Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Chanthira Kumar H, Lim XY, Mohkiar FH, Suhaimi SN, Mohammad Shafie N, Chin Tan TY
    Integr Cancer Ther, 2022;21:15347354221132848.
    PMID: 36448674 DOI: 10.1177/15347354221132848
    Cancer is a major cause of morbidity and mortality worldwide and therefore there has been interest in discovering the phytoconstituents of medicinal plants exhibiting anticancer activities. Morinda citrifolia L., commonly known as Noni, has shown anticancer properties in in vitro, in vivo, and in clinical studies. A systematic review was conducted to collate scientific evidence on the anticancer properties of M. citrifolia using pre-determined keywords on 5 electronic databases: MEDLINE, CENTRAL, LILACS, Web of Science, and EBSCOHost. A total of 51 clinical and preclinical studies comprising 41 efficacy and 10 safety studies were included in this review. Our findings showed that M. citrifolia demonstrated various anticancer properties in different cancer models, via multiple mechanisms including antitumor, antiproliferative, pro-apoptotic, antiangiogenesis, antimigratory, anti-inflammatory, and immunomodulatory activities. M. citrifolia is deemed to be a potentially valuable medicinal plant in the treatment of cancer through its many intrinsic pathways. More well-designed and reported preclinical efficacy and safety studies are needed to allow for better translation into future clinical studies which could further substantiate the role of M. citriflolia in cancer treatment.
    Matched MeSH terms: Immunomodulation
  2. Kow CS, Hasan SS
    Chest, 2021 05;159(5):2108-2109.
    PMID: 33965134 DOI: 10.1016/j.chest.2020.11.073
    Matched MeSH terms: Immunomodulation
  3. Govindasamy V, Rajendran A, Lee ZX, Ooi GC, Then KY, Then KL, et al.
    Cell Biol Int, 2021 Oct;45(10):1999-2016.
    PMID: 34245637 DOI: 10.1002/cbin.11652
    Ageing and age-related diseases share some basic origin that largely converges on inflammation. Precisely, it boils down to a common pathway characterised by the appearance of a fair amount of proinflammatory cytokines known as inflammageing. Among the proposed treatment for antiageing, MSCs gained attention in recent years. Since mesenchymal stem cells (MSCs) can differentiate itself into a myriad of terminal cells, previously it was believed that these cells migrate to the site of injury and perform their therapeutic effect. However, with the more recent discovery of huge amounts of paracrine factors secreted by MSCs, it is now widely accepted that these cells do not engraft upon transplantation but rather unveil their benefits through excretion of bioactive molecules namely those involved in inflammatory and immunomodulatory activities. Conversely, the true function of these paracrine changes has not been thoroughly investigated all these years. Hence, this review will describe in detail on ways MSCs may capitalize its paracrine properties in modulating antiageing process. Through a comprehensive literature search various elements in the antiageing process, we aim to provide a novel treatment perspective of MSCs in antiageing related clinical conditions.
    Matched MeSH terms: Immunomodulation*
  4. Panos Z, Giannopoulos G, Papangeli E, Antalis E, Pavli A, Spathis A, et al.
    IDCases, 2016;6:23-5.
    PMID: 27672562 DOI: 10.1016/j.idcr.2016.09.001
    The first, to our knowledge, case of the aseptic abscesses syndrome as a complication of traveler's diarrhea after a trip to Malaysia is presented. The patient failed to respond to several antimicrobials. The diagnosis was histologically confirmed and the patient only responded to immunomodulatory therapy with corticosteroids and methotrexate. Travel physicians should be aware of this entity reviewed herein in the context of traveler's diarrhea.
    Matched MeSH terms: Immunomodulation
  5. Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, et al.
    Cell Death Dis, 2022 Jul 04;13(7):580.
    PMID: 35787632 DOI: 10.1038/s41419-022-05034-x
    Mesenchymal stem cells (MSCs) can be widely isolated from various tissues including bone marrow, umbilical cord, and adipose tissue, with the potential for self-renewal and multipotent differentiation. There is compelling evidence that the therapeutic effect of MSCs mainly depends on their paracrine action. Extracellular vesicles (EVs) are fundamental paracrine effectors of MSCs and play a crucial role in intercellular communication, existing in various body fluids and cell supernatants. Since MSC-derived EVs retain the function of protocells and have lower immunogenicity, they have a wide range of prospective therapeutic applications with advantages over cell therapy. We describe some characteristics of MSC-EVs, and discuss their role in immune regulation and regeneration, with emphasis on the molecular mechanism and application of MSC-EVs in the treatment of fibrosis and support tissue repair. We also highlight current challenges in the clinical application of MSC-EVs and potential ways to overcome the problem of quality heterogeneity.
