Displaying publications 1 - 20 of 656 in total

Abstract:
Sort:
  1. Škalamera D, Dahmer-Heath M, Stevenson AJ, Pinto C, Shah ET, Daignault SM, et al.
    Oncotarget, 2016 Sep 20;7(38):61000-61020.
    PMID: 27876705 DOI: 10.18632/oncotarget.11314
    Epithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A. When overexpressed in this model, they increased the rate of cell invasion through Matrigel™, induced mesenchymal marker expression and reduced expression of the epithelial marker E-cadherin. In gene-expression datasets derived from breast cancer patients, the expression of several novel genes correlated with expression of known EMT marker genes, indicating their in vivo relevance. As EMT-associated properties are thought to contribute in several ways to cancer progression, genes identified in this study may represent novel targets for anti-cancer therapy.
    Matched MeSH terms: Breast Neoplasms/genetics*
  2. Zuo XY, Feng QS, Sun J, Wei PP, Chin YM, Guo YM, et al.
    Biol Sex Differ, 2019 03 25;10(1):13.
    PMID: 30909962 DOI: 10.1186/s13293-019-0227-9
    BACKGROUND: The male predominance in the incidence of nasopharyngeal carcinoma (NPC) suggests the contribution of the X chromosome to the susceptibility of NPC. However, no X-linked susceptibility loci have been examined by genome-wide association studies (GWASs) for NPC by far.

    METHODS: To understand the contribution of the X chromosome in NPC susceptibility, we conducted an X chromosome-wide association analysis on 1615 NPC patients and 1025 healthy controls of Guangdong Chinese, followed by two validation analyses in Taiwan Chinese (n = 562) and Malaysian Chinese (n = 716).

    RESULTS: Firstly, the proportion of variance of X-linked loci over phenotypic variance was estimated in the discovery samples, which revealed that the phenotypic variance explained by X chromosome polymorphisms was estimated to be 12.63% (non-dosage compensation model) in males, as compared with 0.0001% in females. This suggested that the contribution of X chromosome to the genetic variance of NPC should not be neglected. Secondly, association analysis revealed that rs5927056 in DMD gene achieved X chromosome-wide association significance in the discovery sample (OR = 0.81, 95% CI 0.73-0.89, P = 1.49 × 10-5). Combined analysis revealed rs5927056 for DMD gene with suggestive significance (P = 9.44 × 10-5). Moreover, the female-specific association of rs5933886 in ARHGAP6 gene (OR = 0.62, 95%CI: 0.47-0.81, P = 4.37 × 10-4) was successfully replicated in Taiwan Chinese (P = 1.64 × 10-2). rs5933886 also showed nominally significant gender × SNP interaction in both Guangdong (P = 6.25 × 10-4) and Taiwan datasets (P = 2.99 × 10-2).

    CONCLUSION: Our finding reveals new susceptibility loci at the X chromosome conferring risk of NPC and supports the value of including the X chromosome in large-scale association studies.

    Matched MeSH terms: Nasopharyngeal Neoplasms/genetics*
  3. Zulhabri O, Rahman J, Ismail S, Isa MR, Wan Zurinah WN
    Singapore Med J, 2012 Jan;53(1):26-31.
    PMID: 22252179
    K-ras gene mutations in codons 12 and 13 are one of the earliest events in colon carcinogenesis.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  4. Zuber SH, Yahya N
    J Cancer Res Ther, 2021 6 15;17(2):477-483.
    PMID: 34121695 DOI: 10.4103/jcrt.JCRT_896_18
    Purpose: This study systematically reviews the distribution of racial/ancestral features and their inclusion as covariates in genetic-toxicity association studies following radiation therapy.

    Materials and Methods: Original research studies associating genetic features and normal tissue complications following radiation therapy were identified from PubMed. The distribution of radiogenomic studies was determined by mining the statement of country of origin and racial/ancestrial distribution and the inclusion in analyses. Descriptive analyses were performed to determine the distribution of studies across races/ancestries, countries, and continents and the inclusion in analyses.

