Displaying publications 1 - 20 of 943 in total

Abstract:
Sort:
  1. Abd Rani NZ, Husain K, Kumolosasi E
    Front Pharmacol, 2018;9:108.
    PMID: 29503616 DOI: 10.3389/fphar.2018.00108
    Moringa
    is a genus of medicinal plants that has been used traditionally to cure wounds and various diseases such as colds and diabetes. In addition, the genus is also consumed as a source of nutrients and widely used for purifying water. The genus consists of 13 species that have been widely cultivated throughout Asia and Africa for their multiple uses. The purpose of this review is to provide updated and categorized information on the traditional uses, phytochemistry, biological activities, and toxicological research ofMoringaspecies in order to explore their therapeutic potential and evaluate future research opportunities. The literature reviewed for this paper was obtained from PubMed, ScienceDirect, and Google Scholar journal papers published from 1983 to March 2017.Moringaspecies are well-known for their antioxidant, anti-inflammatory, anticancer, and antihyperglycemic activities. Most of their biological activity is caused by their high content of flavonoids, glucosides, and glucosinolates. By documenting the traditional uses and biological activities ofMoringaspecies, we hope to support new research on these plants, especially on those species whose biological properties have not been studied to date.
    Matched MeSH terms: Plants, Medicinal
  2. Teoh SB
    Theor Appl Genet, 1982 Mar;61(1):91-5.
    PMID: 24271380 DOI: 10.1007/BF00261517
    Four out of 10 diploid orchid species showed "complement fractionation" a complex cytological phenomenon, hitherto reported only in polyploid plants. The manifestation of this phenomenon during meiosis is the formation of chromosome subgroups resulting eventually in cells with more than the usual four sporads; five or six being the optimum number in the investigated orchid species. No implications whatsoever can be deduced as to the genetic or genomic constitution of the end products. The presence of the phenomenon in these orchid species could perhaps indicate a polyploid ancestry or concealed hybridity. The operation of "complement fractionation", however, could be interpreted as an alternative evolutionary pathway opposed to polyploidy.
    Matched MeSH terms: Plants
  3. Saad JM, Soepadamo E, Fang XP, McLaughlin JL, Fanwick PE
    J Nat Prod, 1991 11 1;54(6):1681-3.
    PMID: 1812217
    The known lignan (-)-grandisin [1] has been isolated from Cryptocarya crassinervia by using the brine shrimp lethality test to direct the isolation; its structure and relative stereochemistry have been determined by ir, 1H nmr, ms, and X-ray crystallography as an all-trans alpha, alpha'-diaryl-beta, beta'-dimethyltetrahydrofuran. Compound 1 is not significantly cytotoxic in our panel of human tumor cells.
    Matched MeSH terms: Plants/chemistry*
  4. Al-Madhagi WM, Mohd Hashim N, Awad Ali NA, Alhadi AA, Abdul Halim SN, Othman R
    PeerJ, 2018;6:e4839.
    PMID: 29892499 DOI: 10.7717/peerj.4839
    Background: Peperomia belongs to the family of Piperaceae. It has different uses in folk medicine and contains rare compounds that have led to increased interest in this genus. Peperomia blanda (Jacq.) Kunth is used as an injury disinfectant by Yemeni people. In addition, the majority of Yemen's population still depend on the traditional remedy for serious diseases such as cancer, inflammation and infection. Currently, there is a deficiency of scientific evidence with regards to the medicinal plants from Yemen. Therefore, this study was performed to assess the chemical profile and in vitro antioxidant and cytotoxic activities of P. blanda.

    Methods: Chemical profiling of P. blanda was carried out using gas chromatography mass spectrometry (GCMS) followed by isolation of bioactive compounds by column chromatography. DPPH• and FRAP assays were used to evaluate antioxidant activity and the MTT assay was performed to estimate the cytotoxicity activity against three cancer cell lines, namely MCF-7, HL-60 and WEHI-3, and three normal cell lines, MCF10A, WRL-68 and HDFa.

