main molecules in controlling the gene transcription. An interaction network was constructed among the top expressed TFs and their targeted genes, which revealed the potential key regulatory genes in biological function of human monocytes. The gene catalog of human primary monocytes provided in this study offers significant promise and future potential clinical applications in the fields of precision medicine, systems diagnostics, immunogenomics, and the development of innovative biomarkers and therapeutic monitoring strategies.
    Matched MeSH terms: Monocytes/metabolism*
  5. Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, et al.
    Eur J Pharmacol, 2015 Feb 15;749:1-11.
    PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015
    2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
    Matched MeSH terms: Monocytes/drug effects; Monocytes/physiology
  6. Tham CL, Lam KW, Rajajendram R, Cheah YK, Sulaiman MR, Lajis NH, et al.
    Eur J Pharmacol, 2011 Feb 10;652(1-3):136-44.
    PMID: 21114991 DOI: 10.1016/j.ejphar.2010.10.092
    We previously showed that 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC), suppressed the synthesis of various proinflammatory mediators. In this study we explain the mechanism of action of BHMC in lipopolysaccharide (LPS)-induced U937 monocytes and further show that BHMC prevents lethality of CLP-induced sepsis. BHMC showed dose-dependent inhibitory effects on p38, JNK and ERK 1/2 activity as determined by inhibition of phosphorylation of downstream transcription factors ATF-2, c-Jun and Elk-1 respectively. Inhibition of these transcription factors subsequently caused total abolishment of AP-1-DNA binding. BHMC inhibited p65 NF-κB nuclear translocation and DNA binding of p65 NF-κB only at the highest concentration used (12.5μM) but failed to alter phosphorylation of JNK, ERK1/2 and STAT-1. Since the inhibition of p38 activity was more pronounced we evaluated the possibility that BHMC may bind to p38. Molecular docking experiments confirmed that BHMC fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We also show that BHMC was able to improve survival from lethal sepsis in a murine caecal-ligation and puncture (CLP) model.
    Matched MeSH terms: Monocytes/metabolism
  7. Rajasuriar R, Kong YY, Nadarajah R, Abdullah NK, Spelman T, Yuhana MY, et al.
    J Transl Med, 2015;13:30.
    PMID: 25622527 DOI: 10.1186/s12967-015-0391-6
    HIV-infected individuals have an increased risk of cardiovascular disease (CVD). T-allele carriers of the CD14 C-260T single-nucleotide polymorphism (SNP) have reported increased expression of the LPS-binding receptor, CD14 and inflammation in the general population. Our aim was to explore the relationship of this SNP with monocyte/macrophage activation and inflammation and its association with sub-clinical atherosclerosis in HIV-infected individuals.
    Matched MeSH terms: Monocytes/metabolism*
  8. Amrun SN, Tan JJL, Rickett NY, Cox JA, Lee B, Griffiths MJ, et al.
    Sci Rep, 2020 03 02;10(1):3810.
    PMID: 32123257 DOI: 10.1038/s41598-020-60761-5
    Hand, foot and mouth disease (HFMD), caused by enterovirus A71 (EV-A71), presents mild to severe disease, and sometimes fatal neurological and respiratory manifestations. However, reasons for the severe pathogenesis remain undefined. To investigate this, infection and viral kinetics of EV-A71 isolates from clinical disease (mild, moderate and severe) from Sarawak, Malaysia, were characterised in human rhabdomyosarcoma (RD), neuroblastoma (SH-SY5Y) and peripheral blood mononuclear cells (PBMCs). High resolution transcriptomics was used to decipher EV-A71-host interactions in PBMCs. Ingenuity analyses revealed similar pathways triggered by all EV-A71 isolates, although the extent of activation varied. Importantly, several pathways were found to be specific to the severe isolate, including triggering receptor expressed on myeloid cells 1 (TREM-1) signalling. Depletion of TREM-1 in EV-A71-infected PBMCs with peptide LP17 resulted in decreased levels of pro-inflammatory genes for the moderate and severe isolates. Mechanistically, this is the first report describing the transcriptome profiles during EV-A71 infections in primary human cells, and the potential involvement of TREM-1 in the severe disease pathogenesis, thus providing new insights for future treatment targets.
