Displaying all 16 publications

Abstract:
Sort:
  1. Hossain MA, Ashrafuzzaman M, Hossain AK, Ismail MR, Koyama H
    ScientificWorldJournal, 2014;2014:457187.
    PMID: 24701169 DOI: 10.1155/2014/457187
    Aluminum (Al) sensitive wheat cultivar kalyansona was grown for 14 d in a range of Ca solution (125, 625, and 2500 μM) plus other nutrients without Al. At 14 d after Ca treatment, half of these plants were harvested (H1), and the rest of the plants were exposed to 100 μM Al for additional 6 d and harvested (H2). Severe Al injury was found only in the plants with the lowest supply of Ca before Al treatment. Aluminum concentration in the apoplastic fluid was very high at 125 μM Ca probably because the plasma membrane of some of the cells was destroyed due to the attack of 100 μM Al. Aluminum content in roots decreased with increasing supply of Ca before Al treatment. Calcium content decreased drastically at harvest (H2) in the plants with 100 μM Al. Under Al stress conditions, the plant responded to Al in different ways due to not only the different Ca supply but also the variation of Ca content in the plant tissues. Actually, the plants having the largest Ca content in the roots before Al treatment can receive less Al injury during Al treatment. To substantiate this idea, a companion study was conducted to investigate the effects of 2500 μM Ca supply during, before, and after 100 μM Al treatment on root growth. The results indicated clearly that exogenous Ca supply before Al treatment is able to alleviate Al injury but less effective than Ca supply during Al treatment.
    Matched MeSH terms: Plant Roots/drug effects*
  2. Talei D, Valdiani A, Rafii MY, Maziah M
    PLoS One, 2014;9(11):e112907.
    PMID: 25423252 DOI: 10.1371/journal.pone.0112907
    Separation of proteins based on the physicochemical properties with different molecular weight and isoelectric points would be more accurate. In the current research, the 45-day-old seedlings were treated with 0 (control) and 12 dS m(-1) of sodium chloride in the hydroponic system. After 15 days of salt exposure, the total protein of the fresh leaves and roots was extracted and analyzed using two-dimensional electrophoresis system (2-DE). The analysis led to the detection of 32 induced proteins (19 proteins in leaf and 13 proteins in the root) as well as 12 upregulated proteins (four proteins in leaf and eight proteins in the root) in the salt-treated plants. Of the 44 detected proteins, 12 were sequenced, and three of them matched with superoxide dismutase, ascorbate peroxidase and ribulose-1, 5-bisphosphate oxygenase whereas the rest remained unknown. The three known proteins associate with plants response to environmental stresses and could represent the general stress proteins in the present study too. In addition, the proteomic feedback of different accessions of A. paniculata to salt stress can potentially be used to breed salt-tolerant varieties of the herb.
    Matched MeSH terms: Plant Roots/drug effects
  3. Mohajer S, Mat Taha R, Mohajer M, Khorasani Esmaeili A
    ScientificWorldJournal, 2014;2014:680356.
    PMID: 25045740 DOI: 10.1155/2014/680356
    To explore the potential of in vitro rapid regeneration, three varieties (Golpaygan-181, Orumieh-1763, and Gorgan-1601) of sainfoin (Onobrychis viciifolia Scop. syn. Onobrychis sativa L.) were evaluated. For the first time, an encapsulation protocol was established from somatic embryogenic callus in torpedo and cotyledonary stages to create artificial seeds. Callus derived from different concentrations of Kinetin (0-2.0 mg L(-1)) and Indole-3-acetic acid (0-2.0 mg L(-1)) was coated with sodium alginate and subsequently cultured either in Murashige and Skoog (MS) medium or in soil substrate. Adventitious shoots from synthetic beads developed into rooting in full and half strength MS medium supplemented with various concentrations of auxin and cytokinin. Prolonged water conservation of black and red soils (1:1) had the highest rate of survival plantlets in the acclimatization process. Diverse resistance techniques in Onobrychis viciifolia were evaluated when the plants were subjected to water deficiency. Higher frequency of epicuticular waxes was observed in in vivo leaves compared to in vitro leaves. Jagged trichomes nonsecreting glands covered by spines were only observed in the lower leaf side. Ultimately, stomata indices were 0.127 (abaxial), 0.188 (adaxial) in in vivo and 0.121 (abaxial), 0.201 (adaxial) in in vitro leaves.
    Matched MeSH terms: Plant Roots/drug effects
  4. Muneer S, Hakeem KR, Mohamed R, Lee JH
    Int J Mol Sci, 2014;15(4):6343-55.
