Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Yeang HY
    Yale J Biol Med, 2019 06;92(2):213-223.
    PMID: 31249482
    The widely held explanation for photoperiod-controlled flowering in long-day plants is largely embodied in the External Coincidence Hypothesis which posits that flowering is induced when activity of a rhythmic gene that regulates it (a putative "flowering gene") occurs in the presence of light. Nevertheless, re-examination of the Arabidopsis flowering data from non 24-hour cycles of Roden et al. suggests that External Coincidence is not tenable if the circadian rhythm of the "flowering gene" were entrained to sunrise as commonly accepted. On the other hand, the hypothesis is supported if circadian cycling of the gene conforms to a solar rhythm, and its entrainment is to midnight on the solar clock. Data available point to flowering being induced by the gene which peaks in its expression between 16 to 19 h after midnight. In the normal 24 h cycle, that would be between 4 p.m. and 7 p.m., regardless of the photoperiod. Such timing of the "flowering gene" expression allows for variable coincidence between gene activity and light, depending on the photoperiod and cycle period. A correlation is found between earliness of flowering and the degree of coincidence of "flowering gene" expression with light (r = 0.88, p<0.01).
    Matched MeSH terms: Photoperiod*
  2. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722195 DOI: 10.1094/PDIS-10-12-0901-PDN
    In 2011, a severe gray leaf spot was observed on eggplant (Solanum melongena) in major eggplant growing areas in Malaysia, including the Pahang, Johor, and Selangor states. Disease incidence was >70% in severely infected areas of about 150 ha of eggplant greenhouses and fields examined. Symptoms initially appeared as small (1 to 5 mm diameter), brownish-black specks with concentric circles on the lower leaves. The specks then coalesced and developed into greyish-brown, necrotic lesions, which also appeared on the upper leaves. Eventually, the leaves senesced and were shed. Tissue cut from the edges of leaf spots were surface-sterilized in 1% NaOCl for 2 min, rinsed in sterilized water, dried, and incubated on potato dextrose agar (PDA). Fungal colonies were greyish green to light brown, and produced a yellow pigment. Single, muriform, brown, oblong conidia formed at the terminal end of each conidiophore, were each 21.6 to 45.6 μm long and 11.5 to 21.6 μm wide, and contained 2 to 7 transverse and 1 to 4 longitudinal septa. The conidiophores were tan to light brown and ≤220 μm long. Based on these morphological criteria, 25 isolates of the fungus were identified as Stemphylium solani (1). To produce conidia in culture, 7-day-old single-conidial cultures were established on potato carrot agar (PCA) and V8 juice agar media under an 8-h/16-h light/dark photoperiod at 25°C (4). Further confirmation of the identification was obtained by molecular characterization in which fungal DNA was extracted and the internal transcribed spacer (ITS) region of ribosomal DNA amplified using primers ITS5 and ITS4 (2), followed by direct sequencing. A BLAST search in the NCBI database revealed that the sequence was 99% identical with published ITS sequences for two isolates of S. solani (Accession Nos. AF203451 and HQ840713). The amplified ITS region was deposited in GenBank (JQ736023). Pathogenicity testing of a representative isolate was performed on detached, 45-day-old eggplant leaves of the cv. 125066-X under laboratory conditions. Four fully expanded leaves (one wounded and two non-wounded leaflets/leaf) were placed on moist filter paper in petri dishes, and each leaflet inoculated with a 20-μl drop of a conidial suspension containing 1 × 105 conidia/ml in sterilized, distilled water (3). The leaves were wounded by applying pressure to leaf blades with the serrated edge of forceps. Four control leaves were inoculated similarly with sterilized, distilled water. Inoculated leaves were incubated in humid chambers at 25°C with 95% RH and a 12-h photoperiod. After 7 days, symptoms similar to those observed in the original fields developed on both wounded and non-wounded inoculated leaves, but not on control leaves, and S. solani was reisolated consistently from the symptoms using the same method as the original isolations. Control leaves remained asymptomatic and the fungus was not isolated from these leaves. The pathogenicity testing was repeated with similar results. To our knowledge, this is the first report of S. solani on eggplant in Malaysia. References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Curr. Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiv. Series 6:775, 2007.
    Matched MeSH terms: Photoperiod
  3. Narayanan SN, Kumar RS
    Acta. Biol. Hung., 2018 Dec;69(4):371-384.
    PMID: 30587025 DOI: 10.1556/018.69.2018.4.1
    In the behavioral science field, many of the oldest tests have still most frequently been used almost in the same way for decades. The subjective influence of human observer and the large inter-observer and interlab differences are substantial among these tests. This necessitates the possibility of using technological innovations for behavioral science to obtain new parameters, results and insights as well. The light-dark box (LDB) test is a characteristic tool used to assess anxiety in rodents. A complete behavioral analysis (including both anxiety and locomotion parameters) is not possible by performing traditional LDB test protocol, as it lacks the usage of a real-time video recording of the test. In the current report, we describe an improved approach to conduct LDB test using a real-time video tracking system.
