Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Othman SMIS, Mustaffa AF, Mohd Zahid NII, Che-Othman MH, Samad AFA, Goh HH, et al.
    Plant Physiol Biochem, 2024 Feb;207:108387.
    PMID: 38266565 DOI: 10.1016/j.plaphy.2024.108387
    Plants have developed diverse physical and chemical defence mechanisms to ensure their continued growth and well-being in challenging environments. Plants also have evolved intricate molecular mechanisms to regulate their responses to biotic stress. Non-coding RNA (ncRNA) plays a crucial role in this process that affects the expression or suppression of target transcripts. While there have been numerous reviews on the role of molecules in plant biotic stress, few of them specifically focus on how plant ncRNAs enhance resistance through various mechanisms against different pathogens. In this context, we explored the role of ncRNA in exhibiting responses to biotic stress endogenously as well as cross-kingdom regulation of transcript expression. Furthermore, we address the interplay between ncRNAs, which can act as suppressors, precursors, or regulators of other ncRNAs. We also delve into the regulation of ncRNAs in response to attacks from different organisms, such as bacteria, viruses, fungi, nematodes, oomycetes, and insects. Interestingly, we observed that diverse microorganisms interact with distinct ncRNAs. This intricacy leads us to conclude that each ncRNA serves a specific function in response to individual biotic stimuli. This deeper understanding of the molecular mechanisms involving ncRNAs in response to biotic stresses enhances our knowledge and provides valuable insights for future research in the field of ncRNA, ultimately leading to improvements in plant traits.
    Matched MeSH terms: Nematoda*
  2. Pramual P, Khamluea S, Butlun P, Promdungdee A
    Trop Biomed, 2023 Jun 01;40(2):188-193.
    PMID: 37650406 DOI: 10.47665/tb.40.2.010
    Culicoides Latreille biting midges are important blood feeding insects. Many species are pests and vectors of the disease causing agents including viruses, protozoa and filarial nematodes which can be transmitted to humans and other animals. However, knowledge of the role of Culicoides as vectors of filarial nematodes is limited, particular in Thailand, where at least 100 species of the genus Culicoides have been reported. In this study, a molecular approach using the 12S rRNA gene sequence was used to detecting the filarial nematode in four common biting midge species, C. actoni Smith, C. oxystoma Kieffer, C. peregrinus Kieffer and C. mahasarakhamense Pramual, Jomkumsing, Piraonapicha & Jumpato in animal shelters from northeastern Thailand. A total of 1,721 specimens were used for molecular screening. An unidentified Onchocercidae sp. was detected in a specimen of C. mahasarakhamense collected from Maha Sarakham province. This filarial species shows 93% sequence similarity with an unidentified Onchocercidae sp. isolated from Culex mosquitoes. Phylogenetic analyses revealed that Onchocercidae sp. from C. mahasarakhamense formed a clade with strong bootstrap support (100%) with filarial species detected in birds. Thus, it is very likely that the Onchocercidae sp. found in this study employes birds as vertebrate hosts which agrees with feeding behavior of C. mahasarakhamense which is known to feed on chicken. Further study is requiring to examine whether this biting midge species is a competent vector of this Onchocercidae sp.
    Matched MeSH terms: Nematoda*
  3. Boyko OO, Brygadyrenko VV
    Trop Biomed, 2021 Jun 01;38(2):85-93.