    Results: Among 174 studies, only 23 with a population of more one race/ancestry which were predominantly conducted in the United States. Across the continents, most studies were performed in Europe (77 studies averaging at 30.6 patients/million population [pt/mil]), North America (46 studies, 20.8 pt/mil), Asia (46 studies, 2.4 pt/mil), South America (3 studies, 0.4 pt/mil), Oceania (2 studies, 2.1 pt/mil), and none from Africa. All 23 studies with more than one race/ancestry considered race/ancestry as a covariate, and three studies showed race/ancestry to be significantly associated with endpoints.

    Conclusion: Most toxicity-related radiogenomic studies involved a single race/ancestry. Individual Participant Data meta-analyses or multinational studies need to be encouraged.

    Matched MeSH terms: Neoplasms/genetics
  5. Zhou X, Li Y, Wang W, Wang S, Hou J, Zhang A, et al.
    Theranostics, 2020;10(21):9443-9457.
    PMID: 32863938 DOI: 10.7150/thno.46078
    Objective: Esophageal squamous cell carcinoma (ESCC) is one of the most commonly diagnosed cancer types in China. Recent genomic sequencing analysis indicated the over-activation of Hippo/YAP signaling might play important roles for the carcinogenic process and progression for ESCC patients. However, little is known about the molecular mechanisms that controls Hippo signaling activity in ESCC. Our previous studies indicated that PLCE1-an important risk factor for ESCC-linked to ESCC progression through snail signaling, during this period, we found PARK2 was an important downstream target of PLCE1-snail axis. PARK2 was decreased in ESCC human samples, and correlated with good prognosis in ESCC patients. Further research showed that PARK2 could inhibit YAP, which functions as key downstream effectors of the Hippo pathway. Here, we aim to reveal the molecular mechanisms of PARK2 modulated Hippo pathway in ESCC. Methods: To evaluate the function of PARK2 in ESCC, we used a tissue microarray (TMA) of 223 human ESCC patients and immunohistochemistry to analyze the correlation between PARK2 expression and clinicopathologic variables. Depletion of endogenous PARK2 and YAP from ESCC cells using CRISPR/Cas9 technologies. Flow cytometry and EdU cell proliferation assay were used to detect proliferation of ESCC cells. Nude mice subcutaneous injection and Ki-67 staining were used to evaluate tumor growth in vivo. Migration and invasion assays were performed. In addition, lung metastasis models in mice were used to validate the function of PARK2 in vivo. Identification of PARK2 involved in hippo pathway was achieved by expression microarray screening, double immunofluorescence staining and co-immunoprecipitation assays. The RNA-seq analysis results were validated through quantitative real-time PCR (qRT-PCR) analysis. The protein half-life of YAP was analyzed by Cycloheximide assay, and the TEAD activity was detected by Luciferase reporter assays. Results: Clinical sample of ESCC revealed that low PARK2 expression correlated with late tumor stage (P < 0.001), poor differentiation (P < 0.04), lymph node (P < 0.001) and distant metastasis (P = 0.0087). Multivariate Cox proportional regression analysis further revealed that PARK2 expression (P = 0.032) is an independent prognostic factor for the overall survival of ESCC patients. Besides, the immunohistochemistry results showed that PARK2 negatively correlated with YAP protein level (P < 0.001). PARK2 depletion promotes ESCC progression both through Hippo/YAP axis, while PARK2 overexpression suppresses ESCC tumor progression by Hippo signaling. Co-IP and ubiquitination assays revealed that PARK2 could interact with YAP in the cytosol and promotes YAP K48-linked ubiquitination at K90 sites. Conclusion: Clinical sample analysis and mechanistic study have validated PARK2 as a tumor suppressor for ESCC. Multivariate Cox proportional regression analysis further revealed that PARK2 is an independent prognostic factor for the overall survival of ESCC patients. Cellular and molecular mechanisms in this study showed that PARK2 associated with YAP protein in the cytosol, promoted YAP ubiquitination and proteasome-dependent degradation in ESCC cells. Therefore, as a novel modulator for Hippo signaling, modulation of PARK2 activity or gene expression level could be an appealing strategy to treat esophageal.
    Matched MeSH terms: Esophageal Neoplasms/genetics*
  6. Zhou Q, Cheung YB, Jada SR, Lim WT, Kuo WL, Gray JW, et al.
    Cancer Biol Ther, 2006 Nov;5(11):1445-9.
    PMID: 17102595
    AIM: The purpose of this study was to test the hypothesis if longer CA dinucleotide repeats are more common in the Asian population and also to gain insights into the interplay between the CA dinucleotide repeats and the frequencies of EGFR gene expression and amplifications as this might have therapeutic implications with regards to treatment with tyrosine kinase inhibitors.