    Matched MeSH terms: Photoperiod*
  4. Kugan HM, Rejab NA, Sahruzaini NA, Harikrishna JA, Baisakh N, Cheng A
    Int J Mol Sci, 2021 Apr 27;22(9).
    PMID: 33925559 DOI: 10.3390/ijms22094588
    The natural timing devices of organisms, commonly known as biological clocks, are composed of specific complex folding molecules that interact to regulate the circadian rhythms. Circadian rhythms, the changes or processes that follow a 24-h light-dark cycle, while endogenously programmed, are also influenced by environmental factors, especially in sessile organisms such as plants, which can impact ecosystems and crop productivity. Current knowledge of plant clocks emanates primarily from research on Arabidopsis, which identified the main components of the circadian gene regulation network. Nonetheless, there remain critical knowledge gaps related to the molecular components of circadian rhythms in important crop groups, including the nitrogen-fixing legumes. Additionally, little is known about the synergies and trade-offs between environmental factors and circadian rhythm regulation, especially how these interactions fine-tune the physiological adaptations of the current and future crops in a rapidly changing world. This review highlights what is known so far about the circadian rhythms in legumes, which include major as well as potential future pulse crops that are packed with nutrients, particularly protein. Based on existing literature, this review also identifies the knowledge gaps that should be addressed to build a sustainable food future with the reputed "poor man's meat".
    Matched MeSH terms: Photoperiod
  5. Yeang HY
    Bioessays, 2009 Nov;31(11):1211-8.
    PMID: 19795408 DOI: 10.1002/bies.200900078
    The plant maintains a 24-h circadian cycle that controls the sequential activation of many physiological and developmental functions. There is empirical evidence suggesting that two types of circadian rhythms exist. Some plant rhythms appear to be set by the light transition at dawn, and are calibrated to circadian (zeitgeber) time, which is measured from sunrise. Other rhythms are set by both dawn and dusk, and are calibrated to solar time that is measured from mid-day. Rhythms on circadian timing shift seasonally in tandem with the timing of dawn that occurs earlier in summer and later in winter. On the other hand, rhythms set to solar time are maintained independently of the season, the timing of noon being constant year-round. Various rhythms that run in-phase and out-of-phase with one another seasonally may provide a means to time and induce seasonal events such as flowering.
    Matched MeSH terms: Photoperiod
  6. Khalid MF, Lee CY, Doggett SL, Veera Singham G
    PLoS One, 2019;14(6):e0218343.
    PMID: 31206537 DOI: 10.1371/journal.pone.0218343
    Many insect species display daily variation of sensitivity to insecticides when they are exposed to the same concentration at different times during the day. To date, this has not been investigated in bed bugs. To address this, we explored circadian rhythms in insecticide susceptibility, xenobiotic metabolizing (XM) gene expressions, and metabolic detoxification in the common bed bug, Cimex lectularius. An insecticide susceptible Monheim strain of C. lectularius was most tolerant of deltamethrin during the late photophase at ZT9 (i.e. nine hours after light is present in the light-dark cycle (LD) cycle) and similarly repeated at CT9 (i.e. nine hours into the subjective day in constant darkness (DD)) suggesting endogenous circadian involvement in susceptibility to deltamethrin. No diel rhythm was observed against imidacloprid insecticide despite significant daily susceptibility in both LD and DD conditions. Rhythmic expressions of metabolic detoxification genes, GSTs1 and CYP397A1 displayed similar expression patterns with total GST and P450 enzyme activities in LD and DD conditions, respectively. The oscillation of mRNA levels of GSTs1 and CYP397A1 was found consistent with peak phases of deltamethrin susceptibility in C. lectularius. This study demonstrates that circadian patterns of metabolic detoxification gene expression occur within C. lectularius. As a consequence, insecticide efficacy can vary dramatically throughout a 24 hour period.
    Matched MeSH terms: Photoperiod
  7. Kitahashi T, Parhar IS
    Gen Comp Endocrinol, 2013 Jan 15;181:197-202.
