Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Xomphoutheb T, Jiao S, Guo X, Mabagala FS, Sui B, Wang H, et al.
    Sci Rep, 2020 04 20;10(1):6574.
    PMID: 32313140 DOI: 10.1038/s41598-020-63567-7
    An appropriate tillage method must be implemented by maize growers to improve phosphorus dynamics in the soil in order to increase phosphorus uptake by plant. The objective of this study was to investigate the effects of tillage systems on phosphorus and its fractions in rhizosphere and non-rhizosphere soils under maize. An experimental field was established, with phosphate fertilizers applied to four treatment plots: continuous rotary tillage (CR), continuous no-tillage (CN), plowing-rotary tillage (PR), and plowing-no tillage (PN). Under the different tillage methods, the available P was increased in the non-rhizosphere region. However, the concentration of available P was reduced in the rhizosphere soil region. The soil available P decreased with the age of the crop until the maize reached physiological maturity. The non-rhizosphere region had 132.9%, 82.5%, 259.8%, and 148.4% more available P than the rhizosphere region under the CR, PR, CN, and PN treatments, respectively. The continuous no-tillage method (CN) improved the uptake of soil phosphate by maize. The concentrations of Ca2-P, Ca8-P, Fe-P, Al-P and O-P at the maturity stage were significantly lower than other seedling stages. However, there was no significant relationship between total P and the P fractions. Therefore, a continuous no-tillage method (CN) can be used by farmers to improve phosphorus availability for spring maize. Soil management practices minimizing soil disturbance can be used to impove phosphorus availability for maize roots, increase alkaline phosphatase activity in the rhizosphere soil and increase the abundance of different phosphorus fractions.
    Matched MeSH terms: Plant Roots/metabolism*
  2. Kong SL, Abdullah SNA, Ho CL, Musa MHB, Yeap WC
    BMC Genom Data, 2021 02 05;22(1):6.
    PMID: 33568046 DOI: 10.1186/s12863-021-00962-7
    BACKGROUND: Phosphorus (P), in its orthophosphate form (Pi) is an essential macronutrient for oil palm early growth development in which Pi deficiency could later on be reflected in lower biomass production. Application of phosphate rock, a non-renewable resource has been the common practice to increase Pi accessibility and maintain crop productivity in Malaysia. However, high fixation rate of Pi in the native acidic tropical soils has led to excessive utilization of P fertilizers. This has caused serious environmental pollutions and cost increment. Even so, the Pi deficiency response mechanism in oil palm as one of the basic prerequisites for crop improvement remains largely unknown.

    RESULTS: Using total RNA extracted from young roots as template, we performed a comparative transcriptome analysis on oil palm responding to 14d and 28d of Pi deprivation treatment and under adequate Pi supply. By using Illumina HiSeq4000 platform, RNA-Seq analysis was successfully conducted on 12 paired-end RNA-Seq libraries and generated more than 1.2 billion of clean reads in total. Transcript abundance estimated by fragments per kilobase per million fragments (FPKM) and differential expression analysis revealed 36 and 252 genes that are differentially regulated in Pi-starved roots at 14d and 28d, respectively. Genes possibly involved in regulating Pi homeostasis, nutrient uptake and transport, hormonal signaling and gene transcription were found among the differentially expressed genes.

    CONCLUSIONS: Our results showed that the molecular response mechanism underlying Pi starvation in oil palm is complexed and involved multilevel regulation of various sensing and signaling components. This contribution would generate valuable genomic resources in the effort to develop oil palm planting materials that possess Pi-use efficient trait through molecular manipulation and breeding programs.

    Matched MeSH terms: Plant Roots/metabolism*
  3. Shokrollahi N, Ho CL, Zainudin NAIM, Wahab MABA, Wong MY
    Sci Rep, 2021 Aug 11;11(1):16330.