    PMID: 24739807 DOI: 10.3390/ijms15046343
    Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd). The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium but were well expressed in the presence of iron (+Fe/+Cd). Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.
    Matched MeSH terms: Plant Roots/drug effects
  5. Uddin KM, Juraimi AS, Ismail MR, Othman R, Rahim AA
    J Environ Biol, 2011 May;32(3):309-12.
    PMID: 22167942
    Fresh water, coupled with soil salinization in many areas has resulted in an increased need forscreening of salt tolerant turf grasses. Relative salinity tolerance of eightwarm season turfgrass species were examined in this study in sand culture. Grasses were grown in a glasshouse, irrigated with either distilled water or saline sea water adjusted to 24, 48 or 72 dSm-1. Salt tolerances of the grasses were assessed on the basis of their shoot and root growth, leaf firing and turf quality. Regression analysis indicated that Zoysiajaponica (Japanese lawn grass) (JG), Stenotaphrum secundatum (St. Augustine) (SA), Cynodon dactylon (satiri) (BS), Zoysia teneuifolia (Korean grass) (KG), Digitaria didactyla (Serangoon grass) (SG), Cynodon dactylon (Tifdwarf) (TD), Paspalum notatum (Bahia grass) (BG) and Axonopus compressus(Pearl blue) (PB) suffered a 50% shoot growth reduction at 36.0, 31.8, 30.9, 28.4, 26.4, 25.7, 20.0 and 18.6 dSm1 of salinity, respectively and a root growth reduction at44.9, 43.7, 33.4, 31.0, 29.5 27.5, 21.5 and 21.4 dSm- of salinity, respectively. Leaf firing and turf quality of the selected species, as a whole, were also found to be affected harmoniously with the change in root and shoot growth. On the basis of the experimental results the selected species were ranked for salinity tolerance as JG>SA>BS>KG>SG >TD>BG>PB.
    Matched MeSH terms: Plant Roots/drug effects
  6. Cristancho RJ, Hanafi MM, Omar SR, Rafii MY
    Plant Biol (Stuttg), 2011 Mar;13(2):333-42.
    PMID: 21309980 DOI: 10.1111/j.1438-8677.2010.00378.x
    Aluminium (Al) phytotoxicity is an important soil constraint that limits crop yield. The objectives of this study were to investigate how growth, physiology, nutrient content and organic acid concentration is affected by Al, and to assess the degree of Al tolerance in different oil palm progeny (OPP). Four OPPs ['A' (Angola dura × Angola dura), 'B' (Nigerian dura × Nigerian dura), 'C' (Deli dura × AVROS pisifera) and 'D' (Deli dura × Dumpy AVROS pisifera)] were grown in different Al concentrations (0, 100 and 200 μm) in aerated Hoagland solution, pH 4.4, for 80 days. We observed a severe reduction (57.5%) in shoot dry weight, and root tips were reduced by 46.5% in 200 μm Al. In 'B' and 'C', the majority of macro- and micronutrients in plants were reduced significantly by 200 μm Al, with Mg being lowered by more than 50% in roots and shoots. The 200 μm Al treatment resulted in a 56.50% reduction in total leaf area, a 20% reduction in net photosynthesis and a 17% reduction in SPAD chlorophyll value in the third leaf. Root tips (0-5 mm) showed a significant increase in oxalic acid content with increasing Al concentration (∼ 5.86-fold); progeny 'A' had the highest concentration of oxalic acid. There was a significant interaction between Al concentration × OPP on total leaf number, root volume, lateral root length, Mg and K in root and shoot tissues, and Ca and N in shoots. The OPPs could be ranked in their tolerance to Al as: 'A' > 'D' > 'B' > 'C'.
    Matched MeSH terms: Plant Roots/drug effects
  7. Parvin W, Govender N, Othman R, Jaafar H, Rahman M, Wong MY
    Sci Rep, 2020 09 24;10(1):15621.