    PMID: 23089246 DOI: 10.1016/j.ygcen.2012.10.003
    Kisspeptin plays an important role in the onset of puberty through stimulation of gonadotropin-releasing hormone (GnRH), a master molecule of reproduction. Furthermore, the existence of multiple kisspeptins is evident in most vertebrate species. Therefore, elucidating the regulatory mechanisms of the kisspeptin genes is important to understand the functions of multiple kisspeptin forms in the brain. This review focuses on the comparative aspects of kisspeptin gene regulation with an emphasis on the role of environmental signals including gonadal steroids, photoperiods and metabolic signals. These environmental signals differently regulate the kisspeptin genes distinctively in each species. In addition, photoperiodic regulation of the kisspeptin genes alters during sexual maturational, suggesting interactions between the gonadal hormone pathway and the photoperiod pathway. Further studies of the regulatory mechanisms of kisspeptin genes especially in teleosts which possess multiple kisspeptin/kisspeptin receptor systems will help to understand the precise role of multiple kisspeptin forms in different species.
    Matched MeSH terms: Photoperiod
  8. Clerget B, Sidibe M, Bueno CS, Grenier C, Kawakata T, Domingo AJ, et al.
    Ann Bot, 2021 07 28;128(1):97-113.
    PMID: 33821947 DOI: 10.1093/aob/mcab048
    BACKGROUND AND AIMS: Daylength determines flowering dates. However, questions remain regarding flowering dates in the natural environment, such as the synchronous flowering of plants sown simultaneously at highly contrasting latitudes. The daily change in sunrise and sunset times is the cue for the flowering of trees and for the synchronization of moulting in birds at the equator. Sunrise and sunset also synchronize the cell circadian clock, which is involved in the regulation of flowering. The goal of this study was to update the photoperiodism model with knowledge acquired since its conception.

    METHODS: A large dataset was gathered, including four 2-year series of monthly sowings of 28 sorghum varieties in Mali and two 1-year series of monthly sowings of eight rice varieties in the Philippines to compare with previously published monthly sowings in Japan and Malaysia, and data from sorghum breeders in France, Nicaragua and Colombia. An additive linear model of the duration in days to panicle initiation (PI) and flowering time using daylength and daily changes in sunrise and sunset times was implemented.

    KEY RESULTS: Simultaneous with the phyllochron, the duration to PI of field crops acclimated to the mean temperature at seedling emergence within the usual range of mean cropping temperatures. A unique additive linear model combining daylength and daily changes in sunrise and sunset hours was accurately fitted for any type of response in the duration to PI to the sowing date without any temperature input. Once calibrated on a complete and an incomplete monthly sowing series at two tropical latitudes, the model accurately predicted the duration to PI of the concerned varieties from the equatorial to the temperate zone.

    CONCLUSIONS: Including the daily changes in sunrise and sunset times in the updated photoperiodism model largely improved its accuracy at the latitude of each experiment. More research is needed to ascertain its multi-latitudinal accuracy, especially at latitudes close to the equator.

    Matched MeSH terms: Photoperiod
  9. Sitti Raehanah Muhamad Shaleh, Marlena Amatus, Najamuddin Abdul Basri, Rossita Shapawi
    MyJurnal
    This study was aimed at determining the optimum temperature for culturing the copepod, Euterpina acutifrons. The trial was conducted for 10 days in chambers at temperatures of 25⁰C, 27⁰C, 29⁰C and 31⁰C. Ten adult individuals of the copepod were randomly collected and placed into three replicate experimental flasks for each treatment. Throughout the trial, the salinity, light intensity, and photoperiod were maintained at 30 ±2psu, 100molm-2s-1 and 12:12 light-dark cycle, respectively. The copepods were fed with 80,000cell/ml Isochrysis sp. daily. At the end of the trial, the total numbers of E. acutifrons nauplii, copepodites and adults were determined and counted using Sedgwick-Rafter. The highest population was found at 27⁰C with mean total population of 800±100 individuals from an initial of 10 individuals. This was followed by those reared at 25⁰C and 29⁰C where the population counts were 700±100 individuals and 367±115 individuals, respectively. At the 31⁰C, all the copepod specimens were found dead on day 5th. Statistical analysis showed that the temperature had a significant effect (P
    Matched MeSH terms: Photoperiod
  10. Masdialily, D., Maznah, W.O.W., Faradina, M., Mashhor, M.
    ASM Science Journal, 2010;4(1):74-80.
    MyJurnal
    In this study the effects of phosphorus and nitrogen levels, temperature and light-dark cycle on the algal growth potential (AGP) of an Antarctic Chlorococcum isolated from an ephemeral stream at Reeve Hill, Antarctica was investigated. The highest AGP was attained when the cultures were grown at high nitrogen concentration (329.87 mg NO3-N/l) and low phosphorus concentration (2.6 mg PO4-P/l) at 4ºC on a 12 h:12 h light-dark cycle. The results showed that Chlorococcum sp. required a high concentration of nitrogen, low concentration of phosphorus, low temperature with equal lengths of light and dark period (12 h:12 h) for optimum growth.