    PMID: 33973578 DOI: 10.47665/tb.38.2.046
    This research was undertaken to evaluate the nematicidal activity of various concentrations of aqueous tinctures of 80 plant species towards L1-2 of S. papillosus. For the experiment with larvae of S. papillosus, there were used 0.19%, 0.75% and 3.00% aqueous tinctures of plants. Out of 80 tested species, nematicidal activity against L1-2 of S. papillosus was displayed by 20 plants. The greatest activity (LC50 = 0.060-0.069%) towards larvae of S. papillosus was exerted by Teucrium polium, Achillea millefolium, Genista tinctoria and Ulmus laevis. Less expressed nematicidal activity (LC50 = 0.070-0.079%) was recorded for Thalictrum minus, Stachys recta, Falcaria vulgaris, Lavatera thuringiaca. Even lower effect (LC50 = 0.080-0.089%) was shown by aqueous tinctures of Mentha × piperita, Achillea millefolium, Salvia nutans, Eryngium campestre and Cerasus fruticosa. The following plants could be arranged in declining order of effectiveness of nematicidal activity (LC50 = 0.090-0.165%) Malus sylvestris, Tragopogon orientalis, Erigeron annuus, Grindelia squarrosa, Urtica dioica, Daucus carota, Medicago sativa, Carduus acanthoides, Ulmus minor and Hieracium umbellatum. A far weaker effect on the nematodes was displayed by Bromopsis inermis and Tragopogon podolicus. Aqueous tinctures of 60 other studied species of plants exhibited low nematicidal activity in 3.00% aqueous tincture, while in 0.19% and 0.75% aqueous tinctures, no nematicidal activity was seen. The results of the research suggest that in the conditions of natural ecosystems, some species of plants of the Apiaceae, Asteraceae, Fabaceae, Lamiaceae, Malvaceae, Rosaceae, Ulmaceae and Urticaceae families could reduce vitality of free-living L1-2 larvae of S. papillosus.
    Matched MeSH terms: Nematoda
  4. Hassan NA, Thodsapol A, Lim YAL, Wan Sulaiman WY, Sidi Omar SFN, Umsakul K, et al.
    Parasitol Int, 2021 Feb;80:102237.
    PMID: 33144195 DOI: 10.1016/j.parint.2020.102237
    Soil-transmitted helminth (STH) infections are the most common intestinal parasitic infections of medical importance in humans. The infections are widely distributed throughout tropical and subtropical countries, particularly among disadvantaged and underprivileged communities. In Malaysia, STH infections is highly prevalent, especially among the indigenous groups. However, species identification through molecular studies is still lacking. Using molecular techniques, this study was conducted to identify STH species that infect humans. Faecal samples were collected from three Iban tribal longhouses in the rural area of Sarikei Division, Sarawak. Positive faecal samples by microscopy were subjected to PCR and sequenced for species identification. Based on the microscopy examination, the most prevalent STH infection was Ascaris, followed by hookworm and Trichuris. All microscopy-positive samples were then PCR-amplified. The amplicons were sequenced, aligned, and compared with other sequences in the GenBank database. The results showed that Ascaris lumbricoides was the predominant STH species, followed by Trichuris trichiura, Ancylostoma duodenale, and Necator americanus. Our findings were contradictory to past studies, as we showed that A. duodenale was more abundant than N. americanus. Socioeconomic improvement and health education programs should be included in the management and prevention of public health strategies against STH.
    Matched MeSH terms: Nematoda/classification; Nematoda/genetics; Nematoda/isolation & purification*
  5. Gagman HA, Him NAIIN, Ahmad H, Sulaiman SF, Zakaria R, Termizi FHM
    Trop Life Sci Res, 2020 Oct;31(3):145-159.
    PMID: 33214861 DOI: 10.21315/tlsr2020.31.3.10
    Gastrointestinal nematode infections can cause great losses in revenue due to decrease livestock production and animal death. The use of anthelmintic to control gastrointestinal nematode put a selection pressure on nematode populations which led to emergence of anthelmintic resistance. Because of that, this study was carried out to investigate the efficacy of aqueous and methanol extract of Cassia siamea against the motility of C. elegans Bristol N2 and C. elegans DA1316. Caenorhabditis elegans Bristol N2 is a susceptible strain and C. elegans DA1316 is an ivermectin resistant strain. In vitro bioassay of various concentrations of (0.2, 0.6, 0.8, 1.0 and 2.0 mg mL-1) aqueous and methanol extracts of C. siamea was conducted against the motility of L4 larvae of C. elegans Bristol N2 and C. elegans DA1316. The L4 larvae were treated with 0.02 μg mL-1 of ivermectin served as positive control while those in M9 solution served as negative control. The activity of the extracts was observed after 24 h and 48 h. A significant difference was recorded in the extract performance compared to control at (P < 0.001) after 48 h against the motility of the larvae of both strains. The methanol extracts inhibited the motility of C. elegans Bristol N2 by 86.7% as well as DA1316 up to 84.9% at 2.0 mg mL-1 after 48 h. The methanol extract was more efficient than aqueous extract (P < 0.05) against the motility of both strains of C. elegans. Cassia siamea may be used as a natural source of lead compounds for the development of alternative anthelmintic against parasitic nematodes as well ivermectin resistant strains of nematodes.
