Displaying publications 1 - 20 of 634 in total

Abstract:
Sort:
  1. Lim L, Ab Majid AH
    Sci Rep, 2023 Jan 27;13(1):1506.
    PMID: 36707655 DOI: 10.1038/s41598-023-28774-y
    Tropical bed bugs, Cimex hemipterus, which commonly feeds on human blood, may be useful in forensic applications. However, unlike the common bed bug, Cimex lectularius, there is no information regarding tropical bed bug, C. hemipterus, being studied for its applications in forensics. Thus, in this study, lab-reared post-feeding tropical bed bugs were subjected to Short Tandem Repeat (STR) and Single Nucleotide Polymorphism (SNP) analyses to establish the usage of tropical bed bugs in forensics. Several post-feeding times (0, 5, 14, 30, and 45 days) were tested to determine when a complete human DNA profile could still be obtained after the bugs had taken the blood meal. The results showed that complete STR and SNP profiles could only be obtained from the D0 sample. The profile completeness decreased over time, and partial STR and SNP profiles could be obtained up to 45 days post-blood meal. The generated SNP profiles, complete or partial, were also viable for HIrisPlex-S phenotype prediction. In addition, field-collected bed bugs were also used to examine the viability of the tested STR markers, and the STR markers detected mixed profiles. The findings of this study established that the post-blood meal of tropical bed bugs is a suitable source of human DNA for forensic STR and SNP profiling. Human DNA recovered from bed bugs can be used to identify spatial and temporal relations of events.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  2. Hatmal MM, Alshaer W, Mahmoud IS, Al-Hatamleh MAI, Al-Ameer HJ, Abuyaman O, et al.
    PLoS One, 2021;16(10):e0257857.
    PMID: 34648514 DOI: 10.1371/journal.pone.0257857
    CD36 (cluster of differentiation 36) is a membrane protein involved in lipid metabolism and has been linked to pathological conditions associated with metabolic disorders, such as diabetes and dyslipidemia. A case-control study was conducted and included 177 patients with type-2 diabetes mellitus (T2DM) and 173 control subjects to study the involvement of CD36 gene rs1761667 (G>A) and rs1527483 (C>T) polymorphisms in the pathogenesis of T2DM and dyslipidemia among Jordanian population. Lipid profile, blood sugar, gender and age were measured and recorded. Also, genotyping analysis for both polymorphisms was performed. Following statistical analysis, 10 different neural networks and machine learning (ML) tools were used to predict subjects with diabetes or dyslipidemia. Towards further understanding of the role of CD36 protein and gene in T2DM and dyslipidemia, a protein-protein interaction network and meta-analysis were carried out. For both polymorphisms, the genotypic frequencies were not significantly different between the two groups (p > 0.05). On the other hand, some ML tools like multilayer perceptron gave high prediction accuracy (≥ 0.75) and Cohen's kappa (κ) (≥ 0.5). Interestingly, in K-star tool, the accuracy and Cohen's κ values were enhanced by including the genotyping results as inputs (0.73 and 0.46, respectively, compared to 0.67 and 0.34 without including them). This study confirmed, for the first time, that there is no association between CD36 polymorphisms and T2DM or dyslipidemia among Jordanian population. Prediction of T2DM and dyslipidemia, using these extensive ML tools and based on such input data, is a promising approach for developing diagnostic and prognostic prediction models for a wide spectrum of diseases, especially based on large medical databases.
    Matched MeSH terms: Polymorphism, Single Nucleotide/genetics
  3. Ramli NSF, Mat Junit S, Leong NK, Razali N, Jayapalan JJ, Abdul Aziz A
    PeerJ, 2017;5:e3365.
    PMID: 28584708 DOI: 10.7717/peerj.3365
    BACKGROUND: Synthesis of thyroid hormones and regulation of their metabolism involve free radicals that may affect redox balance in the body. Thyroid disorders causing variations in the levels of thyroid hormones may alter cellular oxidative stress. The aim of this study was to measure the antioxidant activities and biomarkers of oxidative stress in serum and red blood cells (RBC) of patients with benign and malignant thyroid disorders and to investigate if changes in the antioxidant activities in these patients were linked to alterations in genes encoding the antioxidant enzymes.

    METHODS: Forty-one patients with thyroid disorders from University of Malaya Medical Centre were recruited. They were categorised into four groups: multinodular goitre (MNG) (n = 18), follicular thyroid adenoma (FTA) (n = 7), papillary thyroid cancer (PTC) (n = 10), and follicular thyroid cancer (FTC) (n = 6). Serum and RBC of patients were analysed for antioxidant activities, antioxidant enzymes, and biomarkers of oxidative stress. Alterations in genes encoding the antioxidant enzymes were analysed using whole exome sequencing and PCR-DNA sequencing.

    RESULTS: Patients with thyroid disorders had significantly higher serum superoxide dismutase (SOD) and catalase (CAT) activities compared to control, but had lower activities in RBC. There were no significant changes in serum glutathione peroxidase (GPx) activity. Meanwhile, GPx activity in RBC was reduced in PTC and FTC, compared to control and the respective benign groups. Antioxidant activities in serum were decreased in the thyroid disorder groups when compared to the control group. The levels of malondialdehyde (MDA) were elevated in the serum of FTA group when compared to controls, while in the RBC, only the MNG and PTC groups showed higher MDA equivalents than control. Serum reactive oxygen species (ROS) levels in PTC group of both serum and RBC were significantly higher than control group. Whole exome sequencing has resulted in identification of 49 single nucleotide polymorphisms (SNPs) in MNG and PTC patients and their genotypic and allelic frequencies were calculated. Analyses of the relationship between serum enzyme activities and the total SNPs identified in both groups revealed no correlation.