    Matched MeSH terms: Photoperiod
  11. Matias-Peralta H, Yusoff FM, Shariff M, Arshad A
    Mar Pollut Bull, 2005;51(8-12):722-8.
    PMID: 16291188
    The effects of salinity, temperature, and light conditions on the reproduction and development of harpacticoid copepod, Nitocra affinis f. californica under controlled laboratory conditions were determined. Seven different salinity levels (5, 10, 15, 20, 25, 30, 35 ppt), four temperatures (20, 25, 30, 35 degrees C), three different light intensities (25, 56, 130 micromol m(-2) s(-1)) and photoperiods (24 h:0 h, 1 h:23 h, 12 h:12 h LD cycle) were employed in this study. The highest (p < 0.05) overall reproduction and fastest development time were achieved by copepods reared under 30-35 ppt salinity. The optimum temperature required for the maximum reproduction was 30 degrees C while under 30 degrees C and 35 degrees C the copepod development time was shortest (p < 0.05) compared to other temperature levels. The overall reproduction was highest (p < 0.05) and development rate of N. affinis was shortest (p < 0.05) under lowest light intensity (25 micromol m(-2) s(-1)). Continuous light (24 h:0 h LD) inhibited the egg production while, continuous darkness (1 h:23 h LD) and 12 h:12 h LD significantly favoured the overall reproductive activity of the female. Photoperiods 1 h:23 h and 12 h:12 h LD yielded highest total (p < 0.05) offspring female(-1) coupled with highest (p < 0.05) survival percentage. This study illustrated that although N. affinis can tolerate wide range of environmental conditions, prolonged exposure to subnormal environments affect its reproduction and development. This study showed that this species can be mass cultured for commercial purposes and has a potential to be used for toxicity studies due to its high reproductive performance fast development and a wide range of tolerance to environmental conditions.
    Matched MeSH terms: Photoperiod*
  12. Okomoda VT, Mithun S, Chatterji A, Effendy MAW, Oladimeji AS, Abol-Munafi AB, et al.
    Fish Physiol Biochem, 2020 Aug;46(4):1497-1505.
    PMID: 32378001 DOI: 10.1007/s10695-020-00807-7
    This study was designed to optimize the culture conditions of juvenile Epinephelus fuscoguttatus (Forsskål, 1775) under laboratory conditions. To this effect, the rate of oxygen consumption was monitored as an index of stress under different temperature, salinity, pH, photoperiod, and urea concentrations. The result obtained after 12 h of exposure suggests the preference of the juvenile E. fuscoguttatus to a temperature range of 15-25 °C and salinity of 30 ppt. Based on this study, temperature was found to be the most lethal as 100% mortality was observed after 6 h in fish exposure to temperatures above the optimal (≥ 30 °C). However, the oxygen consumption rate was similar under the different pH, photoperiod, and urea concentration tested. It was concluded that water temperature was most critical in terms of respiration physiology of the juvenile E. fuscoguttatus given the range and levels of environmental factors tested in this study.
    Matched MeSH terms: Photoperiod
  13. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Mahmodi F
    Plant Dis, 2012 Aug;96(8):1226.
    PMID: 30727083 DOI: 10.1094/PDIS-03-12-0237-PDN
    A leaf spot on eggplant (Solanum melongena) was observed in major eggplant growing regions in Malaysia, including the Cameron Highlands and Johor State, during 2011. Disease incidence averaged approximately 30% in severely infected regions in about 150 ha of eggplant fields and greenhouses examined. Early symptoms consisted of small, circular, brown, necrotic spots uniformly distributed on leaves. The spots gradually enlarged and developed concentric rings. Eventually, the spots coalesced and caused extensive leaf senescence. A fungus was recovered consistently by plating surface-sterilized (1% NaOCl) sections of symptomatic leaf tissue onto potato dextrose agar (PDA). For conidial production, the fungus was grown on potato carrot agar (PCA) and V8 agar media under a 16-h/8-h dark/light photoperiod at 25°C (4). Fungal colonies were a dark olive color with loose, cottony mycelium. Simple conidiophores were ≤120 μm long and produced numerous conidia in long chains. Conidia averaged 20.0 × 7.5 μm and contained two to five transverse septa and the occasional longitudinal septum. Twelve isolates of the fungus were identified as Alternaria tenuissima on the basis of morphological characterization (4). Confirmation of the species identification was obtained by molecular characterization of the internal transcribed spacer (ITS) region of rDNA amplified from DNA extracted from a representative isolate using universal primers ITS4 and ITS5 (2). The 558 bp DNA band amplified was sent for direct sequencing. The sequence (GenBank Accession No. JQ736021) was subjected to BLAST analysis (1) and was 99% identical to published ITS rDNA sequences of isolates of A. tenuissima (GenBank Accession Nos. DQ323692 and AY154712). Pathogenicity tests were performed by inoculating four detached leaves from 45-day-old plants of the eggplant cv. 125066x with 20 μl drops (three drops/leaf) of a conidial suspension containing 105 conidia/ml in sterile distilled water. Four control leaves were inoculated with sterile water. Leaves inoculated with the fungus and those treated with sterile water were incubated in chambers at 25°C and 95% RH with a 12-h photoperiod/day (2). Leaf spot symptoms typical of those caused by A. tenuissima developed on leaves inoculated with the fungus 7 days after inoculation, and the fungus was consistently reisolated from these leaves. The control leaves remained asymptomatic and the pathogen was not reisolated from the leaves. The pathogenicity test was repeated with similar results. To our knowledge, this is the first report of A. tenuissima causing a leaf spot on eggplant in Malaysia. A. tenuissima has been reported to cause leaf spot and fruit rot on eggplant in India (3). References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (3) P. Raja et al. New Disease Rep. 12:31, 2005. (4) E. G. Simmons. Page 1 in: Alternaria Biology, Plant Diseases and Metabolites. J. Chelchowski and A. Visconti, eds. Elsevier, Amsterdam, 1992.
