Displaying publications 1 - 20 of 216 in total

Abstract:
Sort:
  1. Leo CP, Chai WK, Mohammad AW, Qi Y, Hoedley AF, Chai SP
    Water Sci Technol, 2011;64(1):199-205.
    PMID: 22053475
    A high concentration of phosphorus in wastewater may lead to excessive algae growth and deoxygenation of the water. In this work, nanofiltration (NF) of phosphorus-rich solutions is studied in order to investigate its potential in removing and recycling phosphorus. Wastewater samples from a pulp and paper plant were first analyzed. Commercial membranes (DK5, MPF34, NF90, NF270, NF200) were characterized and tested in permeability and phosphorus removal experiments. NF90 membranes offer the highest rejection of phosphorus; a rejection of more than 70% phosphorus was achieved for a feed containing 2.5 g/L of phosphorus at a pH <2. Additionally, NF90, NF200 and NF270 membranes show higher permeability than DK5 and MPF34 membranes. The separation performance of NF90 is slightly affected by phosphorus concentration and pressure, which may be due to concentration polarization and fouling. By adjusting the pH to 2 or adding sulfuric acid, the separation performance of NF90 was improved in removing phosphorus. However, the presence of acetic acid significantly impairs the rejection of phosphorus.
    Matched MeSH terms: Nanotechnology/instrumentation; Nanotechnology/methods*
  2. Sivakumar M, Tang SY, Tan KW
    Ultrason Sonochem, 2014 Nov;21(6):2069-83.
    PMID: 24755340 DOI: 10.1016/j.ultsonch.2014.03.025
    Novel nanoemulsion-based drug delivery systems (DDS) have been proposed as alternative and effective approach for the delivery of various types of poorly water-soluble drugs in the last decade. This nanoformulation strategy significantly improves the cell uptake and bioavailability of numerous hydrophobic drugs by increasing their solubility and dissolution rate, maintaining drug concentration within the therapeutic range by controlling the drug release rate, and reducing systemic side effects by targeting to specific disease site, thus offering a better patient compliance. To date, cavitation technology has emerged to be an energy-efficient and promising technique to generate such nanoscale emulsions encapsulating a variety of highly potent pharmaceutical agents that are water-insoluble. The micro-turbulent implosions of cavitation bubbles tear-off primary giant oily emulsion droplets to nano-scale, spontaneously leading to the formation of highly uniform drug contained nanodroplets. A substantial body of recent literatures in the field of nanoemulsions suggests that cavitation is a facile, cost-reducing yet safer generation tool, remarkably highlighting its industrial commercial viability in the development of designing novel nanocarriers or enhancing the properties of existing pharmaceutical products. In this review, the fundamentals of nanoemulsion and the principles involved in their formation are presented. The underlying mechanisms in the generation of pharmaceutical nanoemulsion under acoustic field as well as the advantages of using cavitation compared to the conventional techniques are also highlighted. This review focuses on recent nanoemulsion-based DDS development and how cavitation through ultrasound and hydrodynamic means is useful to generate the pharmaceutical grade nanoemulsions including the complex double or submicron multiple emulsions.
    Matched MeSH terms: Nanotechnology/methods*
  3. Tang SY, Shridharan P, Sivakumar M
    Ultrason Sonochem, 2013 Jan;20(1):485-97.
    PMID: 22633626 DOI: 10.1016/j.ultsonch.2012.04.005
    In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200-600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50-70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different.
    Matched MeSH terms: Nanotechnology/methods*
  4. Hwa KY, Karuppaiah P, Gowthaman NSK, Balakumar V, Shankar S, Lim HN
    Ultrason Sonochem, 2019 Nov;58:104649.