    MATERIALS AND METHODS: The EGFR intron 1 polymorphism was analysed in three distinct healthy Asian subjects, namely, Chinese (N = 96), Malays (N = 98) and Indians (N = 100). Comparative genomic hybridisation was performed to investigate for changes in DNA copy number in relation to the polymorphic CA dinucleotide repeats in breast tumor tissues (N = 22).

    RESULTS: The frequency of short alleles with 14 and 15 CA repeats were most common in the Asian populations and significantly higher than those reported for Caucasians. The frequency of 20 CA repeats was 5%, almost 13-fold lower than previous reports. EGFR amplifications were detected in 23% and 11% of breast tumor tissues harboring short and long CA repeats, respectively.

    CONCLUSION: Our results show that the frequency of alleles encoding for short CA dinucleotide repeats is common in Asian populations. EGFR expression and amplification levels were also higher in Asian breast tumor tissues with short CA dinucleotide repeats. These findings suggest that the EGFR intron 1 polymorphism may influence response to treatment with tyrosine kinase inhibitors in breast cancer patients and further studies are warranted.

    Matched MeSH terms: Breast Neoplasms/genetics*
  7. Zhou J, Azizan EAB, Cabrera CP, Fernandes-Rosa FL, Boulkroun S, Argentesi G, et al.
    Nat Genet, 2021 Sep;53(9):1360-1372.
    PMID: 34385710 DOI: 10.1038/s41588-021-00906-y
    Most aldosterone-producing adenomas (APAs) have gain-of-function somatic mutations of ion channels or transporters. However, their frequency in aldosterone-producing cell clusters of normal adrenal gland suggests a requirement for codriver mutations in APAs. Here we identified gain-of-function mutations in both CTNNB1 and GNA11 by whole-exome sequencing of 3/41 APAs. Further sequencing of known CTNNB1-mutant APAs led to a total of 16 of 27 (59%) with a somatic p.Gln209His, p.Gln209Pro or p.Gln209Leu mutation of GNA11 or GNAQ. Solitary GNA11 mutations were found in hyperplastic zona glomerulosa adjacent to double-mutant APAs. Nine of ten patients in our UK/Irish cohort presented in puberty, pregnancy or menopause. Among multiple transcripts upregulated more than tenfold in double-mutant APAs was LHCGR, the receptor for luteinizing or pregnancy hormone (human chorionic gonadotropin). Transfections of adrenocortical cells demonstrated additive effects of GNA11 and CTNNB1 mutations on aldosterone secretion and expression of genes upregulated in double-mutant APAs. In adrenal cortex, GNA11/Q mutations appear clinically silent without a codriver mutation of CTNNB1.
    Matched MeSH terms: Adrenal Cortex Neoplasms/genetics*
  8. Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, et al.
    J Natl Cancer Inst, 2020 Oct 01;112(10):1003-1012.
    PMID: 31917448 DOI: 10.1093/jnci/djz246
    BACKGROUND: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown.

    METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples).

    RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction.

    CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.

