• 1 Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor, Malaysia; Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
  • 2 Centre for NanoHealth, Swansea University Medical School, Swansea, UK
  • 3 Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia. Electronic address:
Cytokine, 2019 08;120:144-154.
PMID: 31071675 DOI: 10.1016/j.cyto.2019.04.018


The immunomodulatory properties of mesenchymal stem cells (MSCs) from autologous and allogeneic sources are useful in stimulating tissue regeneration and repair. To obtain a high number of MSCs for transplantation requires extensive in vitro expansion with culture media supplements that can cause xeno-contamination of cells potentially compromising function and clinical outcomes. In this study stem cells from human extracted deciduous teeth (SHED) were cultured in Knockout™ DMEM supplemented with either pooled human serum (pHS) or foetal bovine serum (FBS) to compare their suitability in maintaining immunomodulatory properties of cells during in vitro expansion. No significant difference in cell survival of SHED grown in pHS (pHS-SHED) or FBS (FBS-SHED) was observed when co-cultured with complement, monocytes or lymphocytes. However, significant changes in the expression of sixteen paracrine factors involved in immunomodulation were observed in the supernatants of FBS-SHED co-cultures with monocytes or lymphocytes compared to that in pHS-SHEDs after both 24 and 120 h of incubation. Further analysis of changing protein levels of paracrine factors in co-cultures using biological pathway analysis software predicted upregulation of functions associated with immunogenicity in FBS-SHED and lymphocyte co-cultures compared to pHS-SHED co-cultures. Pathway analysis also predicted significant stimulation of HMGB1 and TREM1 signalling pathways in FBS-SHED co-cultures indicating activation of immune cells and inflammation. Though FBS supplementation does not impact survival of SHED, our combinatorial biological pathway analysis supports the idea that in vitro expansion of SHEDs in pHS provides optimal conditions to minimise xeno-contamination and inflammation and maintain their immunomodulatory properties.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.