    Matched MeSH terms: Immunomodulation
  6. Chiou SH, Ong HKA, Chou SJ, Aldoghachi AF, Loh JK, Verusingam ND, et al.
    Prog Mol Biol Transl Sci, 2023;199:131-154.
    PMID: 37678969 DOI: 10.1016/bs.pmbts.2023.04.002
    Mesenchymal stem cells (MSCs) differentiated from human induced pluripotent stem cells (iPSC) or induced MSC (iMSCs) are expected to address issues of scalability and safety as well as the difficulty in producing homogenous clinical grade MSCs as demonstrated by the promising outcomes from preclinical and clinical trials, currently ongoing. The assessment of iMSCs based in vitro and in vivo studies have thus far showed more superior performance as compared to that of the primary or native human MSCs, in terms of cell proliferation, expansion capacity, immunomodulation properties as well as the influence of paracrine signaling and exosomal influence in cell-cell interaction. In this chapter, an overview of current well-established methods in generating a sustainable source of iMSCs involving well defined culture media is discussed followed by the properties of iMSC as compared to that of MSC and its promising prospects for continuous development into potential clinical grade applications.
    Matched MeSH terms: Immunomodulation
  7. George A, Suzuki N, Abas AB, Mohri K, Utsuyama M, Hirokawa K, et al.
    Phytother Res, 2016 Apr;30(4):627-35.
    PMID: 26816234 DOI: 10.1002/ptr.5571
    This study was aimed to investigate the capacity of a standardized root water extract of Eurycoma longifolia (Tongkat Ali, TA), Physta® to modulate human immunity in a middle-aged Japanese population. This randomized, double-blind, placebo-controlled, parallel study was conducted for 4 weeks. Eighty-four of 126 subjects had relatively lower scores according to Scoring of Immunological Vigor (SIV) screening. Subjects were instructed to ingest either 200 mg/day of TA or rice powder as a placebo for 4 weeks [TA and Placebo (P) groups] and to visit a clinic in Tokyo twice (weeks 0 and 4). SIV, immunological grade, immunological age, and other immune parameters were measured. Eighty-three subjects completed the study; 40 in the TA group and 41 in the P group were statistically analyzed, whereas two were excluded from the analyses. At week 4, the SIV and immunological grade were significantly higher in the TA group than those in P group (p 
    Matched MeSH terms: Immunomodulation*
  8. Rajesh Ramasamy
    MyJurnal
    Immunomodulation is essential for controlling the immune system to maintain efficient immune surveillance and inflammation. Both arms of immunomodulation, namely immunostimulation and immunosuppression, are equally crucial in setting the optimal balance of immune response. However, diseases or conditions such as autoimmune diseases, tissue rejection due to transplantation and chronic inflammation require downregulation of overwhelming immune reactions. The conventional immunosuppressive drugs prevent the activation of immune cells, yet create an unsafe condition with toxic adverse effects. In such predicament, mesenchymal stem cells (MSCs) emerged as one of the safe immunosuppressive regiments and widely tested in clinical trials for numerous chronic inflammatory dis-eases. Mesenchymal stem cells are the origin of the stromal/mesenchymal cells in almost all solid organs, including the pulp of the tooth. In addition to providing structural support to the organ, MSCs participate in the tissue repair and regeneration by ameliorating an overly activated immune response locally and systemically. Regardless of the source, MSCs profoundly suppress the proliferation and effector functions of both innate and adaptive immune cells. The mechanism of inhibition primarily took place in the early phase of cell cycle and mediated via suppression of mainstream signalling pathways that involve cyclins and other cell cycle proteins. The antiproliferative activity of MSCs is not only limited to the healthy immune cells but extends to the various tumour cells of the immune system. Similarly, an array of cell signalling pathways that executed by cell cycle proteins found downregulated in the pres-ence of MSCs. The immunosuppressive activity exerted by MSCs is not specific to particular immune cells where it impairs a group of the common cell signalling pathways or putative cell cycle proteins which are vital elements for the proliferation.