    Matched MeSH terms: Pancreatic Neoplasms/genetics*
  9. Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S, Zetter BR, et al.
    Cancer Res, 2013 Oct 15;73(20):6359-74.
    PMID: 24097820 DOI: 10.1158/0008-5472.CAN-13-1558-T
    Pancreatic cancer, one of the deadliest human malignancies, is almost invariably associated with the presence of an oncogenic form of Kras. Mice expressing oncogenic Kras in the pancreas recapitulate the stepwise progression of the human disease. The inflammatory cytokine interleukin (IL)-6 is often expressed by multiple cell types within the tumor microenvironment. Here, we show that IL-6 is required for the maintenance and progression of pancreatic cancer precursor lesions. In fact, the lack of IL-6 completely ablates cancer progression even in presence of oncogenic Kras. Mechanistically, we show that IL-6 synergizes with oncogenic Kras to activate the reactive oxygen species detoxification program downstream of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling cascade. In addition, IL-6 regulates the inflammatory microenvironment of pancreatic cancer throughout its progression, providing several signals that are essential for carcinogenesis. Thus, IL-6 emerges as a key player at all stages of pancreatic carcinogenesis and a potential therapeutic target.
    Matched MeSH terms: Pancreatic Neoplasms/genetics
  10. Zhang XC, Wang J, Shao GG, Wang Q, Qu X, Wang B, et al.
    Nat Commun, 2019 04 16;10(1):1772.
    PMID: 30992440 DOI: 10.1038/s41467-019-09762-1
    Deep understanding of the genomic and immunological differences between Chinese and Western lung cancer patients is of great importance for target therapy selection and development for Chinese patients. Here we report an extensive molecular and immune profiling study of 245 Chinese patients with non-small cell lung cancer. Tumor-infiltrating lymphocyte estimated using immune cell signatures is found to be significantly higher in adenocarcinoma (ADC, 72.5%) compared with squamous cell carcinoma (SQCC, 54.4%). The correlation of genomic alterations with immune signatures reveals that low immune infiltration was associated with EGFR mutations in ADC samples, PI3K and/or WNT pathway activation in SQCC. While KRAS mutations are found to be significantly associated with T cell infiltration in ADC samples. The SQCC patients with high antigen presentation machinery and cytotoxic T cell signature scores are found to have a prolonged overall survival time.
    Matched MeSH terms: Lung Neoplasms/genetics*
  11. Zhang M, Wang Z, Obazee O, Jia J, Childs EJ, Hoskins J, et al.
    Oncotarget, 2016 Oct 11;7(41):66328-66343.
    PMID: 27579533 DOI: 10.18632/oncotarget.11041
    Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.
    Matched MeSH terms: Pancreatic Neoplasms/genetics*
  12. Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, et al.
    Nat Genet, 2020 06;52(6):572-581.
    PMID: 32424353 DOI: 10.1038/s41588-020-0609-2
    Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype1-3. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P 
    Matched MeSH terms: Breast Neoplasms/genetics*; Triple Negative Breast Neoplasms/genetics
  13. Zeng C, Guo X, Long J, Kuchenbaecker KB, Droit A, Michailidou K, et al.
    Breast Cancer Res, 2016 06 21;18(1):64.
    PMID: 27459855 DOI: 10.1186/s13058-016-0718-0
    BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk.

    METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation.

    RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P 

    Matched MeSH terms: Breast Neoplasms/genetics*
  14. Zanaruddin SN, Yee PS, Hor SY, Kong YH, Ghani WM, Mustafa WM, et al.
    PLoS One, 2013;8(11):e80229.
    PMID: 24224046 DOI: 10.1371/journal.pone.0080229
    OBJECTIVES: The frequency of common oncogenic mutations and TP53 was determined in Asian oral squamous cell carcinoma (OSCC).

    MATERIALS AND METHODS: The OncoCarta(™) panel v1.0 assay was used to characterize oncogenic mutations. In addition, exons 4-11 of the TP53 gene were sequenced. Statistical analyses were conducted to identify associations between mutations and selected clinico-pathological characteristics and risk habits.

    RESULTS: Oncogenic mutations were detected in PIK3CA (5.7%) and HRAS (2.4%). Mutations in TP53 were observed in 27.7% (31/112) of the OSCC specimens. Oncogenic mutations were found more frequently in non-smokers (p = 0.049) and TP53 truncating mutations were more common in patients with no risk habits (p = 0.019). Patients with mutations had worse overall survival compared to those with absence of mutations; and patients who harbored DNA binding domain (DBD) and L2/L3/LSH mutations showed a worse survival probability compared to those patients with wild type TP53. The majority of the oncogenic and TP53 mutations were G:C > A:T and A:T > G:C base transitions, regardless of the different risk habits.