    Results: X-ray crystallographic data for peperomin A is reported for the first time here and N,N'-diphenethyloxamide was isolated for the first time from Peperomia blanda. Methanol and dichloromethane extracts showed high radical scavenging activity with an IC50 of 36.81 ± 0.09 µg/mL, followed by the dichloromethane extract at 61.78 ± 0.02 µg/mL, whereas the weak ferric reducing activity of P. blanda extracts ranging from 162.2 ± 0.80 to 381.5 ± 1.31 µg/mL were recorded. In addition, petroleum ether crude extract exhibited the highest cytotoxic activity against all the tested cancer cell lines with IC50 values of 9.54 ± 0.30, 4.30 ± 0.90 and 5.39 ± 0.34 µg/mL, respectively. Peperomin A and the isolated mixture of phytosterol (stigmasterol and β-sitosterol) exhibited cytotoxic activity against MCF-7 and WE-HI cell lines with an IC50 of (5.58 ± 0.47, 4.62 ± 0.03 µg/mL) and (8.94 ± 0.05, 9.84 ± 0.61 µg/mL), respectively, compared to a standard drug, taxol, that has IC50 values of 3.56 ± 0.34 and 1.90 ± 0.9 µg/mL, respectively.

    Conclusion: The activities of P. blanda extracts and isolated compounds recorded in this study underlines the potential that makes this plant a valuable source for further study on anticancer and antioxidant activities.

    Matched MeSH terms: Plants, Medicinal
  5. Du Boulay D, Shaari K, Skelton BW, Waterman PG, White AH
    Acta Crystallogr C, 2000 Feb;56 ( Pt 2):199-200.
    PMID: 10777886
    Matched MeSH terms: Plants, Medicinal/chemistry*
  6. Al-Dualimi DW, Shah Abdul Majid A, Al-Shimary SFF, Al-Saadi AA, Al Zarzour R, Asif M, et al.
    Drug Chem Toxicol, 2018 Jan;41(1):82-88.
    PMID: 28635332 DOI: 10.1080/01480545.2017.1317785
    Herbal products contain a variety of compounds which may be useful in protecting against cellular damage caused by mutagens. Orthosiphon stamineus (O.s) also known as Cat whiskers. The herb has been shown anti-oxidative properties and can modulate key cellular proteins that have cytoprotective effect. The study aimed to evaluate the effects of different doses (250, 500 and 1000 mg kg-1) of 50% ethanol extract of O.s (Et. O.s) on micro-nucleated polychromatic erythrocytes (MNPCE), Polychromatic to normachromatic erythrocytes ratio (PCE/NCE), Mitotic index (MI), and Chromosomal aberration (CA) in Bab/c mice. Moreover, these parameters were used to evaluate the anti-genotoxic and clastogenic potencies of (Et. O.s) against mitomycin c (MMC) that interact with biological molecules and induce genotoxic and clastogenic disorders in non-tumor cells. MMC (4 mg kg-1) was injected intraperitoneally (i.p.) to the mice before and after treatment with three different doses of (Et. O.s). The results indicated that the extract at different doses did not show significant (p ≥ 0.05) differences in (MNPCE), (PCE/NCE) ratios, and (CA) values. The higher doses sowed high (MI) values compared with untreated control group. MMC showed significant increase (p ≤ 0.001) in (MNPCE), (CA) and reduce (PCE/NCE) and (MI) values compared with untreated control group. Treatment with (Et. O.s) at different doses before and after MMC injection showed to modulate MNPCE, PCE/NCE ratios, CA and MI values in mice bone marrow cells suggesting genoprotective potential of this plant extract.
    Matched MeSH terms: Plants, Medicinal
  7. Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, et al.
    Molecules, 2021 Jun 24;26(13).
