Displaying publications 1 - 20 of 130 in total

Abstract:
Sort:
  1. Verma Y, Iqbal J, Naushad M, Bhaskaralingam A, Kumar A, Dhiman P, et al.
    J Environ Manage, 2025 Feb;374:123976.
    PMID: 39793497 DOI: 10.1016/j.jenvman.2024.123976
    The global shift towards renewable energy sources highlights the urgent need for sustainable hydrogen production, with photo-fermentative hydrogen evolution (PFHP) emerging as a promising solution. This review addresses the challenges and opportunities in optimizing PFHP, specifically the role of photosynthetic bacteria (PBS) in utilizing sunlight for hydrogen production. We focus on the key factors influencing PFHP, including light intensity, reactor design, substrate selection, carbon-to-nitrogen ratio, metal ions, temperature, pH, charge transfer and genetic engineering. Additionally, we explore recent advances in techniques such as immobilization, nanoparticles, biochar, and co-culturing to enhance hydrogen production efficiency. By synthesizing the latest research, this review provides new insights into improving PFHP processes, offering strategies for more efficient biohydrogen production. This work contributes to the development of sustainable hydrogen production technologies, advancing the potential for biohydrogen as a clean energy source.
    Matched MeSH terms: Photosynthesis
  2. Ciniciato GP, Ng FL, Phang SM, Jaafar MM, Fisher AC, Yunus K, et al.
    Sci Rep, 2016 08 09;6:31193.
    PMID: 27502051 DOI: 10.1038/srep31193
    Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed.
    Matched MeSH terms: Photosynthesis*
  3. Wan Afifudeen CL, Aziz A, Wong LL, Takahashi K, Toda T, Abd Wahid ME, et al.
    Phytochemistry, 2021 Dec;192:112936.
    PMID: 34509143 DOI: 10.1016/j.phytochem.2021.112936
    The non-model microalga Messastrum gracile SE-MC4 is a potential species for biodiesel production. However, low biomass productivity hinders it from passing the life cycle assessment for biodiesel production. Therefore, the current study was aimed at uncovering the differences in the transcriptome profiles of the microalgae at early exponential and early stationary growth phases and dissecting the roles of specific differential expressed genes (DEGs) involved in cell division during M. gracile cultivation. The transcriptome analysis revealed that the photosynthetic integral membrane protein genes such as photosynthetic antenna protein were severely down-regulated during the stationary growth phase. In addition, the signaling pathways involving transcription, glyoxylate metabolism and carbon metabolism were also down-regulated during stationary growth phase. Current findings suggested that the coordination between photosynthetic integral membrane protein genes, signaling through transcription and carbon metabolism classified as prominent strategies during exponential growth stage. These findings can be applied in genetic improvement of M. gracile for biodiesel application.
    Matched MeSH terms: Photosynthesis/genetics
  4. Chen X, Yang B, Huang W, Wang T, Li Y, Zhong Z, et al.
    Int J Mol Sci, 2018 Dec 05;19(12).
    PMID: 30563128 DOI: 10.3390/ijms19123897
    Polyphenol oxidase (PPO) catalyzes the o-hydroxylation of monophenols and oxidation of o-diphenols to quinones. Although the effects of PPO on plant physiology were recently proposed, little has been done to explore the inherent molecular mechanisms. To explore the in vivo physiological functions of PPO, a model with decreased PPO expression and enzymatic activity was constructed on Clematis terniflora DC. using virus-induced gene silencing (VIGS) technology. Proteomics was performed to identify the differentially expressed proteins (DEPs) in the model (VC) and empty vector-carrying plants (VV) untreated or exposed to high levels of UV-B and dark (HUV-B+D). Following integration, it was concluded that the DEPs mainly functioned in photosynthesis, glycolysis, and redox in the PPO silence plants. Mapman analysis showed that the DEPs were mainly involved in light reaction and Calvin cycle in photosynthesis. Further analysis illustrated that the expression level of adenosine triphosphate (ATP) synthase, the content of chlorophyll, and the photosynthesis rate were increased in VC plants compared to VV plants pre- and post HUV-B+D. These results indicate that the silence of PPO elevated the plant photosynthesis by activating the glycolysis process, regulating Calvin cycle and providing ATP for energy metabolism. This study provides a prospective approach for increasing crop yield in agricultural production.