    Matched MeSH terms: Nematoda
  6. Castañeda-Ramírez GS, Torres-Acosta JFJ, Sánchez JE, Mendoza-de-Gives P, González-Cortázar M, Zamilpa A, et al.
    Biomed Res Int, 2020;2020:6078917.
    PMID: 32685507 DOI: 10.1155/2020/6078917
    The present paper reviewed publications on the nematocidal activity of edible mushrooms (EM) and their potential use as sustainable tools for the control of parasitic nematodes affecting agriculture and livestock industry. Nematodes are organisms living in the soil and animals' guts where they may live as parasites severely affecting economically important crops and farm animals, thus causing economic losses to worldwide agriculture. Traditionally, parasitic nematodes have been controlled using commercial pesticides and anthelmintic (AH) drugs. Over the years, nematodes developed resistance to the AH drugs, reducing the usefulness of many commercial drugs. Also, the use of pesticides/anthelmintic drugs to control nematodes can have important negative impacts on the environment. Different EM have been not only used as food but also studied as alternative methods for controlling several diseases including parasitic nematodes. The present paper reviewed publications from the last decades about the nematocidal activity of EM and assessed their potential use as sustainable tools for the control of nematodes affecting agriculture and livestock industry. A reduced number of reports on the effect of EM against nematodes were found, and an even smaller number of reports regarding the potential AH activity of chemical compounds isolated from EM products were found. However, those studies have produced promising results that certainly deserve further investigation. It is concluded that EM, their fractions and extracts, and some compounds contained in them may have biotechnological application for the control of animal and plant parasitic nematodes.
    Matched MeSH terms: Nematoda/growth & development*
  7. Farah Haziqah MT, Nur Hikmah AM, Mat Hasan H, Hamdan A, Nik Him NAII
    Trop Biomed, 2019 Sep 01;36(3):687-693.
    PMID: 33597490
    An investigation was undertaken for screening and isolating nematophagous-fungi from the faecal samples of various grazing animals and soils in Malaysia. Total of 111 faeces and 50 soil samples were collected and the samples were cultured on 2% water agar plates. The growth of nematophagous-fungi was stimulated by sprinkling-baiting technique. The conidia of suspected nematophagous-fungi were inoculated on 2% water agar plates. All isolated were maintained on 2% cornmeal agar plates. Verticillium spp., Fusarium spp. and Arthrobotrys spp. were identified from the faecal and soil samples. 62.5% of the faecal samples and 100% of the soil samples were shown to be positive with nematophagous-fungi. This study highlights the present of nematophagous-fungi population in faecal and soil samples. Much study remains to be done to better understanding some fungi especially their mode of action and their predatory behaviour against parasitic nematodes.
    Matched MeSH terms: Nematoda
  8. Teo SZ, Tuen AA, Madinah A, Aban S, Chong YL
    Trop Biomed, 2019 Sep 01;36(3):594-603.
    PMID: 33597481
    Gastrointestinal nematodes can cause assorted health problems to human and other primates. The status of gastrointestinal nematodes in non-human primates remained less documented in Malaysia. This study aimed to determine the occurrence of gastrointestinal nematodes recovered from the fecal samples of captive non-human primates at the Matang Wildlife Centre (MWC), Sarawak. Fresh fecal samples were collected from 60 non-human primates of six species (i.e. Orangutan, Bornean gibbon, Silvered Leaf monkey, Slow loris, Pig-tailed macaque, and Long-tailed macaque) and processed using simple fecal floatation method and fecal sedimentation method. This study shows high prevalence of nematode infection (>=50%) and co-infection (22 from 45 infected individuals) in all species of captive non-human primates found in MWC, except one individual of young Silvered Leaf monkey was negative for nematode. From these, eight genera of 11 species and one unknown nematode larvae were recovered and among them Oesophagostomum sp., Ascaris sp., and Strongyloides sp. were the most common nematodes infecting the non-human primates. All the Bornean gibbon (n=7) were found to be infected with nematodes. Moreover, Long-tailed macaques at the centre were heavily infected by Ascaris sp. (number of total count, nt = 2132; total mean abundance, MA=113.70). This is the first report of high prevalence nematode infection on multiple species of captive non-human primates in a wildlife centre located in Sarawak. Some of the nematodes are of zoonotic potential. This information is important for health care management, both in-situ and ex-situ conservations of captive and free-ranging nonhuman primates.