    PMID: 34202844 DOI: 10.3390/molecules26133868
    The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
    Matched MeSH terms: Plants, Medicinal/immunology; Plants, Medicinal/chemistry*
  8. Shamsudin S, Selamat J, Sanny M, A R SB, Jambari NN, Khatib A
    Molecules, 2019 Oct 29;24(21).
    PMID: 31671885 DOI: 10.3390/molecules24213898
    Stingless bee honey produced by Heterotrigona itama from different botanical origins was characterised and discriminated. Three types of stingless bee honey collected from acacia, gelam, and starfruit nectars were analyzed and compared with Apis mellifera honey. The results showed that stingless bee honey samples from the three different botanical origins were significantly different in terms of their moisture content, pH, free acidity, total soluble solids, colour characteristics, sugar content, amino acid content and antioxidant properties. Stingless bee honey was significantly different from Apis mellifera honey in terms of physicochemical and antioxidant properties. The amino acid content was further used in the chemometrics analysis to evaluate the role of amino acid in discriminating honey according to botanical origin. Partial least squares-discriminant analysis (PLS-DA) revealed that the stingless bee honey was completely distinguishable from Apis mellifera honey. Notably, a clear distinction between the stingless bee honey types was also observed. The specific amino acids involved in the distinction of honey were cysteine for acacia and gelam, phenylalanine and 3-hydroxyproline for starfruit, and proline for Apis mellifera honey. The results showed that all honey samples were successfully classified based on amino acid content.
    Matched MeSH terms: Plants/chemistry*
  9. Swamy MK, Sinniah UR
    Molecules, 2015 May 12;20(5):8521-47.
    PMID: 25985355 DOI: 10.3390/molecules20058521
    Pogostemon cablin Benth. (patchouli) is an important herb which possesses many therapeutic properties and is widely used in the fragrance industries. In traditional medicinal practices, it is used to treat colds, headaches, fever, nausea, vomiting, diarrhea, abdominal pain, insect and snake bites. In aromatherapy, patchouli oil is used to relieve depression, stress, calm nerves, control appetite and to improve sexual interest. Till now more than 140 compounds, including terpenoids, phytosterols, flavonoids, organic acids, lignins, alkaloids, glycosides, alcohols, aldehydes have been isolated and identified from patchouli. The main phytochemical compounds are patchouli alcohol, α-patchoulene, β-patchoulene, α-bulnesene, seychellene, norpatchoulenol, pogostone, eugenol and pogostol. Modern studies have revealed several biological activities such as antioxidant, analgesic, anti-inflammatory, antiplatelet, antithrombotic, aphrodisiac, antidepressant, antimutagenic, antiemetic, fibrinolytic and cytotoxic activities. However, some of the traditional uses need to be verified and may require standardizing and authenticating the bioactivity of purified compounds through scientific methods. The aim of the present review is to provide comprehensive knowledge on the phytochemistry and pharmacological activities of essential oil and different plant extracts of patchouli based on the available scientific literature. This information will provide a potential guide in exploring the use of main active compounds of patchouli in various medical fields.
    Matched MeSH terms: Plants, Medicinal/metabolism*
  10. Abiri R, Valdiani A, Maziah M, Shaharuddin NA, Sahebi M, Yusof ZN, et al.
    Curr Issues Mol Biol, 2016;18:21-42.
    PMID: 25944541
    Using transgenic plants for the production of high-value recombinant proteins for industrial and clinical applications has become a promising alternative to using conventional bioproduction systems, such as bacteria, yeast, and cultured insect and animal cells. This novel system offers several advantages over conventional systems in terms of safety, scale, cost-effectiveness, and the ease of distribution and storage. Currently, plant systems are being utilised as recombinant bio-factories for the expression of various proteins, including potential vaccines and pharmaceuticals, through employing several adaptations of recombinant processes and utilizing the most suitable tools and strategies. The level of protein expression is a critical factor in plant molecular farming, and this level fluctuates according to the plant species and the organs involved. The production of recombinant native and engineered proteins is a complicated procedure that requires an inter- and multi-disciplinary effort involving a wide variety of scientific and technological disciplines, ranging from basic biotechnology, biochemistry, and cell biology to advanced production systems. This review considers important plant resources, affecting factors, and the recombinant-protein expression techniques relevant to the plant molecular farming process.