    Matched MeSH terms: Photosynthesis*
  5. Gao X, Chai HH, Ho WK, Mayes S, Massawe F
    BMC Plant Biol, 2023 May 30;23(1):287.
    PMID: 37248451 DOI: 10.1186/s12870-023-04293-w
    BACKGROUND: Assessment of segregating populations for their ability to withstand drought stress conditions is one of the best approaches to develop breeding lines and drought tolerant varieties. Bambara groundnut (Vigna subterranea L. Verdc.) is a leguminous crop, capable of growing in low-input agricultural systems in semi-arid areas. An F4 bi-parental segregating population obtained from S19-3 × DodR was developed to evaluate the effect of drought stress on photosynthetic parameters and identify QTLs associated with these traits under drought-stressed and well-watered conditions in a rainout shelter.

    RESULTS: Stomatal conductance (gs), photosynthesis rate (A), transpiration rate (E) and intracellular CO2 (Ci) were significantly reduced (p 

    Matched MeSH terms: Photosynthesis/genetics
  6. Yu X, Ng SF, Putri LK, Tan LL, Mohamed AR, Ong WJ
    Small, 2021 12;17(48):e2006851.
    PMID: 33909946 DOI: 10.1002/smll.202006851
    Graphitic carbon nitride (g-C3 N4 ) is a kind of ideal metal-free photocatalysts for artificial photosynthesis. At present, pristine g-C3 N4 suffers from small specific surface area, poor light absorption at longer wavelengths, low charge migration rate, and a high recombination rate of photogenerated electron-hole pairs, which significantly limit its performance. Among a myriad of modification strategies, point-defect engineering, namely tunable vacancies and dopant introduction, is capable of harnessing the superb structural, textural, optical, and electronic properties of g-C3 N4 to acquire an ameliorated photocatalytic activity. In view of the burgeoning development in this pacey field, a timely review on the state-of-the-art advancement of point-defect engineering of g-C3 N4 is of vital significance to advance the solar energy conversion. Particularly, insights into the intriguing roles of point defects, the synthesis, characterizations, and the systematic control of point defects, as well as the versatile application of defective g-C3 N4 -based nanomaterials toward photocatalytic water splitting, carbon dioxide reduction and nitrogen fixation will be presented in detail. Lastly, this review will conclude with a balanced perspective on the technical and scientific hindrances and future prospects. Overall, it is envisioned that this review will open a new frontier to uncover novel functionalities of defective g-C3 N4 -based nanostructures in energy catalysis.
    Matched MeSH terms: Photosynthesis
  7. Wang CT, Huang YS, Sangeetha T, Chen YM, Chong WT, Ong HC, et al.
    Bioresour Technol, 2018 May;255:83-87.
    PMID: 29414177 DOI: 10.1016/j.biortech.2018.01.086
    Photosynthetic microbial fuel cells (PMFCs) are novel bioelectrochemical transducers that employ microalgae to generate oxygen, organic metabolites and electrons. Conventional PMFCs employ non-eco-friendly membranes, catalysts and phosphate buffer solution. Eliminating the membrane, buffer and catalyst can make the MFC a practical possibility. Therefore, single chambered (SPMFC) were constructed and operated at different recirculation flow rates (0, 40 and 240 ml/min) under bufferless conditions. Furthermore, maximum power density of 4.06 mW/m2, current density of 46.34 mA/m2 and open circuit potential of 0.43 V and low internal resistance of 611.8 Ω were obtained at 40 ml/min. Based on the results it was decided that SPMFC was better for operation at 40 ml/min. Therefore, these findings provided progressive insights for future pilot and industrial scale studies of PMFCs.
    Matched MeSH terms: Photosynthesis*
  8. Short AW, Sebastian JSV, Huang J, Wang G, Dassanayake M, Finnegan PM, et al.
    Tree Physiol, 2024 Feb 11;44(3).
    PMID: 38366388 DOI: 10.1093/treephys/tpae019
    Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits-Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.
    Matched MeSH terms: Photosynthesis/genetics
  9. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Int J Mol Sci, 2010 Nov 15;11(11):4539-55.