    Matched MeSH terms: Nematoda/classification; Nematoda/isolation & purification
  9. Kumarasingha R, Young ND, Yeo TC, Lim DSL, Tu CL, Palombo EA, et al.
    Parasit Vectors, 2019 Apr 25;12(1):181.
    PMID: 31023350 DOI: 10.1186/s13071-019-3429-4
    BACKGROUND: Natural compounds from plants are known to provide a source of anthelmintic molecules. In previous studies, we have shown that plant extracts from the plant Picria fel-terrae Lour. and particular fractions thereof have activity against the free-living nematode Caenorhabditis elegans, causing quite pronounced stress responses in this nematode. We have also shown that a fraction, designated Pf-fraction 5, derived from this plant has a substantial adverse effect on this worm; however, nothing is known about the molecular processes affected in the worm. In the present study, we explored this aspect.

    RESULTS: Key biological processes linked to upregulated genes (n = 214) included 'response to endoplasmic reticulum stress' and 'lipid metabolism', and processes representing downregulated genes (n = 357) included 'DNA-conformation change' and 'cellular lipid metabolism'.

    CONCLUSIONS: Exposure of C. elegans to Pf-fraction 5 induces significant changes in the transcriptome. Gene ontology analysis suggests that Pf-fraction 5 induces endoplasmic reticulum and mitochondrial stress, and the changes in gene expression are either a direct or indirect consequence of this. Further work is required to assess specific responses to sub-fractions of Pf-fraction 5 in time-course experiments in C. elegans, to define the chemical(s) with potent anthelmintic properties, to attempt to unravel their mode(s) of action and to assess their selectivity against nematodes.

    Matched MeSH terms: Nematoda
  10. FELLICIA INCHING UCHANG, YANG LEE, FREDDY KUOK SAN YEO, YEE LING CHONG
    MyJurnal
    The fish health status and parasitic infection in paddy fields are understudied in Borneo. This study was done to compare the prevalence and abundance of parasites on freshwater fishes in the upstream and downstream rivers of paddy fields. Parasite study on freshwater fishes was done by collecting live fish samples using ten minnow traps with baits at each site in Serian and Padawan, Sarawak, from October 2017 until March 2018. A total of 120 freshwater fishes were examined during this study period. Cold anaesthesia was applied on live samples prior to ectoparasite and endoparasite microscopic screening, which involved scraping of outer body mucous and removal of fish intestines, respectively. No ectoparasites were recovered from the fish samples. A total of 19 (15.83%) fishes from Cyprinids were infected with endoparasites. From these, 58 individuals of endoparasites were recovered. Two groups of parasites, namely Nematoda (Cucullanus sp.) and Trematoda (unidentified), were recovered from the fish intestines. From this study, there was a significant difference between the upstream fishes and downstream fishes in their endoparasite infection at both Triboh Village (p = 0.035) and Annah Rais Village (p = 1.445 × 10-6) using two samples t-test. The endoparasite abundance in fish was higher in the streams where there was less human disturbance. This study may serve as a baseline study on the parasitic infections of freshwater fishes in streams near paddy fields or other agricultural area in Sarawak.
    Matched MeSH terms: Nematoda
  11. Basripuzi NH, Salisi MS, Isa NMM, Busin V, Cairns C, Jenvey C, et al.
    Vet Parasitol, 2018 Dec 15;264:18-25.
    PMID: 30503086 DOI: 10.1016/j.vetpar.2018.10.014
    Gastrointestinal nematode infection is one of the major diseases affecting small ruminants. Although some breeds of goats are quite resistant, many breeds of goats are relatively susceptible. This study used a combined parasitological, immunological, bioinformatic and statistical approach to examine the role of goat IgA and eosinophils in protection against Teladorsagia circumcincta. Molecular modelling suggested that the transmembrane domain of the high affinity IgA receptor was dysfunctional in goats. Statistical analyses failed to find any association in naturally infected goats between high IgA or eosinophil responses and low faecal egg counts. Together these results indicate that IgA and eosinophil responses against T. circumcincta are less effective in goats than sheep.