    Matched MeSH terms: Plants, Genetically Modified*
  11. Chuo SC, Nasir HM, Mohd-Setapar SH, Mohamed SF, Ahmad A, Wani WA, et al.
    Crit Rev Anal Chem, 2020 Sep 20.
    PMID: 32954795 DOI: 10.1080/10408347.2020.1820851
    Naturally active compounds are usually contained inside plants and materials thereof. Thus, the extraction of the active compounds from plants needs appropriate extraction methods. The commonly employed extraction methods are mostly based on solid-liquid extraction. Frequently used conventional extraction methods such as maceration, heat-assisted extraction, Soxhlet extraction, and hydrodistillation are often criticized for large solvent consumption and long extraction times. Therefore, many advanced extraction methods incorporating various technologies such as ultrasound, microwaves, high pressure, high voltage, enzyme hydrolysis, innovative solvent systems, adsorption, and mechanical forces have been studied. These advanced extraction methods are often better than conventional methods in terms of higher yields, higher selectivity, lower solvent consumption, shorter processing time, better energy efficiency, and potential to avoid organic solvents. They are usually designed to be greener, more sustainable, and environment friendly. In this review, we have critically described recently developed extraction methods pertaining to obtaining active compounds from plants and materials thereof. Main factors that affect the extraction performances are tuned, and extraction methods are chosen in line with the properties of targeted active compounds or the objectives of extraction. The review also highlights the advancements in extraction procedures by using combinations of extraction methods to obtain high overall yields or high purity extracts.
    Matched MeSH terms: Plants
  12. Abd-Aziz N, Tan BC, Rejab NA, Othman RY, Khalid N
    Mol Biotechnol, 2020 Apr;62(4):240-251.
    PMID: 32108286 DOI: 10.1007/s12033-020-00242-2
    In the past decade, interest in the production of recombinant pharmaceutical proteins in plants has tremendously progressed because plants do not harbor mammalian viruses, are economically competitive, easily scalable, and capable of carrying out complex post-translational modifications required for recombinant pharmaceutical proteins. Mucuna bracteata is an essential perennial cover crop species widely planted as an underground cover in oil palm and rubber plantations. As a legume, they have high biomass, thrive in its habitat, and can fix nitrogen. Thus, M. bracteata is a cost-efficient crop that shows ideal characteristics as a platform for mass production of recombinant protein. In this study, we established a new platform for the transient production of a recombinant protein in M. bracteata via vacuum-assisted agro-infiltration. Five-week-old M. bracteata plants were vacuum infiltrated with Agrobacterium tumefaciens harboring a plasmid that encodes for an anti-toxoplasma immunoglobulin (IgG) under different parameters, including trifoliate leaf positional effects, days to harvest post-infiltration, and the Agrobacterium strain used. Our results showed that vacuum infiltration of M. bracteata plant with A. tumefaciens strain GV3101 produced the highest concentration of heterologous protein in its bottom trifoliate leaf at 2 days post-infiltration. The purified anti-toxoplasma IgG was then analyzed using Western blot and ELISA. It was demonstrated that, while structural heterogeneity existed in the purified anti-toxoplasma IgG from M. bracteata, its transient expression level was two-fold higher than the model platform, Nicotiana benthamiana. This study has laid the foundation towards establishing M. bracteata as a potential platform for the production of recombinant pharmaceutical protein.
    Matched MeSH terms: Plants, Genetically Modified/genetics
  13. Mahawer S, Kumar R, Prakash O, Singh S, Singh Rawat D, Dubey SK, et al.
    Curr Top Med Chem, 2023;23(20):1964-1972.