    PMID: 32973199 DOI: 10.1038/s41598-020-72156-7
    Pseudomonas aeruginosa developed its biocontrol agent property through the production of antifungal derivatives, with the phenazine among them. In this study, the applications of crude phenazine synthesized by Pseudomonas aeruginosa UPMP3 and hexaconazole were comparatively evaluated for their effectiveness to suppress basal stem rot infection in artificially G. boninense-challenged oil palm seedlings. A glasshouse experiment under the randomized completely block design was set with the following treatments: non-inoculated seedlings, G. boninense inoculated seedlings, G. boninense inoculated seedlings with 1 mg/ml phenazine application, G. boninense inoculated seedlings with 2 mg/ml phenazine application and G. boninense inoculated seedlings with 0.048 mg/ml hexaconazole application. Seedlings were screened for disease parameters and plant vigour traits (plant height, plant fresh weight, root fresh, and dry weight, stem diameter, and total chlorophyll) at 1-to-4 month post-inoculation (mpi). The application of 2 mg/ml phenazine significantly reduced disease severity (DS) at 44% in comparison to fungicide application (DS = 67%). Plant vigour improved from 1 to 4 mpi and the rate of disease reduction in seedlings with phenazine application (2 mg/ml) was twofold greater than hexaconazole. At 4, 6 and 8 wpi, an up-regulation of chitinase and β-1,3 glucanase genes in seedlings treated with phenazine suggests the involvement of induced resistance in G. boninense-oil palm pathosystem.
    Matched MeSH terms: Plant Roots/drug effects
  8. Lulu T, Park SY, Ibrahim R, Paek KY
    J Biosci Bioeng, 2015 Jun;119(6):712-7.
    PMID: 25511788 DOI: 10.1016/j.jbiosc.2014.11.010
    The present study aimed to optimize the conditions for the production of adventitious roots from Eurycoma longifolia Jack, an important medicinal woody plant, in bioreactor culture. The effects of the type and concentration of auxin on root growth were studied, as well as the effects of the NH4(+):NO3(-) ratio on adventitious root growth and the production of phenolics and flavonoids. Approximately 5 g L(-1) fresh weight of adventitious roots was inoculated into a 3 L balloon-type bubble bioreactor, which contained 2 L 3/4 MS medium supplemented with 30 g L(-1) sucrose and cultures were maintained in the dark for 7 weeks at 24 ± 1°C. Higher concentrations of IBA (7.0 and 9.0 mg L(-1)) and NAA (5.0 mg L(-1)) enhanced the biomass and accumulation of total phenolics and flavonoids. The adventitious roots were thin, numerous, and elongated in 3/4 MS medium supplemented with 5.0 and 7.0 mg L(-1) IBA, whereas the lateral roots were shorter and thicker with 5.0 mg L(-1) NAA compared with IBA treatment. The optimum biomasses of 50.22 g L(-1) fresh weight and 4.60 g L(-1) dry weight were obtained with an NH4(+):NO3(-) ratio of 15:30. High phenolic and flavonoid productions (38.59 and 11.27 mg L(-1) medium, respectively) were also obtained with a ratio of 15:30. Analysis of the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity indicated higher antioxidant activity with an NH4(+):NO3(-) ratio of 30:15. These results suggest that balloon-type bubble bioreactor cultures are suitable for the large-scale commercial production of E. longifolia adventitious roots which contain high yield of bioactive compounds.
    Matched MeSH terms: Plant Roots/drug effects
  9. Panhwar QA, Naher UA, Radziah O, Shamshuddin J, Razi IM
    Molecules, 2015 Feb 20;20(3):3628-46.
    PMID: 25710843 DOI: 10.3390/molecules20033628
    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.
    Matched MeSH terms: Plant Roots/drug effects
  10. Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Int J Phytoremediation, 2013;15(8):814-26.
    PMID: 23819277
    Phytoremediation is an environment-friendly and cost-effective method to clean the environment of heavy metal contamination. A prolonged phytotoxicity test was conducted in a single exposure. Scirpus grossus plants were grown in sand to which the diluted Pb (NO3)2 was added, with the variation of concentration were 0, 100, 200, 400, 600, and 800 mg/L. It was found that Scirpus grossus plants can tolerate Pb at concentrations of up to 400 mg/L. The withering was observed on day-7 for Pb concentrations of 400 mg/L and above. 100% of the plants withered with a Pb concentration of 600 mg/L on day 65. The Pb concentration in water medium decreased while in plant tissues increased. Adsorption of Pb solution ranged between 2 to 6% for concentrations of 100 to 800 mg/L. The Bioaccumulation Coefficient and Translocation Factor of Scirpus grossus were found greater than 1, indicating that this species is a hyperaccumulator plant.
    Matched MeSH terms: Plant Roots/drug effects
  11. Choo TP, Lee CK, Low KS, Hishamuddin O
    Chemosphere, 2006 Feb;62(6):961-7.