    Matched MeSH terms: Monocytes/virology
  9. Haque N, Khan IM, Abu Kasim NH
    Cytokine, 2019 08;120:144-154.
    PMID: 31071675 DOI: 10.1016/j.cyto.2019.04.018
    The immunomodulatory properties of mesenchymal stem cells (MSCs) from autologous and allogeneic sources are useful in stimulating tissue regeneration and repair. To obtain a high number of MSCs for transplantation requires extensive in vitro expansion with culture media supplements that can cause xeno-contamination of cells potentially compromising function and clinical outcomes. In this study stem cells from human extracted deciduous teeth (SHED) were cultured in Knockout™ DMEM supplemented with either pooled human serum (pHS) or foetal bovine serum (FBS) to compare their suitability in maintaining immunomodulatory properties of cells during in vitro expansion. No significant difference in cell survival of SHED grown in pHS (pHS-SHED) or FBS (FBS-SHED) was observed when co-cultured with complement, monocytes or lymphocytes. However, significant changes in the expression of sixteen paracrine factors involved in immunomodulation were observed in the supernatants of FBS-SHED co-cultures with monocytes or lymphocytes compared to that in pHS-SHEDs after both 24 and 120 h of incubation. Further analysis of changing protein levels of paracrine factors in co-cultures using biological pathway analysis software predicted upregulation of functions associated with immunogenicity in FBS-SHED and lymphocyte co-cultures compared to pHS-SHED co-cultures. Pathway analysis also predicted significant stimulation of HMGB1 and TREM1 signalling pathways in FBS-SHED co-cultures indicating activation of immune cells and inflammation. Though FBS supplementation does not impact survival of SHED, our combinatorial biological pathway analysis supports the idea that in vitro expansion of SHEDs in pHS provides optimal conditions to minimise xeno-contamination and inflammation and maintain their immunomodulatory properties.
    Matched MeSH terms: Monocytes/cytology
  10. Singh KK, Wan-Nurfahizul-Izzati W, Ismail A
    Gut Pathog, 2010;2(1):9.
    PMID: 20727206 DOI: 10.1186/1757-4749-2-9
    Neopterin is produced by human macrophages/monocytes when stimulated with interferon-gamma. Production of neopterin is found in serum, cerebrospinal fluid (CSF) and urine of patients with infections by viruses, intracellular bacteria and parasites, autoimmune diseases, malignant tumors and patients in allograft rejection episodes.
    Matched MeSH terms: Monocytes
  11. Halim AT, Ariffin NA, Azlan M
    Inflammation, 2016 Aug;39(4):1277-84.
    PMID: 27216803 DOI: 10.1007/s10753-016-0381-8
    Monocytic microparticles (mMP) are microparticles derived from human monocytes either under in vivo or in vitro conditions. The size of mMP is between 0.1 and 1.0 μm. Apart from the size range, mMPs are also identified based on phosphatidylserine and CD14 expression on their surface, though this is not always the case. Monocytic MP are critical players in inflammation, endothelial cell function, and blood coagulation. They exhibit dual function by either helping the progression of such conditions or limiting it, depending on certain factors. Furthermore, the numbers of mMP are elevated in some autoimmune diseases, infectious diseases, and metabolic disorders. However, it is unknown whether mMP play an active role in these diseases or are simply biomarkers. The mechanism of mMP modulation is yet to be identified. In this review, we highlight the mechanism of mMP formation and the roles that they play in inflammation, blood coagulation, and different disease settings.
    Matched MeSH terms: Monocytes/ultrastructure*
  12. Yusoff FM, Kajikawa M, Matsui S, Hashimoto H, Kishimoto S, Maruhashi T, et al.
    Sci Rep, 2019 05 22;9(1):7711.