    PMID: 37218200 DOI: 10.2174/1568026623666230522104104
    Alpinia malaccensis, commonly known as "Malacca ginger" and "Rankihiriya," is an important medicinal plant of Zingiberaceae. It is native to Indonesia and Malaysia and widely distributed in countries including Northeast India, China, Peninsular Malaysia and Java. Due to vide pharmacological values, it is necessary to recognize this species for its significance of pharmacological importance. This article provides the botanical characteristics, chemical compounds of vegetation, ethnopharmacological values, therapeutic properties, along with the potential pesticidal properties of this important medicinal plant. The information in this article was gathered by searching the online journals in the databases such as PubMed, Scopus, Web of Science etc. The terms such as Alpinia malaccensis, Malacca ginger, Rankihiriya, pharmacology, chemical composition, ethnopharmacology, etc., were used in different combinations. A detailed study of the available resources for A. malaccensis confirmed its native and distribution, traditional values, chemical properties, and medicinal values. Its essential oils and extracts are the reservoir of a wide range of important chemical constituents. Traditionally, it is being used to treat nausea, vomiting and wounds along with as a seasoning agent in meat processing and as perfume. Apart from traditional values, it has been reported for several pharmacological activities such as antioxidant, antimicrobial, anti-inflammatory etc. We believe that this review will help to provide the collective information of A. malaccensis to further explore it in the prevention and treatment of various diseases and help to the systematic study of this plant to utilize its potential in various areas of human welfare.
    Matched MeSH terms: Plants, Medicinal*
  14. Zin NNINM, Rahimi WNAWM, Bakar NA
    Malays J Med Sci, 2019 Nov;26(6):19-34.
    PMID: 31908584 MyJurnal DOI: 10.21315/mjms2019.26.6.3
    Parasitic diseases represent one of the causes for significant global economic, environmental and public health impacts. The efficacy of currently available anti-parasitic drugs has been threatened by the emergence of single drug- or multidrug-resistant parasite populations, vector threats and high cost of drug development. Therefore, the discovery of more potent anti-parasitic drugs coming from medicinal plants such as Quercus infectoria is seen as a major approach to tackle the problem. A systematic review was conducted to assess the efficacy of Q. infectoria in treating parasitic diseases both in vitro and in vivo due to the lack of such reviews on the anti-parasitic activities of this plant. This review consisted of intensive searches from three databases including PubMed, Science Direct and Scopus. Articles were selected throughout the years, limited to English language and fully documented. A total of 454 potential articles were identified, but only four articles were accepted to be evaluated based on inclusion and exclusion criteria. Although there were insufficient pieces of evidence to account for the efficacy of Q. infectoria against the parasites, this plant appears to have anti-leishmanial, anti-blastocystis and anti-amoebic activities. More studies in vitro and in vivo are warranted to further validate the anti-parasitic efficacy of Q. infectoria.
    Matched MeSH terms: Plants, Medicinal
  15. Mustapha T, Misni N, Ithnin NR, Daskum AM, Unyah NZ
    PMID: 35055505 DOI: 10.3390/ijerph19020674
    Silver nanoparticles are one of the most extensively studied nanomaterials due to their high stability and low chemical reactivity in comparison to other metals. They are commonly synthesized using toxic chemical reducing agents which reduce metal ions into uncharged nanoparticles. However, in the last few decades, several efforts were made to develop green synthesis methods to avoid the use of hazardous materials. The natural biomolecules found in plants such as proteins/enzymes, amino acids, polysaccharides, alkaloids, alcoholic compounds, and vitamins are responsible for the formation of silver nanoparticles. The green synthesis of silver nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. In the present review we describe the green synthesis of nanoparticles using plants, bacteria, and fungi and the role of plant metabolites in the synthesis process. Moreover, the present review also describes some applications of silver nanoparticles in different aspects such as antimicrobial, biomedicine, mosquito control, environment and wastewater treatment, agricultural, food safety, and food packaging.
    Matched MeSH terms: Plants/metabolism
  16. Ngalimat MS, Yahaya RSR, Baharudin MMA, Yaminudin SM, Karim M, Ahmad SA, et al.
    Microorganisms, 2021 Mar 17;9(3).