    PMID: 21151455 DOI: 10.3390/ijms11114539
    The relationship between phenolics and flavonoids synthesis/accumulation and photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale) varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 790 μmol m(-2)s(-1). High performance liquid chromatography (HPLC) was employed to identify and quantify the polyphenolic components. The results of HPLC analysis indicated that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin were high in plants grown under 310 μmol m(-2)s(-1). The average value of flavonoids synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5%) when light intensity decreased. Photosynthetic rate and plant biomass increased in both varieties with increasing light intensity. More specifically, a high photosynthesis rate (12.25 μmol CO(2) m(-2)s(-1) in Halia Bara) and plant biomass (79.47 g in Halia Bentong) were observed at 790 μmol m(-2)s(-1). Furthermore, plants with the lowest rate of photosynthesis had highest flavonoids content. Previous studies have shown that quercetin inhibits and salicylic acid induces the electron transport rate in photosynthesis photosystems. In the current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, higher concentration of quercetin (1.12 mg/g dry weight) was found in Halia Bara leaves grown under 310 μmol m(-2)s(-1) with a low photosynthesis rate. Furthermore, a high content of salicylic acid (0.673 mg/g dry weight) was detected in Halia Bara leaves exposed under 790 μmol m(-2)s(-1) with a high photosynthesis rate. No salicylic acid was detected in gingers grown under 310 μmol m(-2)s(-1). Ginger is a semi-shade loving plant that does not require high light intensity for photosynthesis. Different photosynthesis rates at different light intensities may be related to the absence or presence of some flavonoid and phenolic compounds.
    Matched MeSH terms: Photosynthesis*
  10. Krishankumar S, Hunter JJ, Alyafei M, Hamed F, Subramaniam S, Ramlal A, et al.
    BMC Plant Biol, 2025 Mar 26;25(1):385.
    PMID: 40133817 DOI: 10.1186/s12870-025-06374-4
    The selection of appropriate grapevine grafts and optimizing irrigation practices for enhancing water use efficiency are critical for viticulture production in the arid regions of UAE, apart from mitigating the effects of changing environmental conditions. Extremely high arid temperatures leading to depleted soil moisture status limit grape production in the country. In order to streamline the production, it is imperative to focus on specific objectives of screening drought-tolerant grafts utilizing several laboratory analytical tools and irrigation management. Five grapevine cultivar-rootstock combinations were evaluated in an open field experiment under induced drought conditions by regulating irrigation at 100%, 75% and 50% field capacity (FC) in an arid region. The net photosynthetic rate increased in Flame Seedless [Formula: see text] Ramsey (V1), Thompson Seedless [Formula: see text] Ramsey (V2), and Crimson Seedless [Formula: see text] R110 (V3) at 50% FC. Stomatal conductance was reduced in V1, V3, Crimson Seedless [Formula: see text] Ramsey (V4) and Thompson Seedless x P1103 (V5) at 50% FC. Intercellular CO2 and transpiration rates were significantly reduced at 50% FC. Water use efficiency, calculated as Pn/gs ratio to relate photosynthesis to stomatal closure, was elevated in all the grafts at 75% FC and 50% FC compared to the control (100% FC). The relative water content (RWC) showed a declining trend in all the grafts with reduced water supply. Nevertheless, the V1 and V4 grafts exhibited the highest RWC at an FC of 50%. The V2 graft produced the highest total dry mass and fresh biomass compared to other grafts. The Chl a content decreased, but the Chl b content increased at 50% FC in V2. Lutein significantly decreased for V1, while V3 showed an increase at 50% FC. The N, P and K contents in all the grafts, except V3, showed an increasing trend at 50% FC. The scanning electron microscopy observations point to the strong responses of stomatal behaviour upon changes in irrigation, thus facilitating the drought tolerance of the grafts. The findings emphasize the importance of selecting drought-tolerant grapevine grafts, and our study results could serve as guideposts for developing sustainable viticulture in arid regions, providing valuable insights for future research and practical applications in grape production.
    Matched MeSH terms: Photosynthesis*
  11. Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S, et al.
    Mar Pollut Bull, 2021 Apr;165:112059.