    PMID: 31118440 DOI: 10.1038/s41598-019-44176-5
    Critical limb ischemia (CLI) is associated with a high risk of limb amputation. It has been shown that cell therapy is safe and has beneficial effects on ischemic clinical symptoms in patients with CLI. The aim of this study was to further investigate the outcomes of intramuscular injection of autologous bone-marrow mononuclear cells (BM-MNCs) in a long-term follow-up period in atherosclerotic peripheral arterial disease (PAD) patients who have no optional therapy. This study was a retrospective and observational study that was carried out to evaluate long-term clinical outcomes in 42 lower limbs of 30 patients with atherosclerotic PAD who underwent BM-MNC implantation. The median follow-up period was 9.25 (range, 6-16) years. The overall amputation-free rates were 73.0% at 5 years after BM-MNC implantation and 70.4% at 10 years in patients with atherosclerotic PAD. The overall amputation-free rates at 5 years and at 10 years after implantation of BM-MNCs were significantly higher in atherosclerotic PAD patients than in internal controls and historical controls. There were no significant differences in amputation rates between the internal control group and historical control group. The rate of overall survival was not significantly different between the BM-MNC implantation group and the historical control group. Implantation of autologous BM-MNCs is feasible for a long-term follow-up period in patients with CLI who have no optional therapy.
    Matched MeSH terms: Monocytes/transplantation*
  13. Yusof WN, Nagaratnam M, Koh CL, Puthucheary S, Pang T
    Microbiol. Immunol., 1993;37(8):667-70.
    PMID: 8246829
    Human mononuclear cells pre-labeled with [3H]arachidonic acid were shown to release metabolites following in vitro addition of heat-killed Salmonella typhi (HKST). The amount of label released was significantly higher than that seen with live S. typhi (LST). Addition of increasing amounts of HKST resulted in an increased release of metabolites. Enzyme immunoassay of the culture supernatants revealed that the bulk of the metabolite released was prostaglandin E2 (PGE2). Leukotriene B4 (LTB4) and leukotriene C4 (LTC4) were not detectable in the culture supernatants. The significance and implications of these results are discussed.
    Matched MeSH terms: Monocytes/metabolism*
  14. Yaacob NS, Bakar RA, Norazmi MN
    Ann Clin Lab Sci, 2004;34(1):47-56.
    PMID: 15038667
    The polymerase chain reaction (PCR) is useful for amplifying specific mRNAs, particularly those present in low copy numbers. However, due to the exponential nature of the amplification process, PCR cannot readily be used to quantify gene expression. A competitive PCR technique was developed to address this shortcoming. An internal standard that is 100% homologous to, but shorter than, the target gene was constructed. The practicality of the method was demonstrated by determining the expression levels of a human transcription factor, peroxisome proliferator-activated receptor gamma 1 (hPPARgamma1) which is normally present in low copy numbers in selected cells. A mock system was used to test the accuracy and sensitivity of the method, which was subsequently used to determine the expression of this receptor in lipopolysaccharide (LPS)-activated monocytes, which are known to express hPPARgamma1 differentially during cellular activation. Densitometric analysis showed that the competitive PCR method reliably estimated the expression levels of hPPARgamma1 at the attomole (10(-18)) level in monocytes.
    Matched MeSH terms: Monocytes/chemistry
  15. Mat MC, Mohamed AS, Hamid SS
    Lipids Health Dis, 2011;10:216.
    PMID: 22104447 DOI: 10.1186/1476-511X-10-216
    Oxidized low density lipoprotein plays an important role in development of foam cells in atherosclerosis. The study was focused on regulation of primary human monocyte growth and CD11b expression in presence of Nigella sativa oil.
    Matched MeSH terms: Monocytes/cytology; Monocytes/drug effects; Monocytes/metabolism; Monocytes/physiology*
  16. Ismail SM, Sundar UM, Hui CK, Aminuddin A, Ugusman A
    J Taibah Univ Med Sci, 2018 Jun;13(3):225-231.