    Matched MeSH terms: Photoperiod
  14. Rooney-Latham S, Blomquist CL, Scheck HJ
    Plant Dis, 2011 Nov;95(11):1478.
    PMID: 30731749 DOI: 10.1094/PDIS-03-11-0261
    Passiflora edulis Sims f. edulis, known as purple passion fruit, is a woody, perennial vine that is grown for its attractive two-part flower and its purple, edible fruit (4). In November 2009, passion fruit vines were collected during a regulatory nursery inspection in Santa Barbara County and submitted to the California Department of Food and Agriculture Plant Pest Diagnostics Laboratory. Nearly 100% of the plants inspected, all of which were approximately 1.25 m tall, appeared stunted, defoliated, and severely wilted. Dark brown vascular discoloration was present in the roots and lower stems of the plants. A pinkish violet Fusarium oxysporum colony containing chlamydospores, multiseptate macroconidia, and microconidia formed on monophialidic conidiophores was consistently isolated from roots and stems onto half-strength acidified potato dextrose agar (aPDA). All further experiments were done with an isolate obtained from a single conidium. A portion of the translation elongation factor gene (TEF-1α) was amplified and sequenced with primers ef1 and ef2 from our isolate (GenBank No. JF332039) (3). BLAST analysis of the 615-bp amplicon with the FUSARIUM-ID database showed 99% similarity with a F. oxysporum passion fruit isolate from Australia (NRRL 38273) (3). To confirm pathogenicity, washed roots of four-leaf stage seedlings approximately 10 cm tall were submerged in a conidial spore suspension (106 spores/ml) for 15 min. The conidial suspension was prepared by flooding 10-day-old cultures grown on aPDA medium with sterile distilled water. Seven seedlings were inoculated and planted in 10-cm2 pots and kept in a 25°C growth chamber with a 12-h photoperiod. Seven seedlings were mock inoculated with sterile water. After 3 weeks, four of the seven inoculated plants had leaves with yellow veins and discolored roots and had partially defoliated. Two of the four symptomatic plants also had brown stem cankers. F. oxysporum grew from the isolated roots and stems of all the inoculated plants. F. oxysporum did not grow from root and stem pieces from the water-dipped plants and the plants remained asymptomatic. Inoculations were repeated on plants approximately 15 cm tall with F. oxysporum growing from roots and stem pieces of all inoculated plants. Symptoms of yellow veins and root necrosis were not observed until 4 weeks after inoculation. Fusarium wilt caused by F. oxysporum f. sp. passiflorae is a significant disease of P. edulis f. edulis in Australia. The disease has also been reported in South Africa, Malaysia, Brazil, Panama, and Venezuela; but it is unclear as to whether the symptoms were caused by Fusarium wilt or Haematonectria canker (1). Banana poka (P. mollissima), P. ligularis, and P. foetida are also susceptible hosts (2). To our knowledge, this is the first report of Fusarium wilt caused by F. oxysporum f. sp. passiflorae on passion fruit in North America. Passion fruit is not commercially produced for consumption in California so the economic importance of this disease appears to be limited to nursery production and ornamental landscapes. The grower of the California nursery stated that the infected passion fruit plants had been propagated on site from seed. The source of inoculum at this nursery remains unknown. References: (1) I. H. Fischer and J. A. M. Rezende. Pest Tech. 2:1, 2008 (2) D. E. Garder. Plant. Dis. 73:476, 1989. (3) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (4) F. W. Martin et al. Econ. Bot. 24:333, 1970.