    PMID: 31450344 DOI: 10.1016/j.ultsonch.2019.104649
    Hydroquinone (HQ), a phenolic compound is expansively used in many industrial applications and due to the utilization of HQ, water pollution tragedies frequently found by the improper handling and accidental outflows. When HQ is adsorbed directly through the skin that create toxic effects to human by affecting kidney, liver, lungs, and urinary tract and hence, a highly selective and sensitive technique is required for its quantification. Herein, we have developed the ultrasonic synthesis of copper oxide nanoflakes (CuO-NFs) using ultrasonic bath (20 kHz, 100 W) and successfully employed for the sensitive detection of the environmental hazardous pollutant HQ. The formed CuO-NFs were confirmed by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy and UV-visible spectroscopy and fabricated with the screen-printed carbon electrode (SPCE). The SEM images exhibited the uniform CuO-NFs with an average width of 85 nm. The linker-free CuO-NFs fabricated electrode showed the appropriate wide range of concentrations from 0.1 to 1400 µM and the limit of detection was found to be 10.4 nM towards HQ. The fabricated sensor having long term stability and sensitivity was successfully applied for the environmental and commercial real sample analysis and exhibited good recovery percentage, implying that the SPCE/CuO-NFs is an economically viable and benign robust scaffold for the determination of HQ.
    Matched MeSH terms: Nanotechnology
  5. Low SS, Yew M, Lim CN, Chai WS, Low LE, Manickam S, et al.
    Ultrason Sonochem, 2022 Jan;82:105887.
    PMID: 34954629 DOI: 10.1016/j.ultsonch.2021.105887
    Ultrasound (US) demonstrates remarkable potential in synthesising nanomaterials, particularly nanobiomaterials targeted towards biomedical applications. This review briefly introduces existing top-down and bottom-up approaches for nanomaterials synthesis and their corresponding synthesis mechanisms, followed by the expounding of US-driven nanomaterials synthesis. Subsequently, the pros and cons of sono-nanotechnology and its advances in the synthesis of nanobiomaterials are drawn based on recent works. US-synthesised nanobiomaterials have improved properties and performance over conventional synthesis methods and most essentially eliminate the need for harsh and expensive chemicals. The sonoproduction of different classes and types of nanobiomaterials such as metal and superparamagnetic nanoparticles (NPs), lipid- and carbohydrate-based NPs, protein microspheres, microgels and other nanocomposites are broadly categorised based on the physical and/or chemical effects induced by US. This review ends on a good note and recognises US-driven synthesis as a pragmatic solution to satisfy the growing demand for nanobiomaterials, nonetheless some technical challenges are highlighted.
    Matched MeSH terms: Nanotechnology
  6. Malik JA, Ansari JA, Ahmed S, Khan A, Ahemad N, Anwar S
    Ther Deliv, 2023 May;14(5):357-381.
    PMID: 37431741 DOI: 10.4155/tde-2023-0020
    Breast cancer (BC) is among the most frequent malignancies women face around the globe. Nanotherapeutics are constantly evolving to overcome the limitations of conventional diagnostic and therapeutic approaches. Nanotechnology-based nanocarriers have a higher entrapment efficiency, low cytotoxicity, greater stability and improved half-life than conventional therapy. Nano-drug delivery systems have improved pharmacokinetics and pharmacodynamics parameters because of nanomeric size. Currently, various nano-formulations are in preclinical and clinical settings for breast cancer, like polymeric nanoparticles, micelles, nanobodies, magnetic nanoparticles, liposomes, niosomes, gold-nanoparticles, dendrimers and carbon-nanotubes. This review highlights the recent advancement in developing nano-drug delivery systems for BC treatment. This review will open the gateway to researchers to understand the current approaches to developing nano-formulation and improving problems associated with conventional therapy.
    Matched MeSH terms: Nanotechnology
  7. Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FS, Baghdadi A
    ScientificWorldJournal, 2014;2014:641759.
    PMID: 25202734 DOI: 10.1155/2014/641759
    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.
    Matched MeSH terms: Nanotechnology
  8. Tan K, Heo S, Foo M, Chew IM, Yoo C
    Sci Total Environ, 2019 Feb 10;650(Pt 1):1309-1326.