    PMID: 33677415 DOI: 10.1016/j.marpolbul.2021.112059
    Chlorophyll a fluorescence is increasingly being used as a rapid, non-invasive, sensitive and convenient indicator of photosynthetic performance in marine autotrophs. This review presents the methodology, applications and limitations of chlorophyll fluorescence in marine studies. The various chlorophyll fluorescence tools such as Pulse-Amplitude-Modulated (PAM) and Fast Repetition Rate (FRR) fluorometry used in marine scientific studies are discussed. Various commonly employed chlorophyll fluorescence parameters are elaborated. The application of chlorophyll fluorescence in measuring natural variations, stress, stress tolerance and acclimation/adaptation to changing environment in primary producers such as microalgae, macroalgae, seagrasses and mangroves, and marine symbiotic invertebrates, namely symbiotic sponges, hard corals and sea anemones, kleptoplastic sea slugs and giant clams is critically assessed. Stressors include environmental, biological, physical and chemical ones. The strengths, limitations and future perspectives of the use of chlorophyll fluorescence technique as an assessment tool in symbiotic marine organisms and seaplants are discussed.
    Matched MeSH terms: Photosynthesis
  12. Tay BA
    Phys Rev E, 2021 Apr;103(4-1):042124.
    PMID: 34005972 DOI: 10.1103/PhysRevE.103.042124
    We consider the reduced dynamics of a molecular chain weakly coupled to a phonon bath. With a small and constant inhomogeneity in the coupling, the excitation relaxation rates are obtained in closed form. They are dominated by transitions between exciton modes lying next to each other in the energy spectrum. The rates are quadratic in the number of sites in a long chain. Consequently, the evolution of site occupation numbers exhibits longer coherence lifetime for short chains only. When external source and sink are added, the rate equations of exciton occupation numbers are similar to those obtained earlier by Fröhlich to explain energy storage and energy transfer in biological systems. There is a clear separation of timescale into a faster one pertaining to internal influence of the chain and phonon bath, and a slower one determined by external influence, such as the pumping rate of the source, the absorption rate of the sink, and the rate of radiation loss. The energy transfer efficiency at steady state depends strongly on these external parameters and is robust against a change in the internal parameters, such as temperature and inhomogeneity. Excitations are predicted to concentrate to the lowest energy mode when the source power is sufficiently high. In the site basis, this implies that when sustained by a high power source, a sink positioned at the center of the chain is more efficient in trapping energy than a sink placed at its end. Analytic expressions of energy transfer efficiency are obtained in the high power and low-power source limit. Parameters of a photosynthetic system are used as examples to illustrate the results.
    Matched MeSH terms: Photosynthesis
  13. Lim YA, Ilankoon IMSK, Khong NMH, Priyawardana SD, Ooi KR, Chong MN, et al.
    Bioresour Technol, 2024 Feb;393:129898.
    PMID: 37890731 DOI: 10.1016/j.biortech.2023.129898
    Microalgae's exceptional photosynthetic prowess, CO2 adaptation, and high-value bioproduct accumulation make them prime candidates for microorganism-based biorefineries. However, most microalgae research emphasizes downstream processes and applications rather than fundamental biomass and biochemical balances and kinetic under the influence of greenhouse gases such as CO2. Therefore, three distinctly different microalgae species were cultivated under 0% to 20% CO2 treatments to examine their biochemical responses, biomass production and metabolite accumulations. Using a machine learning approach, it was found that Chlorella sorokiniana showed a positive relationship between biomass and chl a, chl b, carotenoids, and carbohydrates under increasing CO2 treatments, while Chlamydomonas angulosa too displayed positive relationships between biomass and all studied biochemical contents, with minimal trade-offs. Meanwhile, Nostoc sp. exhibited a negative correlation between biomass and lipid contents under increasing CO2 treatment. The study showed the potential of Chlorella, Chlamydomonas and Nostoc for commercialization in biorefineries and carbon capture systems where their trade-offs were identified for different CO2 treatments and could be prioritized based on commercial objectives. This study highlighted the importance of understanding trade-offs between biomass production and biochemical yields for informed decision-making in microalgae cultivation, in the direction of mass carbon capture for climate change mitigation.
    Matched MeSH terms: Photosynthesis
  14. Sirohi R, Kumar Pandey A, Ranganathan P, Singh S, Udayan A, Kumar Awasthi M, et al.
    Bioresour Technol, 2022 Apr;349:126858.