    CONCLUSION: Hotspot oncogenic mutations which are frequently present in common solid tumors are exceedingly rare in OSCC. Despite differences in risk habit exposure, the mutation frequency of PIK3CA and HRAS in Asian OSCC were similar to that reported in OSCC among Caucasians, whereas TP53 mutations rates were significantly lower. The lack of actionable hotspot mutations argue strongly for the need to comprehensively characterize gene mutations associated with OSCC for the development of new diagnostic and therapeutic tools.

    Matched MeSH terms: Mouth Neoplasms/genetics*
  15. Zamzuri I, Ghazali MM, Zainuddin N, Sulong S, Samarendra SM, Yusoff AAM, et al.
    Med J Malaysia, 2005 Aug;60(3):360-3.
    PMID: 16379193
    We describe a rare tumor site in a 46 year old man who presented with a two week history of headache. Physical examination revealed bilateral papilloedema with no other localizing signs. Computed Tomographic Scan as well as Magnetic Resonance Imaging of the brain revealed a lesion with a dura tail located adjacent to the falx cerebri of the right frontal lobe. This lesion was not invading the inner table of the skull base. A tumor blush was seen on angiogram. There were no abnormalities on CT scan of the abdomen and fundoscopy was normal. Intraoperatively a vascular tumor not attached to the dura was noted and removed totally. Histopathological examination was typical of a hemangioblastoma. Analysis revealed no mutations of the VHL gene in 5 regions, exon 5-8 of the p53 gene, exon 1-2 of the p16 gene and exon 5,6 and 8 of the PTEN gene. This is the first case report of a supratentorial hemangioblastoma in a non-Von Hippel Lindau patient with genetic evidence.
    Matched MeSH terms: Supratentorial Neoplasms/genetics*
  16. Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJ, Fakiruddin KS, et al.
    BMC Cancer, 2015;15:84.
    PMID: 25881239 DOI: 10.1186/s12885-015-1086-3
    Despite significant advances in staging and therapies, lung cancer remains a major cause of cancer-related lethality due to its high incidence and recurrence. Clearly, a novel approach is required to develop new therapies to treat this devastating disease. Recent evidence indicates that tumours contain a small population of cells known as cancer stem cells (CSCs) that are responsible for tumour maintenance, spreading and resistant to chemotherapy. The genetic composition of CSCs so far is not fully understood, but manipulation of the specific genes that maintain their integrity would be beneficial for developing strategies to combat cancer. Therefore, the goal of this study isto identify the transcriptomic composition and biological functions of CSCs from non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Lung Neoplasms/genetics*
  17. Zakaria N, Yahaya BH
    Adv Exp Med Biol, 2020;1292:83-95.
    PMID: 31916234 DOI: 10.1007/5584_2019_464
    INTRODUCTION: Mesenchymal stem cells (MSCs) have been used in cancer therapy as vehicles to deliver therapeutic materials such as drugs, apoptosis inducers and cytokines due to their ability to migrate and home at the tumour site. Furthermore, MSCs have been genetically engineered to produce anticancer molecules such as TRAIL that can induce apoptosis of cancer cells. However, MSCs' presence in the tumour microenvironment has shown to be involved in promoting tumour growth and progression. Therefore, the roles of MSCs either promoting or suppressing tumorigenesis need to be investigated.

    METHODS: Human adipose-derived MSCs (Ad-MSCs) and A549 cells are co-cultured together in indirect co-culture system using Transwell insert. Following co-culture, both cells were analysed in terms of growth rate, migration ability, apoptosis and gene expression for genes involved in migration and stemness characteristics.

    RESULTS: The result shows that Ad-MSCs promoted the growth of A549 cells when indirectly co-cultured for 48 and 72 h. Furthermore, Ad-MSCs significantly enhanced the migration rate of A549 cells. The increased in migration rate was in parallel with the significant increase of MMP9. There are no significant changes observed in the expression of TWIST2, CDH2 and CDH1, genes involved in the epithelial-to-mesenchymal transition (EMT). Ad-MSCs also protect A549 cancer cells from undergoing apoptosis and increase the survival of cancer cells.