    Matched MeSH terms: Photoperiod
  15. Salati M, Wong MY, Sariah M, Nik Masdek H
    Plant Dis, 2010 May;94(5):642.
    PMID: 30754434 DOI: 10.1094/PDIS-94-5-0642A
    In December 2008, infected leaves of Trichosanthes cucumerina were observed on commercial cucurbit farms located in Pontian, Johor (south of West Malaysia). Bright yellow and small necrotic lesions were observed on the adaxial surface of the leaves, whereas sporangiophores were observed on pale yellowish brown-to-brown lesions on the abaxial surface. The length and width of the sporangia ranged from 19 to 36 μm (28.6) and 11 to 23 μm (17.6), respectively. The length of the sporangiophores ranged from 310 to 450 μm, with an average length of 380 μm. The pathogen was identified as Pseudoperonospora cubensis on the basis of the morphological criteria described by Palti and Cohen (2). To confirm the morphological findings, DNA was extracted from symptomatic tissue and the internal transcribed spacer (ITS) region was PCR amplified using primers ITS5-P2 and ITS4 (3). The appropriate-sized amplicon was gel excised and column purified and then submitted for direct sequencing. The resulting 802 bp amplified ITS region was 100% identical to published P. cubensis sequences (GenBank Accession Nos. EU876603, EU876584, and AY198306). This sequence was deposited with NCBI GenBank under the Accession No. GU233293. In this study, pathogenicity tests were conducted using detached leaf disc assays (1) and a P. cubensis isolate obtained from T. cucumerina. For this purpose, leaf discs were excised from 6- to 8-week-old leaves of T. cucumerina using a 20-mm cork borer. Five leaf discs were placed with their abaxial surface facing upward on moist filter paper in petri dishes. Each of four leaf discs was inoculated with four 10-μl droplets of a 1 × 105 per ml sporangial suspension, whereas the fifth disc was inoculated with water droplets and served as a control. Three replications were completed. The leaf discs were placed in darkness at 14 ± 2°C for 24 h and subsequently incubated with a 12-h photoperiod. After 10 days, sporulation was observed on the sporangia-inoculated leaf discs with similar morphological features to the initial field samples. To our knowledge, this is the first report of P. cubensis causing downy mildew of T. cucumerina in Malaysia. References: (1) A. Lebeda and M. P. Widrlechner. J. Plant Dis. Prot. 110:337, 2003. (2) J. Palti and Y. Cohen. Phytoparasitica 8:109, 1980. (3) H. Voglmayr and O. Constantinescu. Mycol. Res. 112:487, 2008.
    Matched MeSH terms: Photoperiod
  16. Afolabi O, Milan B, Amoussa R, Koebnik R, Poulin L, Szurek B, et al.
    Plant Dis, 2014 Oct;98(10):1426.
    PMID: 30703943 DOI: 10.1094/PDIS-05-14-0504-PDN
    On May 9, 2013, symptoms reminiscent of bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola were observed on rice plants at the panicle emergence stage at Musenyi, Gihanga, and Rugombo fields in Burundi. Affected leaves showed water-soaked translucent lesions and yellow-brown to black streaks, sometimes with visible exudates on leaf surfaces. Symptomatic leaves were ground in sterile water and the suspensions obtained were subjected to a multiplex PCR assay diagnostic for X. oryzae pathovars (3). Three DNA fragments (331, 691, and 945 bp) corresponding to X. oryzae pv. oryzicola were observed after agarose gel electrophoresis. Single bacterial colonies were then isolated from surface-sterilized, infected leaves after grinding in sterile water and plating of 10-fold dilutions of the cell suspension on semi-selective PSA medium (4). After incubation at 28°C for 5 days, each of four independent cultures yielded single yellow, mucoid Xanthomonas-like colonies (named Bur_1, Bur_2, Bur_6, and Bur_7) that resembled the positive control strain MAI10 (1). These strains originated from Musenyi (Bur_1), Gihanga (Bur_2), and Rugumbo (Bur_6 and Bur_7). Multiplex PCR assays on the four putative X. oryzae pv. oryzicola strains yielded the three diagnostic DNA fragments mentioned above. All strains were further analyzed by sequence analysis of portions of the gyrB gene using the universal primers gyrB1-F and gyrB1-R for PCR amplification (5). The 762-bp DNA fragment was identical to gyrB sequences from the Asian X. oryzae pv. oryzicola strains BLS256 (Philippines), ICMP 12013 (China), LMG 797 and NCPPB 2921 (both Malaysia), and from the African strain MAI3 (Mali) (2). The partial nucleotide sequence of the gyrB gene of Bur_1 was submitted to GenBank (Accession No. KJ801400). Pathogenicity tests were performed on greenhouse-grown 