    PMID: 34381084 DOI: 10.1038/s41598-021-95549-8
    Basal stem rot (BSR) of oil palm is a disastrous disease caused by a white-rot fungus Ganoderma boninense Pat. Non-ribosomal peptides (NRPs) synthesized by non-ribosomal peptide synthetases (NRPSs) are a group of secondary metabolites that act as fungal virulent factors during pathogenesis in the host. In this study, we aimed to isolate NRPS gene of G. boninense strain UPMGB001 and investigate the role of this gene during G. boninense-oil palm interaction. The isolated NRPS DNA fragment of 8322 bp was used to predict the putative peptide sequence of different domains and showed similarity with G. sinense (85%) at conserved motifs of three main NRPS domains. Phylogenetic analysis of NRPS peptide sequences demonstrated that NRPS of G. boninense belongs to the type VI siderophore family. The roots of 6-month-old oil palm seedlings were artificially inoculated for studying NRPS gene expression and disease severity in the greenhouse. The correlation between high disease severity (50%) and high expression (67-fold) of G. boninense NRPS gene at 4 months after inoculation and above indicated that this gene played a significant role in the advancement of BSR disease. Overall, these findings increase our knowledge on the gene structure of NRPS in G. boninense and its involvement in BSR pathogenesis as an effector gene.
    Matched MeSH terms: Plant Roots/metabolism
  4. Doni F, Suhaimi NSM, Mispan MS, Fathurrahman F, Marzuki BM, Kusmoro J, et al.
    Int J Mol Sci, 2022 Jan 10;23(2).
    PMID: 35054923 DOI: 10.3390/ijms23020737
    Rice, the main staple food for about half of the world's population, has had the growth of its production stagnate in the last two decades. One of the ways to further improve rice production is to enhance the associations between rice plants and the microbiome that exists around, on, and inside the plant. This article reviews recent developments in understanding how microorganisms exert positive influences on plant growth, production, and health, focusing particularly on rice. A variety of microbial species and taxa reside in the rhizosphere and the phyllosphere of plants and also have multiple roles as symbiotic endophytes while living within plant tissues and even cells. They alter the morphology of host plants, enhance their growth, health, and yield, and reduce their vulnerability to biotic and abiotic stresses. The findings of both agronomic and molecular analysis show ways in which microorganisms regulate the growth, physiological traits, and molecular signaling within rice plants. However, many significant scientific questions remain to be resolved. Advancements in high-throughput multi-omics technologies can be used to elucidate mechanisms involved in microbial-rice plant associations. Prospectively, the use of microbial inoculants and associated approaches offers some new, cost-effective, and more eco-friendly practices for increasing rice production.
    Matched MeSH terms: Plant Roots/metabolism
  5. Allamin IA, Halmi MIE, Yasid NA, Ahmad SA, Abdullah SRS, Shukor Y
    Sci Rep, 2020 Mar 05;10(1):4094.
    PMID: 32139706 DOI: 10.1038/s41598-020-60668-1
    Most components of petroleum oily sludge (POS) are toxic, mutagenic and cancer-causing. Often bioremediation using microorganisms is hindered by the toxicity of POS. Under this circumstance, phytoremediation is the main option as it can overcome the toxicity of POS. Cajanus cajan a legume plant, was evaluated as a phyto-remediating agent for petroleum oily sludge-spiked soil. Culture dependent and independent methods were used to determine the rhizosphere microorganisms' composition. Degradation rates were estimated gravimetrically. The population of total heterotrophic bacteria (THRB) was significantly higher in the uncontaminated soil compared to the contaminated rhizosphere soil with C. cajan, but the population of hydrocarbon-utilizing bacteria (HUB) was higher in the contaminated rhizosphere soil. The results show that for 1 to 3% oily sludge concentrations, an increase in microbial counts for all treatments from day 0 to 90 d was observed with the contaminated rhizosphere CR showing the highest significant increase (p  plant. The composition and taxonomic analysis of microbiota-amplified sequences were categorized into eight phyla for the contaminated non-rhizosphere and ten phyla for the contaminated rhizosphere. The overall bacterial composition of the two treatments varied, as the distribution shows a similar variation between the two treatments in the phylum distribution. The percentage removal of total petroleum hydrocarbon (TPH) after 90 days of treatments with 1, 2, 3, 4, and 5% (w/w) of POS were 92, 90, 89, 68.3 and 47.3%, respectively, indicating removal inhibition at higher POS concentrations. As the search for more eco-friendly and sustainable remediating green plant continues, C. cajan shows great potential in reclaiming POS contaminated soil. Our findings will provide solutions to POS polluted soils and subsequent re-vegetation.