    Matched MeSH terms: Immunomodulation
  9. Xue J, Chen K, Hu H, Gopinath SCB
    PMID: 33988271 DOI: 10.1002/bab.2193
    Prostate cancer is one of the predominant cancers affecting men and has been widely reported. In the past, various therapies and drugs have been proposed to treat prostate cancer. Among these treatments, gene therapy has been considered to be an optimal and widely applicable treatment. Furthermore, due to the increased specificity of gene sequence complementation, the targeted delivery of complementary gene sequences may represent a useful treatment in certain instances. Various gene therapies, including tumor-suppressor gene therapy, suicide gene therapy, immunomodulation gene therapy and anti-oncogene therapies, have been established to treat a wide range of diseases, such as cardiac disease, cystic fibrosis, HIV/AIDS, diabetes, hemophilia, and cancers. To this end, several gene therapy clinical trials at various phases are underway. This overview describes the developments and progress in gene therapy, with a special focus being placed on prostate cancer.
    Matched MeSH terms: Immunomodulation
  10. Pang KL, Vijayaraghavan K, Al Sayed B, Seyed MA
    Mol Med Rep, 2018 Feb;17(2):3035-3041.
    PMID: 29257292 DOI: 10.3892/mmr.2017.8262
    The aim of the present study was to investigate the effects of betulinic acid (BetA) on the expression and distribution pattern of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH‑d), an indirect indicator of nitric oxide (NO) synthase in the thymus and spleen of mice. Mice were randomly assigned to four main groups (n=48 per group): Experimental group (BetA), positive control group (goniothalamin), vehicle control group (dimethyl sulfoxide) and control group (without vehicle). Each group was further divided into three equal subgroups according to the treatment length (4, 8 and 12 days). BetA treatment induced the expression of NADPH‑d activity in the thymus and spleen without any significant changes in the morphology of the organs. Furthermore, the expression pattern of NADPH‑d in BetA‑treated animals was significantly increased compared with that in the control animals. NADPH‑d expression in the thymus and spleen suggests that NO signaling may be a potential mechanism underlying the BetA‑induced immunomodulation in these organs. These findings are of direct clinical relevance and may contribute to the further development of BetA as a therapeutic drug.
    Matched MeSH terms: Immunomodulation/drug effects
  11. Zheng Y, Wang Q, Zhuang W, Lu X, Miron A, Chai TT, et al.
    Molecules, 2016 Nov 02;21(11).
    PMID: 27827862
    Lotus is an edible and medicinal plant, and the extracts from its different parts exhibit various bioactivities. In the present study, the hot water-soluble polysaccharides from lotus seeds (LSPS) were evaluated for their cancer cell cytotoxicity, immunomodulatory and antitumor activities. LSPS showed significant inhibitory effects on the mouse gastric cancer MFC cells, human liver cancer HuH-7 cells and mouse hepatocarcinoma H22 cells. The animal studies showed that LSPS inhibited tumor growth in H22 tumor-bearing mice with the highest inhibition rate of 45.36%, which is comparable to that induced by cyclophosphamide (30 mg/kg) treatment (50.79%). The concentrations of white blood cells were significantly reduced in cyclophosphamide-treated groups (p < 0.01), while LSPS showed much fewer side effects according to the hematology analysis. LSPS improved the immune response in H22 tumor-bearing mice by enhancing the spleen and thymus indexes, and increasing the levels of serum cytokines including tumor necrosis factor-α and interleukin-2. Moreover, LSPS also showed in vivo antioxidant activity by increasing superoxide dismutase activity, thus reducing the malondialdehyde level in the liver tissue. These results suggested that LSPS can be used as an antitumor and immunomodulatory agent.
    Matched MeSH terms: Immunomodulation/drug effects
  12. Kadum Yakob H, Manaf Uyub A, Fariza Sulaiman S
    J Ethnopharmacol, 2015 Aug 22;172:30-7.
    PMID: 26091966 DOI: 10.1016/j.jep.2015.06.006
    Ludwigia octovalvis is an aquatic plant widely distributed throughout the tropical and sub-tropical regions. It is commonly consumed as a health drink and traditionally used for treating various ailments such as dysentery, diarrhea, diabetes, nephritisn and headache. No information is available on its in vivo antibacterial activity against an important foodborne pathogen, Shiga toxin producing Escherichia coli O157:H7.
    Matched MeSH terms: Immunomodulation/drug effects*
  13. Rafieerad A, Yan W, Sequiera GL, Sareen N, Abu-El-Rub E, Moudgil M, et al.
    Adv Healthc Mater, 2019 08;8(16):e1900569.