    PMID: 16081131
    This study describes an investigation using tropical water lilies (Nymphaea spontanea) to remove hexavalent chromium from aqueous solutions and electroplating waste. The results show that water lilies are capable of accumulating substantial amount of Cr(VI), up to 2.119 mg g(-1) from a 10 mg l(-1) solution. The roots of the plant accumulated the highest amount of Cr(VI) followed by leaves and petioles, indicating that roots play an important role in the bioremediation process. The maturity of the plant exerts a great effect on the removal and accumulation of Cr(VI). Plants of 9 weeks old accumulated the most Cr(VI) followed by those of 6 and 3 weeks old. The results also show that removal of Cr(VI) by water lilies is more efficient when the metal is present singly than in the presence of Cu(II) or in waste solution. This may be largely associated with more pronounced phytotoxicity effect on the biochemical changes in the plants and saturation of binding sites. Significant toxicity effect on the plant was evident as shown in the reduction of chlorophyll, protein and sugar contents in plants exposed to Cr(VI) in this investigation.
    Matched MeSH terms: Plant Roots/drug effects
  12. Lee WS, Gudimella R, Wong GR, Tammi MT, Khalid N, Harikrishna JA
    PLoS One, 2015;10(5):e0127526.
    PMID: 25993649 DOI: 10.1371/journal.pone.0127526
    Physiological responses to stress are controlled by expression of a large number of genes, many of which are regulated by microRNAs. Since most banana cultivars are salt-sensitive, improved understanding of genetic regulation of salt induced stress responses in banana can support future crop management and improvement in the face of increasing soil salinity related to irrigation and climate change. In this study we focused on determining miRNA and their targets that respond to NaCl exposure and used transcriptome sequencing of RNA and small RNA from control and NaCl-treated banana roots to assemble a cultivar-specific reference transcriptome and identify orthologous and Musa-specific miRNA responding to salinity. We observed that, banana roots responded to salinity stress with changes in expression for a large number of genes (9.5% of 31,390 expressed unigenes) and reduction in levels of many miRNA, including several novel miRNA and banana-specific miRNA-target pairs. Banana roots expressed a unique set of orthologous and Musa-specific miRNAs of which 59 respond to salt stress in a dose-dependent manner. Gene expression patterns of miRNA compared with those of their predicted mRNA targets indicated that a majority of the differentially expressed miRNAs were down-regulated in response to increased salinity, allowing increased expression of targets involved in diverse biological processes including stress signaling, stress defence, transport, cellular homeostasis, metabolism and other stress-related functions. This study may contribute to the understanding of gene regulation and abiotic stress response of roots and the high-throughput sequencing data sets generated may serve as important resources related to salt tolerance traits for functional genomic studies and genetic improvement in banana.
    Matched MeSH terms: Plant Roots/drug effects
  13. Lau ET, Tani A, Khew CY, Chua YQ, Hwang SS
    Microbiol Res, 2020 Nov;240:126549.
    PMID: 32688172 DOI: 10.1016/j.micres.2020.126549
    Black pepper production in Malaysia was restricted by various diseases. Hazardous chemical products appear to be the best solution to control diseases in black pepper cultivation. However, persistence of chemical residues in peppercorns could affect the quality of exports and consumptions. Application of fertilizers is crucial to sustain pepper growth and high yield. But, continuous use of chemical fertilizers could affect the soil ecosystem and eventually restrict nutrient uptake by pepper roots. Therefore, we propose biological approaches as an alternative solution instead of chemical products to sustain pepper cultivation in Malaysia. In this study, we have isolated a total of seven indigenous rhizobacteria antagonistic to soil-borne Fusarium solani, the causal fungus of slow decline, the most serious debilitating disease of black pepper in Malaysia. The isolated bacteria were identified as Bacillus subtilis, Bacillus siamensis, Brevibacillus gelatini, Pseudomonas geniculata, Pseudomonas beteli, Burkholderia ubonensis and Burkholderia territorii. These bacteria were effective in production of antifungal siderophore with the amount of 53.4 %-73.5 % per 0.5 mL of cell-free supernatants. The bacteria also produced appreciable amount of chitinase with chitinolytic index was ranged from 1.19 to 1.76. The bacteria have shown phosphate solubilizing index within 1.61 to 2.01. They were also efficient in ACC deaminase (0.52 mM-0.62 mM) and ammonia (60.3 mM-75.3 mM) production. The isolated antagonists were efficacious in stimulation of black pepper plant growth and root development through IAA (10.5 μg/mL-42.6 μg/mL) secretion. In conclusion, the isolated rhizobacteria are potent to be developed not only as biocontrol agents to minimize the utilization of hazardous chemicals in black pepper disease management, but also developed as bio-fertilizers to improve black pepper plant growth due to their capabilities in plant growth-promotion.