    Matched MeSH terms: Plant Roots/metabolism
  6. Muniran F, Bhore SJ, Shah FH
    Indian J Exp Biol, 2008 Jan;46(1):79-82.
    PMID: 18697576
    Three basal plant tissue culture media, namely, N6, MS, and modified Y3, were compared to optimize micropropagation protocol for E. guineensis. Full strength media were used separately to regenerate plantlets directly using immature zygotic embryos (IZEs), and through somatic embryogenesis of calli obtained from IZEs. The plantlets regenerated by direct regeneration on three media were examined for shoot length and rooting percentage. For the induction of callus, somatic embryogenesis, and rooting modified Y3 medium was the most effective. In conclusion, the results indicate that modified Y3 medium is the most suitable for direct regeneration, callus induction and somatic embryogenesis in E. guineensis.
    Matched MeSH terms: Plant Roots/metabolism
  7. Fallah M, Hadi H, Amirnia R, Hassanzadeh-Ghorttapeh A, Zuan ATK, Sayyed RZ
    PLoS One, 2021;16(12):e0261225.
    PMID: 34941919 DOI: 10.1371/journal.pone.0261225
    This study's primary purpose was to investigate the possible amelioration of limited irrigation conditions by mycorrhiza (AMF), vermicompost, and green manure for lingrain plants. This experiment was accomplished as a factorial based on the completely randomized design with three replications. The first factor was green manure (without green manure and with Trifolium pratense as green manure); the second factor consisted of Rhizophagus irregularis mycorrhiza, vermicompost, a combination of mycorrhiza and vermicompost and none of them, and also the third factor was irrigation regime (full irrigation and late-season water limitation). Green manure, vermicompost, and mycorrhiza single-use enhanced the plant's underwater limitation conditions compared to the control. However, vermicompost and green manure or mycorrhiza developed a positive synergistic effect on most traits. Combining green manure with the dual fertilizer (mycorrhiza + vermicompost) resulted in the vermicompost and mycorrhiza synergistic effects, especially under limited irrigation. Consequently, the combination of green manure, mycorrhiza, and vermicompost experienced the highest amount of leaf relative water content, root colonization, leaf nitrogen, chlorophyll a, chlorophyll b, carotenoids, antioxidant enzymes activity, grain yield, and oil yield, which would lead to more resistance of plants to limited irrigation conditions.
    Matched MeSH terms: Plant Roots/metabolism
  8. Maziah M, Rosli N
    Methods Mol Biol, 2009;547:359-69.
    PMID: 19521859 DOI: 10.1007/978-1-60327-287-2_29
    Plant cell culture technology is potentially useful in producing high-valued secondary metabolites. Eurycoma longifolia root extracts are consumed as a health tonic but more popularly used as an aphrodisiac. Studies on the aphrodisiac properties and the possible compounds involved have been widely studied. There are many potentially useful compounds reported from the root extracts of E. longifolia. However, studies on the in vitro production of useful compounds from this plant have not been reported. This chapter will describe methods of callus induction and extraction of 9-methoxycanthin-6-one from E. longifolia Jack explants with emphasis on the tap and fibrous roots. This compound, known to have anti-tumour activity, is present in intact plant parts and in callus tissues of different explants.
    Matched MeSH terms: Plant Roots/metabolism
  9. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Int J Mol Sci, 2012;13(1):393-408.