    PMID: 31435328 DOI: 10.1016/j.jtumed.2018.01.003
    Objectives: Inflammation plays a key role in the pathogenesis of atherosclerosis. Piper sarmentosum is an herb with antioxidant and anti-atherosclerotic activities. The aim of this study was to evaluate the anti-inflammatory properties of an aqueous extract of P. sarmentosum (AEPS) in human umbilical vein endothelial cells (HUVECs).

    Methods: HUVECs were divided into six groups: control, treatment with 10 ng/ml TNF-α, and co-treatment of 10 ng/ml TNF-α with four different concentrations of AEPS (100, 150, 250, and 300 μg/ml) for 24 h. Subsequently, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) protein expression, U937 monocyte cells adhesion, and nuclear factor-kappaB (NF-κB) p65 expression in HUVECs were measured.

    Results: Treatment of TNF-α-stimulated HUVECs with AEPS at different concentrations resulted in decreased VCAM-1 and ICAM-1 protein expression in a dose-dependent manner. Furthermore, AEPS also inhibited TNF-α-stimulated U937 monocyte cells adhesion to HUVECs. In addition, AEPS reduced TNF-α-induced NF-κB p65 expression in a dose-dependent manner.

    Conclusions: The results indicated that AEPS suppressed TNF-α-induced VCAM-1 and ICAM-1 expression NF-κB signaling.

    Matched MeSH terms: Monocytes
  17. See JX, Chandramathi S, Abdulla MA, Vadivelu J, Shankar EM
    PLoS Negl Trop Dis, 2017 Aug;11(8):e0005702.
    PMID: 28820897 DOI: 10.1371/journal.pntd.0005702
    BACKGROUND: Melioidosis is a neglected tropical disease endemic across South East Asia and Northern Australia. The etiological agent, Burkholderia pseudomallei (B.pseudomallei), is a Gram-negative, rod-shaped, motile bacterium residing in the soil and muddy water across endemic regions of the tropical world. The bacterium is known to cause persistent infections by remaining latent within host cells for prolonged duration. Reactivation of the recrudescent disease often occurs in elders whose immunity wanes. Moreover, recurrence rates in melioidosis patients can be up to ~13% despite appropriate antibiotic therapy, suggestive of bacterial persistence and inefficacy of antibiotic regimens. The mechanisms behind bacterial persistence in the host remain unclear, and hence understanding host immunity during persistent B. pseudomallei infections may help designing potential immunotherapy.

    METHODOLOGY/PRINCIPAL FINDINGS: A persistent infection was generated using a small-colony variant (SCV) and a wild-type (WT) B. pseudomallei in BALB/c mice via intranasal administration. Infected mice that survived for >60 days were sacrificed. Lungs, livers, spleens, and peripheral blood mononuclear cells were harvested for experimental investigations. Histopathological changes of organs were observed in the infected mice, suggestive of successful establishment of persistent infections. Moreover, natural killer (NK) cell frequency was increased in SCV- and WT-infected mice. We observed programmed death-1 (PD-1) upregulation on B cells of SCV- and WT-infected mice. Interestingly, PD-1 upregulation was only observed on NK cells and monocytes of SCV-infected mice. In contrast, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) downregulation was seen on NK cells of WT-infected mice, and on monocytes of SCV- and WT-infected mice.

    CONCLUSIONS/SIGNIFICANCE: The SCV and the WT of B. pseudomallei distinctly upregulated PD-1 expression on B cells, NK cells, and monocytes to dampen host immunity, which likely facilitates bacterial persistence. PD-1/PD-L1 pathway appears to play an important role in the persistence of B. pseudomallei in the host.

    Matched MeSH terms: Monocytes/chemistry
  18. Daftarian N, Zandi S, Piryaie G, Nikougoftar Zarif M, Ranaei Pirmardan E, Yamaguchi M, et al.
    FASEB J, 2020 Jun;34(6):8001-8011.