    Matched MeSH terms: Plant Roots/drug effects
  14. Malakahmad A, Manan TSBA, Sivapalan S, Khan T
    Environ Sci Pollut Res Int, 2018 Feb;25(6):5421-5436.
    PMID: 29209979 DOI: 10.1007/s11356-017-0721-8
    Allium cepa assay was carried out in this study to evaluate genotoxic effects of raw and treated water samples from Perak River in Perak state, Malaysia. Samples were collected from three surface water treatment plants along the river, namely WTPP, WTPS, and WTPK. Initially, triplicates of equal size Allium cepa (onions) bulbs, 25-30 mm in diameter and average weight of 20 g, were set up in distilled water for 24 h at 20 ± 2 °C and protected from direct sunlight, to let the roots to grow. After germination of roots (0.5-1.0 cm in length), bulbs were transferred to collected water samples each for a 96-h period of exposure. The root physical deformations were observed. Genotoxicity quantification was based on mitotic index and genotoxicity level. Statistical analysis using cross-correlation function for replicates from treated water showed that root length has inverse correlation with mitotic indices (r = - 0.969) and frequencies of cell aberrations (r = - 0.976) at lag 1. Mitotic indices and cell aberrations of replicates from raw water have shown positive correlation at lag 1 (r = 0.946). Genotoxicity levels obtained were 23.4 ± 1.98 (WTPP), 26.68 ± 0.34 (WTPS), and 30.4 ± 1.13 (WTPK) for treated water and 17.8 ± 0.18 (WTPP), 37.15 ± 0.17 (WTPS), and 47.2 ± 0.48 (WTPK) for raw water. The observed cell aberrations were adherence, chromosome delay, C-metaphase, chromosome loss, chromosome bridge, chromosome breaks, binucleated cell, mini cell, and lobulated nuclei. The morphogenetic deformations obtained were likely due to genotoxic substances presence in collected water samples. Thus, water treatment in Malaysia does not remove genotoxic compounds.
    Matched MeSH terms: Plant Roots/drug effects
  15. Ling AP, Tan KP, Hussein S
    J Zhejiang Univ Sci B, 2013 Jul;14(7):621-31.
    PMID: 23825148 DOI: 10.1631/jzus.B1200135
    OBJECTIVE: Labisia pumila var. alata, commonly known as 'Kacip Fatimah' or 'Selusuh Fatimah' in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila.

    METHODS: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L.

    RESULTS: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34 ± 19.55)% and (70.40 ± 14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00 ± 7.07)% and (77.78 ± 16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5 ± 5.0) and (30.0 ± 8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00 ± 0.00)%) that was obtained in 1 mg/L zeatin after (11.0 ± 2.8) d of culture.

    CONCLUSIONS: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs.

    Matched MeSH terms: Plant Roots/drug effects
  16. Ebrahimi M, Abdullah SN, Abdul Aziz M, Namasivayam P
    J Plant Physiol, 2016 Sep 01;202:107-20.
    PMID: 27513726 DOI: 10.1016/j.jplph.2016.07.001
    CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant. The effects of ectopic expression of EgCBF3 were analyzed based on expression profiling of the ethylene biosynthesis-related genes, anti-freeze proteins (AFPs), abiotic stress tolerance and plant growth and development. The EgCBF3 tomatoes demonstrated altered phenotypes compared to the wild type tomatoes. Delayed leaf senescence and flowering, increased chlorophyll content and abnormal flowering were the consequences of overexpression of EgCBF3 in the transgenic tomatoes. The EgCBF3 tomatoes demonstrated enhanced abiotic stress tolerance under in vitro conditions. Further, transcript levels of ethylene biosynthesis-related genes, including three SlACSs and two SlACOs, were altered in the transgenic plants' leaves and roots compared to that in the wild type tomato plant. Among the eight AFPs studied in the wounded leaves of the EgCBF3 tomato plants, transcript levels of SlOSM-L, SlNP24, SlPR5L and SlTSRF1 decreased, while expression of the other four, SlCHI3, SlPR1, SlPR-P2 and SlLAP2, were up-regulated. These findings indicate the possible functions of EgCBF3 in plant growth and development as a regulator of ethylene biosynthesis-related and AFP genes, and as a stimulator of abiotic stress tolerance.
    Matched MeSH terms: Plant Roots/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links