    PMID: 22312260 DOI: 10.3390/ijms13010393
    A split plot 3 by 4 experiment was designed to characterize the relationship between production of gluthatione (GSH), oxidized gluthatione (GSSG), total flavonoid, anthocyanin, ascorbic acid and antioxidant activities (FRAP and DPPH) in three varieties of Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under four levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) for 15 weeks. The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effects observed. As the nitrogen levels decreased from 270 to 0 kg N/ha, the production of GSH and GSSG, anthocyanin, total flavonoid and ascorbic acid increased steadily. At the highest nitrogen treatment level, L. pumila exhibited significantly lower antioxidant activities (DPPH and FRAP) than those exposed to limited nitrogen growing conditions. Significant positive correlation was obtained between antioxidant activities (DPPH and FRAP), total flavonoid, GSH, GSSG, anthocyanin and ascorbic acid suggesting that an increase in the antioxidative activities in L. pumila under low nitrogen fertilization could be attributed to higher contents of these compounds. From this observation, it could be concluded that in order to avoid negative effects on the quality of L. pumila, it is advisable to avoid excessive application of nitrogen fertilizer when cultivating the herb for its medicinal use.
    Matched MeSH terms: Plant Roots/metabolism
  10. Etti IC, Abdullah R, Kadir A, Hashim NM, Yeap SK, Imam MU, et al.
    PLoS One, 2017;12(8):e0182357.
    PMID: 28771532 DOI: 10.1371/journal.pone.0182357
    Nature has provided us with a wide spectrum of disease healing phytochemicals like Artonin E, obtained from the root bark of Artocarpus elasticus. This molecule had been predicted to be drug-like, possessing unique medicinal properties. Despite strides made in chemotherapy, prognosis of the heterogenous aggressive triple negative breast cancer is still poor. This study was conducted to investigate the mechanism of inhibition of Artonin E, a prenylated flavonoid on MDA-MB 231 triple negative breast cancer cell, with a view of mitigating the hallmarks displayed by these tumors. The anti-proliferative effect, mode of cell death and the mechanism of apoptosis induction were investigated. Artonin E, was seen to effectively relinquish MDA-MB 231 breast cancer cells of their apoptosis evading capacity, causing a half-maximal growth inhibition at low concentrations (14.3, 13.9 and 9.8 μM) after the tested time points (24, 48 and 72 hours), respectively. The mode of cell death was observed to be apoptosis with defined characteristics. Artonin E was seen to induce the activation of both extrinsic and intrinsic caspases initiators of apoptosis. It also enhanced the release of total reactive oxygen species which polarized the mitochondrial membrane, compounding the release of cytochrome c. Gene expression studies revealed the upregulation of TNF-related apoptosis inducing ligand and proapoptotic genes with down regulation of anti-apoptotic genes and proteins. A G2/M cell cycle arrest was also observed and was attributed to the observed upregulation of p21 independent of the p53 status. Interestingly, livin, a new member of the inhibitors of apoptosis was confirmed to be significantly repressed. In all, Artonin E showed the potential as a promising candidate to combat the aggressive triple negative breast cancer.
    Matched MeSH terms: Plant Roots/metabolism
  11. Lulu T, Park SY, Ibrahim R, Paek KY
    J Biosci Bioeng, 2015 Jun;119(6):712-7.