    CONCLUSION: Secretion of soluble factors from Ad-MSCs has been shown to promote the growth and metastatic characteristics of A549 cancer cells. Therefore, the use of Ad-MSCs in cancer therapy needs to be carefully evaluated in the long-term aspect.

    Matched MeSH terms: Lung Neoplasms/genetics
  18. Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF
    Int J Oncol, 2021 02;58(2):185-198.
    PMID: 33491756 DOI: 10.3892/ijo.2020.5164
    Lung cancer is one of the most lethal forms of cancer known to man, affecting millions of individuals worldwide. Despite advancements being made in lung cancer treatments, the prognosis of patients with the disease remains poor, particularly among patients with late‑stage lung cancer. The elucidation of the signaling pathways involved in lung cancer is a critical approach for the treatment of the disease. Over the past decades, accumulating evidence has revealed that Rho‑associated kinase (ROCK) is overexpressed in lung cancer and is associated with tumor growth. The present review discusses recent findings of ROCK signaling in the pathogenesis of lung cancer that were conducted in pre‑clinical studies. The significant role of ROCK in cancer cell apoptosis, proliferation, migration, invasion and angiogenesis is discussed. The present review also suggests the use of ROCK as a potential target for the development of lung cancer therapies, as ROCK inhibition can reduce multiple hallmarks of cancer, particularly by decreasing cancer cell migration, which is an initial step of metastasis.
    Matched MeSH terms: Lung Neoplasms/genetics
  19. Zainuddin N, Jaafar H, Isa MN, Abdullah JM
    Med J Malaysia, 2004 Oct;59(4):468-79.
    PMID: 15779579
    Loss of heterozygosity (LOH) on several loci and mutations on PTEN tumor suppressor gene (10q23.3) occur frequently in sporadic gliomas. We have performed polymerase chain reaction (PCR)-LOH analysis using microsatellite markers and single-stranded conformational polymorphism (SSCP) analysis to determine the incidence of allelic losses on chromosome 10q, 9p, 17p and 13q and mutations of exons 5, 6 and 8 of the PTEN gene in malignant gliomas. Twelve of 23 (52.2%) malignant glioma cases showed allelic losses whereas 7 of 23, (30.4%) samples showed aberrant band patterns and mutations of the PTEN gene. Four of these cases showed LOH on 10q23 and mutations of the PTEN gene. The data on LOH indicated the involvement of different genes in gliomagenesis whereas mutations of the PTEN gene indicated the role of PTEN tumor suppressor gene in the progression of glioma in Malay population.
    Matched MeSH terms: Brain Neoplasms/genetics*
  20. Zainuddin N, Jaafart H, Isa MN, Abdullah JM
    Neurol Res, 2004 Jan;26(1):88-92.
    PMID: 14977064
    Recent advances in neuro-oncology have revealed different pathways of molecular oncogenesis in malignant gliomas including loss of heterozygosity on chromosomal regions harboring tumor suppressor genes. In the present study, we performed polymerase chain reaction-loss of heterozygosity (PCR-LOH) analysis using microsatellite markers to identify loss of heterozygosity on chromosomes 10q, 9p, 17p and 13q in the Malays with malignant gliomas. Of 12 cases with allelic losses, seven (58.3%) cases showed LOH on chromosome 10q, three (25.0%) cases showed LOH on chromosome 9p, four (33.3%) cases showed LOH on chromosome 17p and two (16.7%) cases showed LOH on chromosome 13q. The cases include five (41.7%) cases of glioblastoma multiforme, three (25.0%) cases of anaplastic astrocytoma, three (25.0%) cases of anaplastic oligodendroglioma and one (8.3%) case of anaplastic ependymoma. Four cases showed loss of heterozygosity on more than one locus. Our findings showed that loss of heterozygosity on specific chromosomal regions contributes to the molecular pathway of glioma progression in Malay population. In addition, these data provide useful evidence of molecular genetic alterations of malignant glioma in South East Asian patients, particularly in the East Coast of Malaysia.
    Matched MeSH terms: Brain Neoplasms/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links