    PMID: 33802666 DOI: 10.3390/microorganisms9030614
    Bacteria under the operational group Bacillus amyloliquefaciens (OGBa) are all Gram-positive, endospore-forming, and rod-shaped. Taxonomically, the OGBa belongs to the Bacillus subtilis species complex, family Bacillaceae, class Bacilli, and phylum Firmicutes. To date, the OGBa comprises four bacterial species: Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus velezensis and Bacillus nakamurai. They are widely distributed in various niches including soil, plants, food, and water. A resurgence in genome mining has caused an increased focus on the biotechnological applications of bacterial species belonging to the OGBa. The members of OGBa are known as plant growth-promoting bacteria (PGPB) due to their abilities to fix nitrogen, solubilize phosphate, and produce siderophore and phytohormones, as well as antimicrobial compounds. Moreover, they are also reported to produce various enzymes including α-amylase, protease, lipase, cellulase, xylanase, pectinase, aminotransferase, barnase, peroxidase, and laccase. Antimicrobial compounds that able to inhibit the growth of pathogens including non-ribosomal peptides and polyketides are also produced by these bacteria. Within the OGBa, various B. velezensis strains are promising for use as probiotics for animals and fishes. Genome mining has revealed the potential applications of members of OGBa for removing organophosphorus (OPs) pesticides. Thus, this review focused on the applicability of members of OGBa as plant growth promoters, biocontrol agents, probiotics, bioremediation agents, as well as producers of commercial enzymes and antibiotics. Here, the bioformulations and commercial products available based on these bacteria are also highlighted. This review will better facilitate understandings of members of OGBa and their biotechnological applications.
    Matched MeSH terms: Plants, Edible
  17. Michel J, Abd Rani NZ, Husain K
    Front Pharmacol, 2020;11:852.
    PMID: 32581807 DOI: 10.3389/fphar.2020.00852
    Cardiovascular diseases are one of the most prevalent diseases worldwide, and its rate of mortality is rising annually. In accordance with the current condition, studies on medicinal plants upon their activity on cardiovascular diseases are often being encouraged to be used in cardiovascular disease management, due to the availability of medicinal values in certain dedicated plants. This review was conducted based on two plant families, which are Asteraceae and Lamiaceae, to study on their action in cardiovascular disease relieving activities, to review the relationship between the phytochemistry of Asteraceae and Lamiaceae families and their effect on cardiovascular diseases, and to study their toxicology. The medicinal plants from these plant family groups are collected based on their effects on the mechanisms that affect the cardiovascular-related disease which are an antioxidant activity, anti-hyperlipidemic or hypocholesterolemia, vasorelaxant effect, antithrombotic action, and diuresis effect. In reference to various studies, the journals that conducted in vivo or in vitro experiments, which were used to prove the specific mechanisms, are included in this review. This is to ensure that the scientific value and the phytochemicals of the involved plants can be seen based on their activity. As a result, various plant species from both Asteraceae and Lamiaceae plant family have been identified and collected based on their study that has proven their effectiveness and uses in cardiovascular diseases. Most of the plants have an antioxidant effect, followed by anti-hyperlipidemia, vasorelaxant, antithrombotic, and diuretic effect from the most available to least available studies, respectively. These are the mechanisms that contribute to various cardiovascular diseases, such as heart attack, stroke, coronary heart disease, and hypertension. Further studies can be conducted on these plant species by identifying their ability and capability to be developed into a new drug or to be used as a medicinal plant in treating various cardiovascular diseases.
    Matched MeSH terms: Plants, Medicinal
  18. Shamsudin NA, Goh LPW, Sabullah MK, Sani SA, Abdulla R, Gansau JA
    Curr Pharm Biotechnol, 2022;23(1):47-59.