    PMID: 25511788 DOI: 10.1016/j.jbiosc.2014.11.010
    The present study aimed to optimize the conditions for the production of adventitious roots from Eurycoma longifolia Jack, an important medicinal woody plant, in bioreactor culture. The effects of the type and concentration of auxin on root growth were studied, as well as the effects of the NH4(+):NO3(-) ratio on adventitious root growth and the production of phenolics and flavonoids. Approximately 5 g L(-1) fresh weight of adventitious roots was inoculated into a 3 L balloon-type bubble bioreactor, which contained 2 L 3/4 MS medium supplemented with 30 g L(-1) sucrose and cultures were maintained in the dark for 7 weeks at 24 ± 1°C. Higher concentrations of IBA (7.0 and 9.0 mg L(-1)) and NAA (5.0 mg L(-1)) enhanced the biomass and accumulation of total phenolics and flavonoids. The adventitious roots were thin, numerous, and elongated in 3/4 MS medium supplemented with 5.0 and 7.0 mg L(-1) IBA, whereas the lateral roots were shorter and thicker with 5.0 mg L(-1) NAA compared with IBA treatment. The optimum biomasses of 50.22 g L(-1) fresh weight and 4.60 g L(-1) dry weight were obtained with an NH4(+):NO3(-) ratio of 15:30. High phenolic and flavonoid productions (38.59 and 11.27 mg L(-1) medium, respectively) were also obtained with a ratio of 15:30. Analysis of the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity indicated higher antioxidant activity with an NH4(+):NO3(-) ratio of 30:15. These results suggest that balloon-type bubble bioreactor cultures are suitable for the large-scale commercial production of E. longifolia adventitious roots which contain high yield of bioactive compounds.
    Matched MeSH terms: Plant Roots/metabolism*
  12. Khalid MF, Hussain S, Anjum MA, Morillon R, Ahmad S, Ejaz S, et al.
    PLoS One, 2021;16(4):e0247558.
    PMID: 33831006 DOI: 10.1371/journal.pone.0247558
    Water shortage is among the major abiotic stresses that restrict growth and productivity of citrus. The existing literature indicates that tetraploid rootstocks had better water-deficit tolerance than corresponding diploids. However, the associated tolerance mechanisms such as antioxidant defence and nutrient uptake are less explored. Therefore, we evaluated physiological and biochemical responses (antioxidant defence, osmotic adjustments and nutrient uptake) of diploid (2x) and tetraploid (4x) volkamer lemon (VM) rootstocks grafted with kinnow mandarin (KM) under two water-deficit regimes. The KM/4xVM (VM4) and KM/2xVM (VM2) observed decrease in photosynthetic variables, i.e., photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), leaf greenness (SPAD), dark adopted chlorophyll fluorescence (Fv/Fm), dark adopted chlorophyll fluorescence (Fv´/Fm´), relative water contents (RWC) and leaf surface area (LSA), and increase in non-photochemical quenching (NPQ) under both water-deficit regimes. Moreover, oxidative stress indicators, i.e., malondialdehyde (MDA) and hydrogen peroxide, and activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APx), glutathione reductase (GR) were increased under both water-deficit regimes. Nonetheless, increase was noted in osmoprotectants such as proline (PRO) and glycine betaine (GB) and other biochemical compounds, including antioxidant capacity (AC), total phenolic content (TPC) and total soluble protein (TSP) in VM2 and VM4 under both water-deficit regimes. Dry biomass (DB) of both rootstocks was decreased under each water-deficit condition. Interestingly, VM4 showed higher and significant increase in antioxidant enzymes, osmoprotectants and other biochemical compounds, while VM2 exhibited higher values for oxidative stress indicators. Overall, results indicated that VM4 better tolerated water-deficit stress by maintaining photosynthetic variables associated with strong antioxidant defence machinery as compared to VM2. However, nutrient uptake was not differed among tested water-deficit conditions and rootstocks. The results conclude that VM4 can better tolerate water-deficit than VM2. Therefore, VM4 can be used as rootstock in areas of high-water deficiency for better citrus productivity.
    Matched MeSH terms: Plant Roots/metabolism*
  13. Asaduzzaman Kh, Khandaker MU, Amin YM, Bradley DA, Mahat RH, Nor RM
    J Environ Radioact, 2014 Sep;135:120-7.