    PMID: 30308818 DOI: 10.1016/j.scitotenv.2018.08.402
    Nanocellulose, a structural polysaccharide that has caught tremendous interests nowadays due to its renewability, inherent biocompatibility and biodegradability, abundance in resource, and environmental friendly nature. They are promising green nanomaterials derived from cellulosic biomass that can be disintegrated into cellulose nanofibrils (CNF) or cellulose nanocrystals (CNC), relying on their sensitivity to hydrolysis at the axial spacing of disordered domains. Owing to their unique mesoscopic characteristics at nanoscale, nanocellulose has been widely researched and incorporated as a reinforcement material in composite materials. The world has been consuming the natural resources at a much higher speed than the environment could regenerate. Today, as an uprising candidate in soft condensed matter physics, a growing interest was received owing to its unique self-assembly behaviour and quantum size effect in the formation of three-dimensional nanostructured material, could be utilised to address an increasing concern over global warming and environmental conservation. In spite of an emerging pool of knowledge on the nanocellulose downstream application, that was lacking of cross-disciplinary study of its role as a soft condensed matter for food, water and energy applications toward environmental sustainability. Here we aim to provide an insight for the latest development of cellulose nanotechnology arises from its fascinating physical and chemical characteristic for the interest of different technology holders.
    Matched MeSH terms: Nanotechnology
  9. bin Hussein MZ, Zainal Z, Hin TY, Tat OW
    PMID: 15040529
    Nanocomposites of Zn/Al-layered double hydroxide(anthraquinone-2,6-disulfonate) were synthesized by spontaneous direct assembly of inorganic and organic phases from aqueous solution. Powder X-ray diffraction patterns showed that a pure, single nanocomposite phase of good crystallinity was obtained using 1.0 M antraquinone-2,6-disulfonate ion (AQ26) and aging at 80 degrees C using conventional heating for 7 days or 0.5 h under microwave radiation, and these samples are denoted as ZAAN26C or ZAAN26MH, respectively. Zn/Al-nitrate-layered double hydroxide synthesized by a conventional method (ZANLC) showed a basal spacing of 8.3 A while both the nanocomposites showed 18.8 A as a result of AQ26 intercalation. FTIR study showed that the resulting nanocomposites are free from nitrate, the co-anion present in the mother liquor, indicating that only AQ26 is preferred during intercalation for the formation of the nanocomposite. The Brunauer, Emmet and Teller (BET) and micropore surface areas for ZAAN26C decreased relative to the ZANLC from 16.2 to 4.7 and 1.6 to 1.3 m2/g, respectively. These results indicate that AQ26 can be rapidly interdcalated in layered double hydroxide using microwave-aging resulting in a nanocomposite.
    Matched MeSH terms: Nanotechnology/methods*
  10. Rahim MZA, Govender-Hondros G, Adeloju SB
    Talanta, 2018 Nov 01;189:418-428.
    PMID: 30086941 DOI: 10.1016/j.talanta.2018.06.041
    The development of free and total cholesterol nanobiosensors based on a single step electrochemical integration of gold nanoparticles (AuNPs), cholesterol oxidase (COx), cholesterol esterase (CE) and a mediator with polypyrrole (PPy) films is described. The incorporation of the various components in the PPy films was confirmed by chronopotentiometry, cyclic voltammetry (CV), scanning electron microscopy, energy dispersive X-ray analysis (SEM-EDX), and Fourier transformed infrared (FTIR) spectroscopy. The free cholesterol, PPy-NO3--Fe(CN)64--AuNPs-COx, nanobiosensor achieved a minimum detectable concentration of 5 μM, a linear concentration range of 5-25 μM and a sensitivity of 1.6 µA cm-2 µM-1 in 0.05 M phosphate buffer (pH 7.00). For the total cholesterol, PPy-NO3--Fe(CN)64--AuNPs-COx-CE, nanobiosensor which also involved the co-incorporation of cholesterol esterase (CE) with the other components, the achieved performances include a minimum detectable total cholesterol concentration of 25 μM, a broader linear concentration range of 25-170 μM and a lower sensitivity of 0.1 µA µM-1 cm-2. Owing to its high selectivity, the presence of common interferants did not affect the total cholesterol measurement with the PPy-NO3--Fe(CN)64--AuNPs-COx-CE nanobiosensor. Both nanobiosensors were successfully used for direct and indirect determination of total cholesterol in human blood serum samples.
    Matched MeSH terms: Nanotechnology
  11. Bahadoran M, Noorden AF, Chaudhary K, Mohajer FS, Aziz MS, Hashim S, et al.
    Sensors (Basel), 2014;14(7):12885-99.