4-week-old rice plants of the cvs. Nipponbare, Azucena, IRBB 1, IRBB 2, IRBB 3, IRBB 7, FKR 14, PNA64F4-56, TCS 10, Gigante, and Adny 11. Bacterial cultures were grown overnight in PSA medium and re-suspended in sterile water (1 × 108 CFU/ml). Plants were inoculated with bacterial suspensions either by spraying or by leaf infiltration (1). For spray inoculation, four plants per accession and strain were used while three leaves per plant and four plants per accession and strain were inoculated by tissue infiltration. After 15 days of incubation in a BSL-3 containment facility (27 ± 1°C with a 12-h photoperiod), the spray-inoculated plants showed water-soaked lesions with yellow exudates identical to those seen in the field. For syringe-infiltrated leaves, the same symptoms were observed at the infiltrated leaf area. Re-isolation of bacteria from symptomatic leaves yielded colonies with the typical Xanthomonas morphology that were confirmed by multiplex PCR to be X. oryzae pv. oryzicola, thus fulfilling Koch's postulates. Bur_1 has been deposited in the Collection Française de Bactéries Phytopathogènes as strain CFBP 8170 ( http://www.angers-nantes.inra.fr/cfbp/ ). To our knowledge, this is the first report of X. oryzae pv. oryzicola causing bacterial leaf streak on rice in Burundi. Further surveys will help to assess its importance in the country. References: (1) C. Gonzalez et al., Mol. Plant Microbe Interact. 20:534, 2007. (2) A. Hajri et al. Mol. Plant Pathol. 13:288, 2012. (3) J. M. Lang et al. Plant Dis. 94:311, 2010. (4) L. Poulin et al. Plant Dis. 98:1423, 2014. (5) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.
    Matched MeSH terms: Photoperiod
  17. Fathurrahman L, Hajar AH, Sakinah DW, Nurhazwani Z, Ahmad J
    Pak J Biol Sci, 2013 Nov 15;16(22):1517-23.
    PMID: 24511694
    One of the main limitations of productivity in photobioreactor is the inefficient conversion of the available light into biomass. Photoautotrophic cells such as microalgae only absorb a small fraction of supplied illumination due to limitation of its photosystem's (PS) absorbing rate. However, phenomenon of Flashing Light Effect (FLE) allows microalgae to utilize strong light exceptionally through intermittent exposure. Exposure of strong light at correct frequency of light and dark photoperiod would allow two pigment-protein complexes, PSI and PSII to be at the equilibrium mid-point potential to allow efficient light conversion. Narrow range of optimum frequency is crucial since overexposure to strong light would injured photosynthetic apparatus whereas longer dark period would contributed to loss of biomass due to triacylglycerol metabolism. The behaviour of microalgae towards various illumination conditions of FLE was determined at batch Photobioreactor (PBR) by varying the aeration flow rate: 16.94, 33.14 and 49.28 mL sec(-1) which yield, respectively the light exposure time of 3.99, 1.71 and 1.1 seconds per cycle. Maximum cell density in FLE-PBR was significantly higher at the exponential phase as compared to the continuously illuminated culture (p = 5.62 x 10(-5), a = 0.05) under the flow rate of 25.07 mL sec(-1). Maximum cell density yield of FLE-PBR and continuously illuminated PBR was, respectively 3.1125 x 10(7) and 2.947 x 10(7) cells mL(-1). Utilization of FLE as an innovative solution to increase the efficiency of microalgae to convert light into chemical energy would revolutionize the microalgae culture, reduce the time for cultivation and produce higher maximum biomass density.
    Matched MeSH terms: Photoperiod
  18. Atta M, Idris A, Bukhari A, Wahidin S
    Bioresour Technol, 2013 Nov;148:373-8.
    PMID: 24063820 DOI: 10.1016/j.biortech.2013.08.162
    Light quality and the intensity are key factors which render microalgae as a potential source of biodiesel. In this study the effects of various intensities of blue light and its photoperiods on the growth and lipid content of Chlorella vulgaris were investigated by using LED (Light Emitting Diode) in batch culture. C. vulgaris was grown for 13 days at three different light intensities (100, 200 and 300 μmol m(-2)s(-1)). Effect of three different light and dark regimes (12:12, 16:08 and 24:00 h Light:Dark) were investigated for each light intensity at 25°C culture temperature. Maximum lipid content (23.5%) was obtained due to high efficiency and deep penetration of 200 μmol m(-2)s(-1) of blue light (12:12 L:D) with improved specific growth (1.26 d(-1)) within reduced cultivation time of 8 days. White light could produce 20.9% lipid content in 10 days at 16:08 h L:D.