    Matched MeSH terms: Nematoda/immunology
  12. Lim PKC, Lee XC, Mohd Nazmi NMA, Tang YY, Wong SF, Mak JW, et al.
    Trop Biomed, 2018 Dec 01;35(4):1007-1016.
    PMID: 33601848
    Studies on parasite populations in Antarctic soils are scarce and thus little is known about the threat of these parasites towards either the natural fauna or human visitors. However, human presence in Antarctica, mainly through research and tourism, keeps increasing over time, potentially exposing visitors to zoonotic infections from Antarctic wildlife and environment. Most available literature to date has focused on faecal samples from Antarctic vertebrates. Therefore, this study addressed the possible presence of parasites in Antarctic soil that may be infectious to humans. Soil samples were obtained from five locations on Signy Island (South Orkney Islands, maritime Antarctic), namely North Point and Gourlay Peninsula (penguin rookeries), Pumphouse (relic coal-powered pump house), Jane Col (barren high altitude fellfield) and Berntsen Point (low altitude vegetated fellfield close to current research station). Approximately 10% of the soil samples (14/135) from 3 out of the 5 study sites had parasites which included Diphyllobotridae spp. eggs, Cryptosporidium sp., an apicomplexan protozoa (gregarine), Toxoplasma gondii, helminths (a cestode, Tetrabothrius sp., and a nematode larva) and mites. The presence of parasites in the 3 sites are most likely due to the presence of animal and human activities as two of these sites are penguin rookeries (North Point and Gourlay Peninsula) while the third site (Pumphouse Lake) has human activity. While some of the parasite species found in the soil samples appear to be distinctive, there were also parasites such as Cryptosporidium and Toxoplasma gondii that have a global distribution and are potentially pathogenic.
    Matched MeSH terms: Nematoda
  13. Khadijah S, Wahaf ANS, Syahmi MI, Tan TK, Low VL, Azrul LM, et al.
    Trop Biomed, 2018 Dec 01;35(4):999-1006.
    PMID: 33601847
    This paper reports total nematode anthelmintic resistance towards albendazole, fenbendazole, levamisole and ivermectin in a commercial sheep farm located in Terengganu, Malaysia. Faecal Egg Count Reduction Test (FECRT) was conducted on 25 sheep, where five sheep in each group were treated with the respective four anthelmintics based on live bodyweight. The balance of five sheep placed in the control group were not treated with any anthelmintics. At day 13 post-treatment, faecal egg count was conducted and nematode worm egg count reduction percentage was calculated to determine the resistance status towards the respective anthelmintics tested. Results showed that nematodes were resistant to all the anthelmintics tested, namely albendazole, fenbendazole, levamisole and ivermectin with reduction percentage of 87%, 46%, 94% and 68%, respectively. Subsequently, the third stage larvae of Haemonchus contortus and Trichostrongylus colubriformis recovered from post-treatment faecal cultures were subjected to allele-specific polymerase chain reaction (AS-PCR) assay to determine the presence of the benzimidazole resistance gene. This study reports the occurrence of the classical F200Y mutation in the isotype 1 βtubulin gene, for the first time in Malaysia.
    Matched MeSH terms: Nematoda
  14. Wong F, Sargison N
    Trop Anim Health Prod, 2018 Mar;50(3):581-587.
    PMID: 29143232 DOI: 10.1007/s11250-017-1472-8
    Haemonchosis is a common problem on goat farms in tropical countries such as Malaysia. Prevention of production losses generally depends on the use of anthelmintic drugs, but is threatened by the emergence of anthelmintic resistance. This study investigates anthelmintic efficacy on small-scale Malaysian goat farms and describes putative risk factors. Adult goats had moderate to high pre-treatment faecal trichostrongyle egg counts, despite being housed on slatted floors and fed on cut-and-carry forage, raising questions about the source of nematode infection. Our results show multiple resistance to benzimidazole and macrocyclic lactone anthelmintic drugs and allow us to discuss the genetic origins of resistance with reference to farm husbandry and management. We conclude that improvement in Malaysian goat production efficiency will require the development of sustainable helminth control strategies, underpinned by a better understanding of the origins and population genetics of anthelmintic resistance.