    PMID: 31265217 DOI: 10.1002/adhm.201900569
    Inflammation is tightly linked to tissue injury. In regenerative medicine, immune activation plays a key role in rejection of transplanted stem cells and reduces the efficacy of stem cell therapies. Next-generation smart biomaterials are reported to possess multiple biologic properties for tissue repair. Here, the first use of 0D titanium carbide (Ti3 C2 ) MXene quantum dots (MQDs) for immunomodulation is presented with the goal of enhancing material-based tissue repair after injury. MQDs possess intrinsic immunomodulatory properties and selectively reduce activation of human CD4+ IFN-γ+ T-lymphocytes (control 87.1 ± 2.0%, MQDs 68.3 ± 5.4%) while promoting expansion of immunosuppressive CD4+ CD25+ FoxP3+ regulatory T-cells (control 5.5 ± 0.7%, MQDs 8.5 ± 0.8%) in a stimulated lymphocyte population. Furthermore, MQDs are biocompatible with bone marrow-derived mesenchymal stem cells and induced pluripotent stem cell-derived fibroblasts. Finally, Ti3 C2 MQDs are incorporated into a chitosan-based hydrogel to create a 3D platform with enhanced physicochemical properties for stem cell delivery and tissue repair. This composite hydrogel demonstrates increased conductivity while maintaining injectability and thermosensitivity. These findings suggest that this new class of biomaterials may help bridge the translational gap in material and stem cell-based therapies for tissue repair and treatment of inflammatory and degenerative diseases.
    Matched MeSH terms: Immunomodulation/drug effects*
  14. Haque N, Khan IM, Abu Kasim NH
    Cytokine, 2019 08;120:144-154.
    PMID: 31071675 DOI: 10.1016/j.cyto.2019.04.018
    The immunomodulatory properties of mesenchymal stem cells (MSCs) from autologous and allogeneic sources are useful in stimulating tissue regeneration and repair. To obtain a high number of MSCs for transplantation requires extensive in vitro expansion with culture media supplements that can cause xeno-contamination of cells potentially compromising function and clinical outcomes. In this study stem cells from human extracted deciduous teeth (SHED) were cultured in Knockout™ DMEM supplemented with either pooled human serum (pHS) or foetal bovine serum (FBS) to compare their suitability in maintaining immunomodulatory properties of cells during in vitro expansion. No significant difference in cell survival of SHED grown in pHS (pHS-SHED) or FBS (FBS-SHED) was observed when co-cultured with complement, monocytes or lymphocytes. However, significant changes in the expression of sixteen paracrine factors involved in immunomodulation were observed in the supernatants of FBS-SHED co-cultures with monocytes or lymphocytes compared to that in pHS-SHEDs after both 24 and 120 h of incubation. Further analysis of changing protein levels of paracrine factors in co-cultures using biological pathway analysis software predicted upregulation of functions associated with immunogenicity in FBS-SHED and lymphocyte co-cultures compared to pHS-SHED co-cultures. Pathway analysis also predicted significant stimulation of HMGB1 and TREM1 signalling pathways in FBS-SHED co-cultures indicating activation of immune cells and inflammation. Though FBS supplementation does not impact survival of SHED, our combinatorial biological pathway analysis supports the idea that in vitro expansion of SHEDs in pHS provides optimal conditions to minimise xeno-contamination and inflammation and maintain their immunomodulatory properties.
    Matched MeSH terms: Immunomodulation*
  15. Chia WK, Cheah FC, Abdul Aziz NH, Kampan NC, Shuib S, Khong TY, et al.
    Front Pediatr, 2021;9:615508.
    PMID: 33791258 DOI: 10.3389/fped.2021.615508
    Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as a result of an aberrant reparative response following exposures to various antenatal and postnatal insults. Despite sophisticated medical treatment in this modern era, the incidence of BPD remains unabated. The current strategies to prevent and treat BPD have met with limited success. The emergence of stem cell therapy may be a potential breakthrough in mitigating this complex chronic lung disorder. Over the last two decades, the human placenta and umbilical cord have gained increasing attention as a highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance and are generally devoid of ethical constraints, in addition to their stemness qualities. They possess the characteristics of both embryonic and mesenchymal stromal/stem cells. Recently, there are many preclinical studies investigating the use of these cells as therapeutic agents in neonatal disease models for clinical applications. In this review, we describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in animal models of BPD. The source of these stem cells, routes of administration, and effects on immunomodulation, inflammation and regeneration in the injured lung are also discussed. Lastly, a brief description summarized the completed and ongoing clinical trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD. Due to the complexity of BPD, the development of a safe and efficient therapeutic agent remains a major challenge to both clinicians and researchers.
    Matched MeSH terms: Immunomodulation
  16. Islam MA, Khandker SS, Kotyla PJ, Hassan R
    Front Immunol, 2020;11:1477.