    PMID: 25046015 DOI: 10.3390/s140712885
    A new photonics biosensor configuration comprising a Double-side Ring Add-drop Filter microring resonator (DR-ADF) made from SiO2-TiO2 material is proposed for the detection of Salmonella bacteria (SB) in blood. The scattering matrix method using inductive calculation is used to determine the output signal's intensities in the blood with and without presence of Salmonella. The change in refractive index due to the reaction of Salmonella bacteria with its applied antibody on the flagellin layer loaded on the sensing and detecting microresonator causes the increase in through and dropper port's intensities of the output signal which leads to the detection of SB in blood. A shift in the output signal wavelength is observed with resolution of 0.01 nm. The change in intensity and shift in wavelength is analyzed with respect to the change in the refractive index which contributes toward achieving an ultra-high sensitivity of 95,500 nm/RIU which is almost two orders higher than that of reported from single ring sensors and the limit of detection is in the order of 1 × 10(-8) RIU. In applications, such a system can be employed for a high sensitive and fast detection of bacteria.
    Matched MeSH terms: Nanotechnology/methods
  12. Akbari E, Buntat Z, Ahmad MH, Enzevaee A, Yousof R, Iqbal SM, et al.
    Sensors (Basel), 2014;14(3):5502-15.
    PMID: 24658617 DOI: 10.3390/s140305502
    Carbon Nanotubes (CNTs) are generally nano-scale tubes comprising a network of carbon atoms in a cylindrical setting that compared with silicon counterparts present outstanding characteristics such as high mechanical strength, high sensing capability and large surface-to-volume ratio. These characteristics, in addition to the fact that CNTs experience changes in their electrical conductance when exposed to different gases, make them appropriate candidates for use in sensing/measuring applications such as gas detection devices. In this research, a model for a Field Effect Transistor (FET)-based structure has been developed as a platform for a gas detection sensor in which the CNT conductance change resulting from the chemical reaction between NH3 and CNT has been employed to model the sensing mechanism with proposed sensing parameters. The research implements the same FET-based structure as in the work of Peng et al. on nanotube-based NH3 gas detection. With respect to this conductance change, the I-V characteristic of the CNT is investigated. Finally, a comparative study shows satisfactory agreement between the proposed model and the experimental data from the mentioned research.
    Matched MeSH terms: Nanotechnology/instrumentation*; Nanotechnology/methods*
  13. Khatir NM, Banihashemian SM, Periasamy V, Majid WH, Rahman SA, Shahhosseini F
    Sensors (Basel), 2011;11(7):6719-27.
    PMID: 22163981 DOI: 10.3390/s110706719
    A new patterning method using Deoxyribose Nucleic Acid (DNA) strands capable of producing nanogaps of less than 100 nm is proposed and investigated in this work. DNA strands from Bosenbergia rotunda were used as the fundamental element in patterning DNA on thin films of aluminium (Al) metal without the need for any lithographic techniques. The DNA strands were applied in buffer solutions onto thin films of Al on silicon (Si) and the chemical interactions between the DNA strands and Al creates nanometer scale arbitrary patterning by direct transfer of the DNA strands onto the substrate. This simple and cost-effective method can be utilized in the fabrication of various components in electronic chips for microelectronics and Nano Electronic Mechanical System (NEMS) applications in general.
    Matched MeSH terms: Nanotechnology/methods*
  14. Ebrahimiasl S, Yunus WM, Kassim A, Zainal Z
    Sensors (Basel), 2011;11(10):9207-16.
    PMID: 22163690 DOI: 10.3390/s111009207
    Nanocrystalline SnO(x) (x = 1-2) thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnO(x) thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnO(x) nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnO(x). Photosensitivity was detected in the positive region under illumination with white light.
    Matched MeSH terms: Nanotechnology/methods*
  15. Hosseingholipourasl A, Hafizah Syed Ariffin S, Ahmadi MT, Rahimian Koloor SS, Petrů M, Hamzah A
    Sensors (Basel), 2020 Jan 08;20(2).