    PMID: 32333612 DOI: 10.1096/fj.201901902RR
    Macrophages are the main infiltrating immune cells in choroidal neovascularization (CNV), a hallmark of the human wet, or neovascular age-related macular degeneration (AMD). Due to their plasticity and ability to adapt to the local microenvironment in a tissue-dependent manner, macrophages display polar functional phenotypes characterized by their cell surface markers and their cytokine profiles. We found accumulation of hemoglobin-scavenging cluster of differentiation 163 (CD163)(+) macrophages in laser-induced CNV lesions and higher expression of CD163(+) monocytes in the peripheral blood on day 7 post injury in mice. In comparison, CD80(+) macrophages did not differ with laser-injury in young or aged mice and did not significantly change in the peripheral blood of CNV mice. We examined the percentages of CD163(+), CD206(+), and CD80(+) monocytes in the peripheral blood of patients with wet AMD, patients with dry AMD, and in age-matched individuals without AMD as controls. Percentages of peripheral blood CD163(+) monocytes in both dry AMD (P 
    Matched MeSH terms: Monocytes
  19. Bakhtiar A, Chowdhury EH
    Asian J Pharm Sci, 2021 Mar;16(2):236-252.
    PMID: 33995617 DOI: 10.1016/j.ajps.2020.11.002
    Genetic intervention via the delivery of functional genes such as plasmid DNA (pDNA) and short-interfering RNA (siRNA) offers a great way to treat many single or multiple genetic defects effectively, including mammary carcinoma. Delivery of naked therapeutic genes or siRNAs is, however, short-lived due to biological clearance by scavenging nucleases and circulating monocytes. Low cellular internalization of negatively-charged nucleic acids further causes low transfection or silencing activity. Development of safe and effectual gene vectors is therefore undeniably crucial to the success of nucleic acid delivery. Inorganic nanoparticles have attracted considerable attention in the recent years due to their high loading capacity and encapsulation activity. Here we introduce strontium salt-based nanoparticles, namely, strontium sulfate, strontium sulfite and strontium fluoride as new inorganic nanocarriers. Generated strontium salt particles were found to be nanosized with high affinity towards negatively-charged pDNA and siRNA. Degradation of the particles was seen with a drop in pH, suggesting their capacity to respond to pH change and undergo dissolution at endosomal pH to release the genetic materials. While the particles are relatively nontoxic towards the cells, siRNA-loaded SrF2 and SrSO3 particles exerted superior transgene expression and knockdown activity of MAPK and AKT, leading to inhibition of their phosphorylation to a distinctive extent in both MCF-7 and 4T1 cells. Strontium salt nanoparticles have thus emerged as a promising tool for applications in cancer gene therapy.
    Matched MeSH terms: Monocytes
  20. Baker EJ, Yusof MH, Yaqoob P, Miles EA, Calder PC
    Mol Aspects Med, 2018 12;64:169-181.
    PMID: 30102930 DOI: 10.1016/j.mam.2018.08.002
    Endothelial cells (ECs) play a role in the optimal function of blood vessels. When endothelial function becomes dysregulated, the risk of developing atherosclerosis increases. Specifically, upregulation of adhesion molecule expression on ECs promotes the movement of leukocytes, particularly monocytes, into the vessel wall. Here, monocytes differentiate into macrophages and may become foam cells, contributing to the initiation and progression of an atherosclerotic plaque. The ability of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) to influence the expression of adhesion molecules by ECs and to modulate leukocyte-endothelial adhesion has been studied in cell culture using various types of ECs, in animal feeding studies and in human trials; the latter have tended to evaluate soluble forms of adhesion molecules that circulate in the bloodstream. These studies indicate that n-3 PUFAs (both eicosapentaenoic acid and docosahexaenoic acid) can decrease the expression of key adhesion molecules, such as vascular cell adhesion molecule 1, by ECs and that this results in decreased adhesive interactions between leukocytes and ECs. These findings suggest that n-3 PUFAs may lower leukocyte infiltration into the vascular wall, which could contribute to reduced atherosclerosis and lowered risk of cardiovascular disease.
    Matched MeSH terms: Monocytes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links