    Matched MeSH terms: Nematoda/drug effects*
  15. Magaji G. Usman, Tijjani Ahmadu, Adamu Jibrin Nayaya, Aisha M. Dodo
    MyJurnal
    Naturally, plant habitats are exposed to several potential effects of biotic and different abiotic environmental challenges. Several types of micro-organisms namely; bacteria, viruses, fungi, nematodes, mites, insects, mammals and other herbivorous animals are found in large amounts in all ecosystems, which lead to considerable reduction in crop productivity. These organisms are agents carrying different diseases that can damage the plants through the secretion of toxic-microbial poisons that can penetrate in the plant tissues. Toxins are injurious substances that act on plant protoplast to influence disease development. In response to the stress effect, plants defend themselves by bearing some substances such as phytoalexins. Production of phytoalexins is one of the complex mechanisms through which plants exhibit disease resistance. Several findings specifically on phytoalexins have widen the understanding in the fields of plant biochemistry and molecular biology. However, this review reports the interaction of toxins and phytoalexins in plant-pathogen cycle, research progress on the association of phytoalexins with plant disease resistance as well as the role of the phytoalexins in plant disease control.
    Matched MeSH terms: Nematoda
  16. Marina M, John Keen C, Caroline B, Afsar J
    Sains Malaysiana, 2018;47:19-25.
    A study was carried out to determine the diversity and enumerate the fauna species related to five pitcher plant species at a selected area in Bukit Setiam Forest, Tatau, Bintulu, Sarawak, Malaysia. At the end of the study, six insect orders together with nematodes and Araneae were detected with different existence abundances and diversity. From the 901 total fauna trapped, 58.82% belonged to the order Hymenoptera, mainly of the ant species, followed by Nematodes (21.64%), Diptera (15.87%), Coleoptera (1.66%), Hemiptera (0.89%), Blattaria (0.44%) and finally, Lepidoptera (0.33%) and Araneae (0.33%). Significant differences (p<0.05) in the composition of insect trapped in pitcher plants were observed for the order Hymenoptera, Diptera, Lepidoptera, Hemiptera and even Nematodes. Meanwhile, no significant difference was observed for Coleoptera, Blattaria and Araneae. There is a strong relationship between fauna and Nepenthes pitcher either as a prey, predator, a mutualistic relationship or parasites or also for a habitat to live or to reproduce.
    Matched MeSH terms: Nematoda
  17. Noor AF, Soo TCC, Ghani FM, Goh ZH, Khoo LT, Bhassu S
    Heliyon, 2017 Dec;3(12):e00446.
    PMID: 29322096 DOI: 10.1016/j.heliyon.2017.e00446
    Background: Dystrophin, an essential protein functional in the maintenance of muscle structural integrity is known to be responsible for muscle deterioration during white spot syndrome virus (WSSV) infection among prawn species. Previous studies have shown the upregulation of dystrophin protein in Macrobrachium rosenbergii (the giant freshwater prawn) upon white spot syndrome virus (WSSV) infection. The literature has also suggested the important role of calcium ion alterations in causing such muscle diseases. Thus, the interest of this study lies within the linkage between dystrophin functioning, intracellular calcium and white spot syndrome virus (WSSV) infection condition.

    Methods: In this study, the dystrophin gene from M. rosenbergii (MrDys) was first characterised followed by the characterization of dystrophin gene from a closely related shrimp species, Penaeus monodon (PmDys). Dystrophin sequences from different phyla were then used for evolutionary comparison through BLAST analysis, conserved domain analysis and phylogenetic analysis. The changes in mRNA expression levels of dystrophin and the alteration of intracellular calcium concentrations in WSSV infected muscle cells were then studied.

    Results: A 1246 base pair long dystrophin sequence was identified in the giant freshwater prawn, Macrobrachium rosenbergii (MrDys) followed by 1082 base pair long dystrophin sequence in P. monodon (PmDys). Four conserved domains were identified from the thirteen dystrophin sequences compared which were classified into 5 different phyla. From the phylogenetic analysis, aside from PmDys, the characterised MrDys was shown to be most similar to the invertebrate phylum of Nematoda. In addition, an initial down-regulation of dystrophin gene expression followed by eventual up-regulation, together with an increase in intracellular calcium concentration [Ca2+]
    i
    were shown upon WSSV experimental infection.

    Discussion: Both the functionality of the dystrophin protein and the intracellular calcium concentration were affected by WSSV infection which resulted in progressive muscle degeneration. An increased understanding of the role of dystrophin-calcium in MrDys and the interactions between these two components is necessary to prevent or reduce occurrences of muscle degeneration caused by WSSV infection, thereby reducing economic losses in the prawn farming industry from such disease.