    PMID: 31936402 DOI: 10.3390/s20020357
    Recent advances in nanotechnology have revealed the superiority of nanocarbon species such as carbon nanotubes over other conventional materials for gas sensing applications. In this work, analytical modeling of the semiconducting zigzag carbon nanotube field-effect transistor (ZCNT-FET) based sensor for the detection of gas molecules is demonstrated. We propose new analytical models to strongly simulate and investigate the physical and electrical behavior of the ZCNT sensor in the presence of various gas molecules (CO2, H2O, and CH4). Therefore, we start with the modeling of the energy band structure by acquiring the new energy dispersion relation for the ZCNT and introducing the gas adsorption effects to the band structure model. Then, the electrical conductance of the ZCNT is modeled and formulated while the gas adsorption effect is considered in the conductance model. The band structure analysis indicates that, the semiconducting ZCNT experiences band gap variation after the adsorption of the gases. Furthermore, the bandgap variation influences the conductance of the ZCNT and the results exhibit increments of the ZCNT conductance in the presence of target gases while the minimum conductance shifted upward around the neutrality point. Besides, the I-V characteristics of the sensor are extracted from the conductance model and its variations after adsorption of different gas molecules are monitored and investigated. To verify the accuracy of the proposed models, the conductance model is compared with previous experimental and modeling data and a good consensus is observed. It can be concluded that the proposed analytical models can successfully be applied to predict sensor behavior against different gas molecules.
    Matched MeSH terms: Nanotechnology
  16. Hashim H, Maruyama H, Masuda T, Arai F
    Sensors (Basel), 2016 Dec 01;16(12).
    PMID: 27916931
    Manipulation and injection of single nanosensors with high cell viability is an emerging field in cell analysis. We propose a new method using fluorescence nanosensors with a glass nanoprobe and optical control of the zeta potential. The nanosensor is fabricated by encapsulating a fluorescence polystyrene nanobead into a lipid layer with 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (SP), which is a photochromic material. The nanobead contains iron oxide nanoparticles and a temperature-sensitive fluorescent dye, Rhodamine B. The zeta potential of the nanosensor switches between negative and positive by photo-isomerization of SP with ultraviolet irradiation. The positively-charged nanosensor easily adheres to a negatively-charged glass nanoprobe, is transported to a target cell, and then adheres to the negatively-charged cell membrane. The nanosensor is then injected into the cytoplasm by heating with a near-infrared (NIR) laser. As a demonstration, a single 750 nm nanosensor was picked-up using a glass nanoprobe with optical control of the zeta potential. Then, the nanosensor was transported and immobilized onto a target cell membrane. Finally, it was injected into the cytoplasm using a NIR laser. The success rates of pick-up and cell immobilization of the nanosensor were 75% and 64%, respectively. Cell injection and cell survival rates were 80% and 100%, respectively.
    Matched MeSH terms: Nanotechnology/methods*
  17. Kausar AS, Reza AW, Latef TA, Ullah MH, Karim ME
    Sensors (Basel), 2015 Apr 15;15(4):8787-831.
    PMID: 25884787 DOI: 10.3390/s150408787
    The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters.
    Matched MeSH terms: Nanotechnology
  18. Dutse SW, Yusof NA
    Sensors (Basel), 2011;11(6):5754-68.
    PMID: 22163925 DOI: 10.3390/s110605754
    Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offer advantages compared to conventional identification procedures that are tedious, expensive and time consuming. This paper aims to provide a broad overview of the need for devices that are easy to operate, sensitive, fast, portable and sufficiently reliable to be used as complementary tools for the control of pathogenic agents that damage the environment.
    Matched MeSH terms: Nanotechnology/methods
  19. Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, et al.
    Semin Cancer Biol, 2022 11;86(Pt 2):396-419.
    PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003
    Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.
    Matched MeSH terms: Nanotechnology
  20. Periasamy V, Rizan N, Al-Ta'ii HM, Tan YS, Tajuddin HA, Iwamoto M
    Sci Rep, 2016 07 20;6:29879.
    PMID: 27435636 DOI: 10.1038/srep29879
    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.
    Matched MeSH terms: Nanotechnology/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links