    PMID: 32793202 DOI: 10.3389/fimmu.2020.01477
    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ involvement, including the skin, joints, kidneys, lungs, central nervous system and the haematopoietic system, with a large number of complications. Despite years of study, the etiology of SLE remains unclear; thus, safe and specifically targeted therapies are lacking. In the last 20 years, researchers have explored the potential of nutritional factors on SLE and have suggested complementary treatment options through diet. This study systematically reviews and evaluates the clinical and preclinical scientific evidence of diet and dietary supplementation that either alleviate or exacerbate the symptoms of SLE. For this review, a systematic literature search was conducted using PubMed, Scopus and Google Scholar databases only for articles written in the English language. Based on the currently published literature, it was observed that a low-calorie and low-protein diet with high contents of fiber, polyunsaturated fatty acids, vitamins, minerals and polyphenols contain sufficient potential macronutrients and micronutrients to regulate the activity of the overall disease by modulating the inflammation and immune functions of SLE.
    Matched MeSH terms: Immunomodulation
  17. Dutta S, Sengupta P, Haque N
    Int Rev Immunol, 2020;39(2):53-66.
    PMID: 31608717 DOI: 10.1080/08830185.2019.1674299
    Pregnancy, a challenging physiological state, requires shuffling of conventional immune work-sets. Strategies to tolerate the semi-allogenic fetus in normal human pregnancy are multivariate with perfect modulation of the immune cells. Pregnancy is marked by B cell lymphocytopenia accompanied by reduced responsiveness to infectious agents. Besides this old age concept, plenty of research confirms that B cells have other crucial roles in pregnancy and undergo a wide range of modifications in terms of its proliferation, switching between its subtypes, variation in antibody productions, shifting the tides of cytokines as well as regulating other immune cells. B cells establish tolerant environment in pregnancy by producing protective antibodies to encounter the foreign paternal antigens. Regulatory B cells (Bregs) have adopted anti-inflammatory characteristics to sustain normal pregnancy. Moreover, the colossal physiological alterations during human pregnancy also include synchronized changes in the cross-talks between the pregnancy hormones and B cells. These aspects of pregnancy from the view point of B cell functions have so far appeared individually in discrete reports. This review finds its novelty in concisely presenting every facet of association of B cell with human pregnancy.
    Matched MeSH terms: Immunomodulation
  18. Anwar F, Saleem U, Rehman AU, Ahmad B, Froeyen M, Mirza MU, et al.
    Front Pharmacol, 2021;12:607026.
    PMID: 34040515 DOI: 10.3389/fphar.2021.607026
    The presented study was designed to probe the toxicity potential of newly identified compound naphthalen-2-yl 3,5-dinitrobenzoate (SF1). Acute, subacute toxicity and teratogenicity studies were performed as per Organization of economic cooperation and development (OECD) 425, 407, and 414 test guidelines, respectively. An oral dose of 2000 mg/kg to rats for acute toxicity. Furthermore, 5, 10, 20, and 40 mg/kg doses were administered once daily for 28 days in subacute toxicity study. Teratogenicity study was performed with 40 mg/kg due to its excellent anti-Alzheimer results at this dose. SF1 induced a significant rise in Alkaline Phosphatases (ALP), bilirubin, white blood cells (WBC), and lymphocyte levels with a decrease in platelet count. Furthermore, the reduction in urea, uric acid, and aspartate transaminase (AST) levels and an increase in total protein levels were measured in subacute toxicity. SF1 increased spermatogenesis at 5 and 10 mg/kg doses. Teratogenicity study depicted no resorptions, early abortions, cleft palate, spina bifida and any skeletal abnormalities in the fetuses. Oxidative stress markers (Superoxide dismutase (SOD), Catalase (CAT), and glutathione (GSH) were increased in all the experiments, whereas the effect on melanoaldehyde Malondialdehyde (MDA) levels was variable. Histopathology further corroborated these results with no change in the architectures of selected organs. Consequently, a 2000 mg/kg dose of SF1 tends to induce minor liver dysfunction along with immunomodulation, and it is well below its LD
    50
    . Moreover, it can be safely used in pregnancy owing to its no detectable teratogenicity.
    Matched MeSH terms: Immunomodulation
  19. Tan HL, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Lee LH, et al.
    Front Pharmacol, 2016;7:191.
    PMID: 27445824 DOI: 10.3389/fphar.2016.00191
    Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs.
    Matched MeSH terms: Immunomodulation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links