    Matched MeSH terms: Nematoda
  18. Low CF, Rozaini MZH, Musa N, Syarul Nataqain B
    J Fish Dis, 2017 Oct;40(10):1267-1277.
    PMID: 28252175 DOI: 10.1111/jfd.12610
    The approaches of transcriptomic and proteomic have been widely used to study host-pathogen interactions in fish diseases, and this is comparable to the recently emerging application of metabolomic in elucidating disease-resistant mechanisms in fish that gives new insight into potential therapeutic strategies to improve fish health. Metabolomic is defined as the large-scale study of all metabolites within an organism and represents the frontline in the 'omics' approaches, providing direct information on the metabolic responses and perturbations in metabolic pathways. In this review, the current research in infectious fish diseases using metabolomic approach will be summarized. The metabolomic approach in economically important fish infected with viruses, bacteria and nematodes will also be discussed. The potential of the metabolomic approach for management of these infectious diseases as well as the challenges and the limitations of metabolomic in fish disease studies will be explored. Current review highlights the impacts of metabolomic studies in infectious fish diseases, which proposed the potential of new therapeutic strategies to enhance disease resistance in fish.
    Matched MeSH terms: Nematoda/physiology
  19. Nur Baiti Abd Murad, Nur Ain Izzati Mohd Zainudin
    MyJurnal
    Fruit rot is a common disease that affects the quality and quantity of the produced fruits. It may happened during pre-harvest stage and usually the condition of the fruits will become worse at postharvest stage if there are no any precautions taken during the picking, storing, packaging and transporting processes. The disease is mainly caused by the infection of fungi supported by a conducive condition like susceptible hosts, relative humidity and unsuitable temperature, besides other microorganisms such as bacteria, viruses and nematodes. The infection may arise from soilborne, waterborne, windborne and insects bite transmission. Fruit rot diseases have been reported to cause by many fungal species such as Fusarium species, Alternaria species, Lasiodiplodia species, Aspergillus species, Penicillium species, Colletotrichum species and Botrytis species. This review will provide sufficient information about rot diseases on fruit, fungal species that cause the diseases, effective control methods and managements as well as economic losses and health issues related to the diseases.
    Matched MeSH terms: Nematoda
  20. Sahimin N, Lim YA, Ariffin F, Behnke JM, Lewis JW, Mohd Zain SN
    PLoS Negl Trop Dis, 2016 Nov;10(11):e0005110.
    PMID: 27806046 DOI: 10.1371/journal.pntd.0005110
    A cross-sectional study of intestinal parasitic infections amongst migrant workers in Malaysia was conducted. A total of 388 workers were recruited from five sectors including manufacturing, construction, plantation, domestic and food services. The majority were recruited from Indonesia (n = 167, 43.3%), followed by Nepal (n = 81, 20.9%), Bangladesh (n = 70, 18%), India (n = 47, 12.1%) and Myanmar (n = 23, 5.9.2%). A total of four nematode species (Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis and hookworms), one cestode (Hymenolepis nana) and three protozoan species (Entamoeba histolytica/dispar, Giardia sp. and Cryptosporidium spp.) were identified. High prevalence of infections with A. lumbricoides (43.3%) was recorded followed by hookworms (13.1%), E. histolytica/dispar (11.6%), Giardia sp. (10.8%), T. trichura (9.5%), Cryptosporodium spp. (3.1%), H. nana (1.8%) and E. vermicularis (0.5%). Infections were significantly influenced by socio-demographic (nationality), and environmental characteristics (length of working years in the country, employment sector and educational level). Up to 84.0% of migrant workers from Nepal and 83.0% from India were infected with intestinal parasites, with the ascarid nematode A. lumbricoides occurring in 72.8% of the Nepalese and 68.1% of the Indian population. In addition, workers with an employment history of less than a year or newly arrived in Malaysia were most likely to show high levels of infection as prevalence of workers infected with A. lumbricoides was reduced from 58.2% to 35.4% following a year's residence. These findings suggest that improvement is warranted in public health and should include mandatory medical screening upon entry into the country.
    Matched MeSH terms: Nematoda/classification; Nematoda/genetics; Nematoda/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links