    Matched MeSH terms: Photoperiod
  19. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722190 DOI: 10.1094/PDIS-10-12-0902-PDN
    In June 2011, lettuce (Lactuca sativa) plants cultivated in major lettuce growing areas in Malaysia, including the Pahang and Johor states, had extensive leaf spots. In severe cases, disease incidence was recorded more than 80%. Symptoms on 50 observed plants initially were as water soaked spots (1 to 2 mm in diameter) on leaves, and then became circular spots spreading over much of the leaves. In this research, main lettuce growing areas infected by the pathogen in the mentioned states were investigated and the pathogen was isolated onto potato dextrose agar (PDA). Colonies observed were greyish green to light brown. Single conidia were formed at the terminal end of conidiophores that were 28.8 to 40.8 μm long and 11.0 to 19.2 μm wide, and 2 to 7 transverse and 1 to 4 longitudinal septa. To produce conidia, the fungus was grown on potato carrot agar (PCA) and V8 juice agar media under 8-h/16-h light/dark photoperiod. Fourteen isolates were identified Stemphylium solani based on morphological criteria described by Kim et al. (1). To confirm morphological characterization, DNA of the fungus was extracted from mycelium and PCR was done using universal primers ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'), which amplified the internal transcribed spacer (ITS) region of rDNA (2). The sequencing result was subjected to BLAST analysis which was 99% identical to the other published sequences in the GenBank database (GenBank Accession Nos. AF203451 and HQ840713). The nucleotide sequence was deposited in GenBank under Accession No. JQ736022. Pathogenicity testing of representative isolate was done using 20 μl of conidial suspension with a concentration of 1 × 105/ml in droplets (three drops on each leaf) on four detached 45-day-old lettuce leaves cv. BBS012 (3). Fully expended leaves were placed on moist filter paper in petri dishes and were incubated in humid chambers at 25°C. The leaves inoculated with sterile water served as control. After 7 days, disease symptoms were observed, which were similar to those symptoms collected in infected fields and the fungus was reisolated and confirmed as S. solani based on morphological criteria (1) and molecular characterization (2). Control leaves remained healthy. Pathogenicity testing was completed twice. To our knowledge, this is the first report of S. solani on lettuce in Malaysia and it may become a serious problem because of its broad host range, variability in pathogenic isolates, and prolonged active phase of the disease cycle. Previous research has shown that S. solani is a causal agent of gray leaf spot on lettuce in China (4). References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Current Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) F. L. Tai. Sylloge Fungorum Sinicorum, Sci. Press, Acad. Sin., Peking, 1979.
    Matched MeSH terms: Photoperiod
  20. Ardo FM, Khoo KS, Ahmad Sobri MZ, Suparmaniam U, Ethiraj B, Anwar AF, et al.
    Environ Pollut, 2024 Apr 01;346:123648.
    PMID: 38408504 DOI: 10.1016/j.envpol.2024.123648
    Municipal wastewater is ubiquitously laden with myriad pollutants discharged primarily from a combination of domestic and industrial activities. These heterogeneous pollutants are threating the natural environments when the traditional activated sludge system fails sporadically to reduce the pollutants' toxicities. Besides, the activated sludge system is very energy intensive, bringing conundrums for decarbonization. This research endeavoured to employ Chlorella vulgaris sp. In converting pollutants from municipal wastewater into hydrogen via alternate light and dark fermentative process. The microalgae in attached form onto 1 cm3 of polyurethane foam cubes were adopted in optimizing light intensity and photoperiod during the light exposure duration. The highest hydrogen production was recorded at 52 mL amidst the synergistic light intensity and photoperiod of 200 μmolm-2s-1 and 12:12 h (light:dark h), respectively. At this lighting condition, the removals of chemical oxygen demand (COD) and ammoniacal nitrogen were both achieved at about 80%. The sustainability of microalgal fermentative performances was verified in recyclability study using similar immobilization support material. There were negligible diminishments of hydrogen production as well as both COD and ammoniacal nitrogen removals after five cycles, heralding inconsequential microalgal cells' washout from the polyurethane support when replacing the municipal wastewater medium at each cycle. The collected dataset was finally modelled into enhanced Monod equation aided by Python software tool of machine learning. The derived model was capable to predict the performances of microalgae to execute the fermentative process in producing hydrogen while subsisting municipal wastewater at arbitrary photoperiod. The enhanced model had a best fitting of R2 of 0.9857 as validated using an independent dataset. Concisely, the outcomes had contributed towards the advancement of municipal wastewater treatment via microalgal fermentative process in producing green hydrogen as a clean energy source to decarbonize the wastewater treatment facilities.
    Matched MeSH terms: Photoperiod
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links