    PMID: 33563152 DOI: 10.2174/1389201022666210208201212
    Underutilized plants are referred to a plant species whose potential is not fully utilized yet and they are usually found abundantly in certain local areas but are globally rare. Sabah is known for high biodiversity and contains many underutilized plants. To our knowledge, this is the first review to provide overview information of the medicinal value and pharmacological properties of underutilized plants in Sabah. Extract and metabolites in different parts of several underutilized plants contain multiple beneficial bioactive compounds and the exploitation of these compounds was supported by additional data that plays various biological activities, including anti-atherosclerotic, anti-cancer antihypercholesterolemic and anti-ulcerogenic. A handful of pharmacological studies on these underutilized plants have conclusively outlined the mode of action in treatment of several diseases and in other health aspects. This paper limits its scope to review and highlight the potential of using underutilized plants in Sabah only which could serve as reliable resource for health product development in pharmaceutical and nutraceutical through continuous discovering of more active and sustainable resources as well as ingredients for food and medicine.
    Matched MeSH terms: Plants, Medicinal*
  19. Choo TF, Mohd Salleh MA, Kok KY, Matori KA, Abdul Rashid S
    Materials (Basel), 2020 Nov 18;13(22).
    PMID: 33218206 DOI: 10.3390/ma13225218
    Grog is an additive material that plays important roles in ceramic making. It improves the fabrication process of green bodies as well as the physical properties of fired bodies. Few low-cost materials and wastes have found their application as grog in recent years, thus encouraging the replacement of commercial grogs with cost-saving materials. Coal fly ash, a combustion waste produced by coal-fired power plant, has the potential to be converted into grog owing to its small particle sizes and high content of silica and alumina. In this study, grog was derived from coal fly ash and mixed with kaolin clay to produce ceramics. Effects of the grog addition on the resultant ceramics were investigated. It was found that, to a certain extent, the grog addition reduced the firing shrinkage and increased the total porosity of the ceramics. The dimensional stability of the ceramics at a firing temperature of 1200 °C was also not noticeably affected by the grog. However, the grog addition in general had negative effects on the biaxial flexural strength and refractoriness of the ceramics.
    Matched MeSH terms: Power Plants
  20. Ozturk M, Sakcali S, Celik A
    Sains Malaysiana, 2013;42:1371-1376.
    Diplotaxis tenuifolia is a medicinally important perennial plant species, distributed widely alongside the roads in Turkey. The samples were collected from 54 sites, including highways, sideways, industrial areas, urban centres and rural environs. Both the plant and soil samples were analysed to determine the concentrations of different metals using AAS. The results showed that in the soil samples copper and lead were highest near highway 45.533 and 2.865 mg/kg, respectively; but lowest values of copper were determined around industrial areas (3.514 mg/kg), latter however showed higher concentrations of cadmium (0.726 mg/kg) and iron (82.766 mg/kg). The lead as well as iron were the lowest around sideways 1.917 mg/kg and 54.073 mg/kg, respectively, whereas chromium concentrations in the soils were highest near sideways (18.397 mg/kg) and lowest around industrial areas (0.182 mg/kg). The sideways showed very low nickel concentrations (0.271 mg/kg), as compared to the rural areas which had higher nickel concentrations (0.726 mg/kg). No cadmium was detected in the urban soil samples. In the plants copper and chromium were higher in the urban areas 50.130 and 0.238 mg/kg, respectively. The former was lowest around sideways (32.377 mg/kg) and latter around highways (0.114 mg/kg). Both nickel and cadmium were higher in the samples from industrial areas 0.238 and 0.016 mg/kg, respectively. Their values around the highways were lowest 0.182 and 0.005 mg/kg. The samples from urban sites revealed highest values of lead (3.474 mg/kg) and iron (61.304 mg/kg), but the values of lead were lowest around sideways (2.420 mg/kg) and those of iron in the vicinity of industrial areas (20.600 mg/kg). All these findings depict that there is some aerial deposition of these metals on the leaves. A significant correlation is seen between the plants and the soils.
    Matched MeSH terms: Plants
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links