    PMID: 35183729 DOI: 10.1016/j.biortech.2022.126858
    There has been increasing attention in recent years on the use of photobioreactors for various biotechnological applications, especially for the cultivation of microalgae. Photobioreactors-based production of photosynthetic microorganisms furnish several advantages as minimising toxicity and providing improved conditions. However, the designing and scaling-up of photobioreactors (PBRs) remain a challenge. Due to huge capital investment and operating cost, there is a deficiency of suitable PBRs for development of photosynthetic microorganisms on large-scale. It is, therefore, highly desirable to understand the current state-of-the-art PBRs, their advantages and limitations so as to classify different PBRs as per their most suited applications. This review provides a holistic overview of the discreet features of diverse PBR designs and their purpose in microalgae growth and biohydrogen production and also summarizes the recent development in use of hybrid PBRs to increase their working efficiency and overall economics of their operation for the production of value-added products.
    Matched MeSH terms: Photosynthesis
  15. Lau NS, Foong CP, Kurihara Y, Sudesh K, Matsui M
    PLoS One, 2014;9(1):e86368.
    PMID: 24466058 DOI: 10.1371/journal.pone.0086368
    The photosynthetic cyanobacterium, Synechocystis sp. strain 6803, is a potential platform for the production of various chemicals and biofuels. In this study, direct photosynthetic production of a biopolymer, polyhydroxyalkanoate (PHA), in genetically engineered Synechocystis sp. achieved as high as 14 wt%. This is the highest production reported in Synechocystis sp. under photoautotrophic cultivation conditions without the addition of a carbon source. The addition of acetate increased PHA accumulation to 41 wt%, and this value is comparable to the highest production obtained with cyanobacteria. Transcriptome analysis by RNA-seq coupled with real-time PCR was performed to understand the global changes in transcript levels of cells subjected to conditions suitable for photoautotrophic PHA biosynthesis. There was lower expression of most PHA synthesis-related genes in recombinant Synechocystis sp. with higher PHA accumulation suggesting that the concentration of these enzymes is not the limiting factor to achieving high PHA accumulation. In order to cope with the higher PHA production, cells may utilize enhanced photosynthesis to drive the product formation. Results from this study suggest that the total flux of carbon is the possible driving force for the biosynthesis of PHA and the polymerizing enzyme, PHA synthase, is not the only critical factor affecting PHA-synthesis. Knowledge of the regulation or control points of the biopolymer production pathways will facilitate the further use of cyanobacteria for biotechnological applications.
    Matched MeSH terms: Photosynthesis*
  16. Ibrahim MH, Jaafar HZ
    Molecules, 2012 Jan 27;17(2):1159-76.
    PMID: 22286668 DOI: 10.3390/molecules17021159
    The resource availability hypothesis predicts an increase in the allocation to secondary metabolites when carbon gain is improved relative to nutrient availability, which normally occurs during periods of low irradiance. The present work was carried out to confirm this hypothesis by investigating the effects of decreasing irradiance on the production of plant secondary metabolites (flavonoids and phenolics) in the herbal plant Orthosiphon stamineus, and to characterize this production by carbohydrate, H(2)O(2), and malondialdehyde (MDA) levels, net photosynthesis, leaf chlorophyll content and carbon to nitrogen ratio (C/N). Four levels of irradiance (225, 500, 625 and 900 µmol/m(2)/s) were imposed onto two-week old seedlings for 12 weeks in a randomized complete block design experiment. Peak production of total flavonoids, phenolics, soluble sugar, starch and total non-structural carbohydrate ocurred under low irradiance of 225 µmol/m(2)/s, and decreased with increasing irradiance. The up-regulation of secondary metabolites could be explained by the concomitant increases in H(2)O(2) and MDA activities under low irradiance. This condition also resulted in enhanced C/N ratio signifying a reduction in nitrogen levels, which had established significant negative correlations with net photosynthesis, total biomass and total chlorophyll content, indicating the possible existence of a trade-off between growth and secondary metabolism under low irradiance with reduced nitrogen content. The competition between total chlorophyll and secondary metabolites production, as exhibited by the negative correlation coefficient under low irradiance, also suggests a sign of gradual switch of investment from chlorophyll to polyphenols production.
    Matched MeSH terms: Photosynthesis*
  17. Ibrahim MH, Jaafar HZ
    Molecules, 2011 May 04;16(5):3761-77.