    PMID: 24814722 DOI: 10.1016/j.jenvrad.2014.04.009
    Soil-to-plant transfer factors (TFs) are of fundamental importance in assessing the environmental impact due to the presence of radioactivity in soil and agricultural crops. Tapioca and sweet potato, both root crops, are popular foodstuffs for a significant fraction of the Malaysian population, and result in intake of radionuclides. For the natural field conditions experienced in production of these foodstuffs, TFs and the annual effective dose were evaluated for the natural radionuclides (226)Ra, (232)Th, (40)K, and for the anthropogenic radionuclide (88)Y, the latter being a component of fallout. An experimental tapioca field was developed for study of the time dependence of plant uptake. For soil samples from all study locations other than the experimental field, it has been shown that these contain the artificial radionuclide (88)Y, although the uptake of (88)Y has only been observed in the roots of the plant Manihot esculenta (from which tapioca is derived) grown in mining soil. The estimated TFs for (226)Ra and (232)Th for tapioca and sweet potato are very much higher than that reported by the IAEA. For all study areas, the annual effective dose from ingestion of tapioca and sweet potato are estimated to be lower than the world average (290 μSv y(-1)).
    Matched MeSH terms: Plant Roots/metabolism*
  14. Kamaruzzaman BY, Ong MC, Jalal KC, Shahbudin S, Nor OM
    J Environ Biol, 2009 Sep;30(5 Suppl):821-4.
    PMID: 20143712
    The accumulative partitioning of Pb and Cu in the Rhizophora apiculata was studied randomly in the Setiu mangrove forest, Terengganu. Samples of leaves, barks and roots were collected randomly from the selected studied species. Sediments between the roots of the sampled mangrove plants were also collected. The results from analysis for Rhizophora apiculata shows that the concentration of Pb and Cu were accumulated higher in root tissue compared to bark and leaf tissue but lower than surrounding sediment level. The average concentration of Cu for Rhizophora apiculata in leaf, bark, root and sediment was 2.73, 3.94, 5.21 and 9.42 mg I(-1), respectively. Meanwhile, the average concentration of Pb in leaf, bark, root and sediment was 1.43, 1.38, 2.05 and 11.66 mg l(-1), respectively. Results of concentration factors (CF) show that the overall the concentration of Pb and Cu were accumulated much higher in roots system of Rhizophora apiculata.
    Matched MeSH terms: Plant Roots/metabolism
  15. Makita N, Kosugi Y, Dannoura M, Takanashi S, Niiyama K, Kassim AR, et al.
    Tree Physiol, 2012 Mar;32(3):303-12.
    PMID: 22367761 DOI: 10.1093/treephys/tps008
    The root systems of forest trees are composed of different diameters and heterogeneous physiological traits. However, the pattern of root respiration rates from finer and coarser roots across various tropical species remains unknown. To clarify how respiration is related to the morphological traits of roots, we evaluated specific root respiration and its relationships to mean root diameter (D) of various diameter and root tissue density (RTD; root mass per unit root volume; gcm(-3)) and specific root length (SRL; root length per unit root mass; mg(-1)) of the fine roots among and within 14 trees of 13 species from a primary tropical rainforest in the Pasoh Forest Reserve in Peninsular Malaysia. Coarse root (2-269mm) respiration rates increased with decreasing D, resulting in significant relationships between root respiration and diameter across species. A model based on a radial gradient of respiration rates of coarse roots simulated the exponential decrease in respiration with diameter. The respiration rate of fine roots (<2mm) was much higher and more variable than those of larger diameter roots. For fine roots, the mean respiration rates for each species increased with decreasing D. The respiration rates of fine roots declined markedly with increasing RTD and increased with increasing SRL, which explained a significant portion of the variation in the respiration among the 14 trees from 13 species examined. Our results indicate that coarse root respiration in tree species follows a basic relationship with D across species and that most of the variation in fine root respiration among species is explained by D, RTD and SRL. We found that the relationship between root respiration and morphological traits provides a quantitative basis for separating fine roots from coarse roots and that the pattern holds across different species.
    Matched MeSH terms: Plant Roots/metabolism
  16. Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Int J Phytoremediation, 2013;15(8):814-26.
    PMID: 23819277
    Phytoremediation is an environment-friendly and cost-effective method to clean the environment of heavy metal contamination. A prolonged phytotoxicity test was conducted in a single exposure. Scirpus grossus plants were grown in sand to which the diluted Pb (NO3)2 was added, with the variation of concentration were 0, 100, 200, 400, 600, and 800 mg/L. It was found that Scirpus grossus plants can tolerate Pb at concentrations of up to 400 mg/L. The withering was observed on day-7 for Pb concentrations of 400 mg/L and above. 100% of the plants withered with a Pb concentration of 600 mg/L on day 65. The Pb concentration in water medium decreased while in plant tissues increased. Adsorption of Pb solution ranged between 2 to 6% for concentrations of 100 to 800 mg/L. The Bioaccumulation Coefficient and Translocation Factor of Scirpus grossus were found greater than 1, indicating that this species is a hyperaccumulator plant.
    Matched MeSH terms: Plant Roots/metabolism
  17. Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Int J Phytoremediation, 2013;15(7):663-76.
    PMID: 23819266
    Phytoremediation is a technology to clean the environment from heavy metals contamination. The objectives of this study are to threat Pb contaminated wastewater by using phytoremediation technology and to determine if the plant can be mention as hyperaccumulator. Fifty plants of Scirpus grossus were grown in sand medium and 600 L spiked water in various Pb concentration (10, 30 and 50 mg/L) was exposed. The experiment was conducted with single exposure method, sampling time on day-1, day-14, day-28, day-42, day-70, and day-98. The analysis of Pb concentration in water, sand medium and inside the plant tissue was conducted by ICP-OES. Water samples were filtered and Pb concentration were directly analyzed, Pb in sand samples were extracted by EDTA method before analyzed, and Pb in plant tissues were extracted by wet digestion method and analyzed. The results showed that on day-28, Pb concentration in water decreased 100%, 99.9%, 99.7%, and the highest Pb uptake by plant were 1343, 4909, 3236 mg/kg for the treatment of 10, 30, and 50 mg/L respectively. The highest BC and TF were 485,261 on day-42 and 2.5295 on day-70 of treatment 30 mg/L, it can be mentioned that Scirpus grossus is a hyperaccumulator.
    Matched MeSH terms: Plant Roots/metabolism
  18. Nusaibah SA, Siti Nor Akmar A, Idris AS, Sariah M, Mohamad Pauzi Z
    Plant Physiol Biochem, 2016 Dec;109:156-165.
    PMID: 27694009 DOI: 10.1016/j.plaphy.2016.09.014
    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring.
    Matched MeSH terms: Plant Roots/metabolism
  19. Talei D, Valdiani A, Rafii MY, Maziah M
    PLoS One, 2014;9(11):e112907.
    PMID: 25423252 DOI: 10.1371/journal.pone.0112907
    Separation of proteins based on the physicochemical properties with different molecular weight and isoelectric points would be more accurate. In the current research, the 45-day-old seedlings were treated with 0 (control) and 12 dS m(-1) of sodium chloride in the hydroponic system. After 15 days of salt exposure, the total protein of the fresh leaves and roots was extracted and analyzed using two-dimensional electrophoresis system (2-DE). The analysis led to the detection of 32 induced proteins (19 proteins in leaf and 13 proteins in the root) as well as 12 upregulated proteins (four proteins in leaf and eight proteins in the root) in the salt-treated plants. Of the 44 detected proteins, 12 were sequenced, and three of them matched with superoxide dismutase, ascorbate peroxidase and ribulose-1, 5-bisphosphate oxygenase whereas the rest remained unknown. The three known proteins associate with plants response to environmental stresses and could represent the general stress proteins in the present study too. In addition, the proteomic feedback of different accessions of A. paniculata to salt stress can potentially be used to breed salt-tolerant varieties of the herb.
    Matched MeSH terms: Plant Roots/metabolism*
  20. Muneer S, Hakeem KR, Mohamed R, Lee JH
    Int J Mol Sci, 2014;15(4):6343-55.
    PMID: 24739807 DOI: 10.3390/ijms15046343
    Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd). The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium but were well expressed in the presence of iron (+Fe/+Cd). Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.
    Matched MeSH terms: Plant Roots/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links