    PMID: 21544039 DOI: 10.3390/molecules16053761
    A split plot 3 by 3 experiment was designed to investigate and distinguish the relationships among production of primary metabolites (soluble sugar and starch), secondary metabolites (total phenolics, TP; total flavonoids, TF) and leaf gas exchange of three varieties of the Malaysian medicinal herb Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under three levels of CO₂ enrichment (400, 800 and 1,200 µmol mol⁻¹) for 15 weeks. The treatment effects were solely contributed by CO₂ enrichment levels; no varietal differences were observed. As CO₂ levels increased from 400 to 1,200 µmol mol⁻¹, the production of carbohydrates also increased steadily, especially for starch more than soluble sugar (sucrose). TF and TP content, simultaneously, reached their peaks under 1,200 µmol exposure, followed by 800 and 400 µmol mol⁻¹. Net photosynthesis (A) and quantum efficiency of photosystem II (f(v)/f(m)) were also enhanced as CO₂ increased from 400 to 1,200 µmol mol⁻¹. Leaf gas exchange characteristics displayed a significant positive relationship with the production of secondary metabolites and carbohydrate contents. The increase in production of TP and TFs were manifested by high C/N ratio and low protein content in L. pumila seedlings, and accompanied by reduction in cholorophyll content that exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.
    Matched MeSH terms: Photosynthesis/physiology
  18. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Molecules, 2010 Dec 29;16(1):162-74.
    PMID: 21191319 DOI: 10.3390/molecules16010162
    A factorial split plot 4 × 3 experiment was designed to examine and characterize the relationship among production of secondary metabolites (total phenolics, TP; total flavonoids, TF), carbohydrate content and photosynthesis of three varieties of the Malaysian medicinal herb Labisia pumila Benth. namely the varieties alata, pumila and lanceolata under CO(2) enrichment (1,200 µmol mol(-1)) combined with four levels of nitrogen fertilization (0, 90, 180 and 270 kg N ha(-1)). No varietal differences were observed, however, as the levels of nitrogen increased from 0 to 270 kg N ha(-1), the production of TP and TF decreased in the order leaves>roots>stems. The production of TP and TF was related to increased total non structural carbohydrate (TNC), where the increase in starch content was larger than that in sugar concentration. Nevertheless, the regression analysis exhibited a higher influence of soluble sugar concentration (r(2) = 0.88) than starch on TP and TF biosynthesis. Photosynthesis, on the other hand, displayed a significant negative relationship with TP and TF production (r(2) = -0.87). A decrease in photosynthetic rate with increasing secondary metabolites might be due to an increase in the shikimic acid pathway that results in enhanced production of TP and TF. Chlorophyll content exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.
    Matched MeSH terms: Photosynthesis*
  19. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A
    Biomed Res Int, 2015;2015:105695.
    PMID: 25802833 DOI: 10.1155/2015/105695
    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m(-1). Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m(-1) salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m(-1) salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.
    Matched MeSH terms: Photosynthesis/physiology
  20. Che-Othman MH, Millar AH, Taylor NL
    Plant Cell Environ, 2017 Dec;40(12):2875-2905.
    PMID: 28741669 DOI: 10.1111/pce.13034
    Salinity exerts a severe detrimental effect on crop yields globally. Growth of plants in saline soils results in physiological stress, which disrupts the essential biochemical processes of respiration, photosynthesis, and transpiration. Understanding the molecular responses of plants exposed to salinity stress can inform future strategies to reduce agricultural losses due to salinity; however, it is imperative that signalling and functional response processes are connected to tailor these strategies. Previous research has revealed the important role that plant mitochondria play in the salinity response of plants. Review of this literature shows that 2 biochemical processes required for respiratory function are affected under salinity stress: the tricarboxylic acid cycle and the transport of metabolites across the inner mitochondrial membrane. However, the mechanisms by which components of these processes are affected or react to salinity stress are still far from understood. Here, we examine recent findings on the signal transduction pathways that lead to adaptive responses of plants to salinity and discuss how they can be involved in and be affected by modulation of the machinery of energy metabolism with attention to the role of the tricarboxylic acid cycle enzymes and mitochondrial membrane transporters in this process.
    Matched MeSH terms: Photosynthesis/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links