    DISCUSSION: Different forms of thyroid disorders influence the levels of antioxidant status in the serum and RBC of these patients, implying varying capability of preventing oxidative stress. A more comprehensive study with a larger target population should be done in order to further evaluate the relationships between antioxidant enzymes gene polymorphisms and thyroid disorders, as well as strengthening the minor evidences provided in literatures.

    Matched MeSH terms: Polymorphism, Single Nucleotide
  4. Ban EZ, Lye MS, Chong PP, Yap YY, Lim SYC, Abdul Rahman H
    PLoS One, 2018;13(6):e0198332.
    PMID: 29912899 DOI: 10.1371/journal.pone.0198332
    BACKGROUND: Nasopharyngeal carcinoma is a rare form of cancer across the world except in certain areas such as Southern China, Hong Kong and Malaysia. NPC is considered a relatively radiosensitive tumor and patients diagnosed at early stages tend to survive longer compared to those with advanced disease. Given that early symptoms of NPC are non-specific and that the nasopharynx is relatively inaccessible, less invasive screening methods such as biomarker screening might be the key to improve NPC survival and management. A number of genes with their respective polymorphisms have been shown in past studies to be associated with survival of various cancers. hOGG1 and XPD genes encode for a DNA glycosylase and a DNA helicase respectively; both are proteins that are involved in DNA repair. ITGA2 is the alpha subunit of the transmembrane receptor integrin and is mainly responsible for cell-cell and cell-extracellular matrix interaction. TNF-α is a cytokine that is released by immune cells during inflammation.

    METHODS: Restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) was used to genotype all the aforementioned gene polymorphisms. Kaplan-Meier survival function, log-rank test and Cox regression were used to investigate the effect of gene polymorphisms on the all-cause survival of NPC.

    RESULTS: NPC cases carrying T/T genotype of ITGA2 C807T have poorer all-cause survival compared to those with C/C genotypes, with an adjusted HR of 2.06 (95% CI = 1.14-3.72) in individual model. The 5-year survival rate of C/C carriers was 55% compared to those with C/T and T/T where the survival rates were 50% and 43%, respectively.

    CONCLUSION: The finding from the present study showed that ITGA2 C807T polymorphism could be potentially useful as a prognostic biomarker for NPC. However, the prognostic value of ITGA2 C807T polymorphism has to be validated by well-designed further studies with larger patient numbers.

    Matched MeSH terms: Polymorphism, Single Nucleotide
  5. Ban EZ, Lye MS, Chong PP, Yap YY, Lim SYC, Abdul Rahman H
    PLoS One, 2017;12(11):e0187200.
    PMID: 29121049 DOI: 10.1371/journal.pone.0187200
    BACKGROUND: 8-oxoG, a common DNA lesion resulting from reactive oxygen species (ROS), has been shown to be associated with cancer initiation. hOGG1 DNA glycosylase is the primary enzyme responsible for excision of 8-oxoG through base excision repair (BER). Integrins are members of a family of cell surface receptors that mediate the cell-cell and extracellular matrix (ECM) interactions. Integrins are involved in almost every aspect of carcinogenesis, from cell differentiation, cell proliferation, metastasis to angiogenesis. Loss of ITGA2 expression was associated with enhanced tumor intravasation and metastasis of breast and colon cancer. XPD gene encodes DNA helicase enzyme that is involved in nucleotide excision repair (NER). It is shown in previous research that XPD homozygous wildtype Lys/Lys genotype was associated with higher odds of NPC.

    METHODS: We conducted a 1 to N case-control study involving 300 nasopharyngeal carcinoma (NPC) cases and 533 controls matched by age, gender and ethnicity to investigate the effect of hOGG1 Ser326Cys, ITGA2 C807T and XPD Lys751Gln polymorphisms on NPC risk. Linkage disequilibrium and haplotype analysis were conducted to explore the association of allele combinations with NPC risk. Restriction fragment length polymorphism (RFLP-PCR) was used for DNA genotyping.

    RESULTS: No significant association was observed between hOGG1 Ser326Cys and ITGA2 C807T polymorphisms with NPC risk after adjustment for age, gender, ethnicity, cigarette smoking, alcohol and salted fish consumption. Lys/Lys genotype of XPD Lys751Gln polymorphism was associated with increased NPC risk (OR = 1.60, 95% CI = 1.06-2.43). Subjects with history of smoking (OR = 1.81, 95% CI = 1.26-2.60), and salted fish consumption before age of 10 (OR = 1.77, 95% CI = 1.30-2.42) were observed to have increased odds of NPC. The odds of developing NPC of CGC haplotype was significantly higher compared to reference AGC haplotype (OR = 2.20, 95% CI = 1.06-4.58).

    CONCLUSION: The allele combination of CGC from hOGG1, ITGA2 and XPD polymorphisms was significantly associated with increased odds of NPC.

    Matched MeSH terms: Polymorphism, Single Nucleotide/genetics*
  6. Lye MS, Tey YY, Tor YS, Shahabudin AF, Ibrahim N, Ling KH, et al.
    PLoS One, 2020;15(3):e0230363.
    PMID: 32191745 DOI: 10.1371/journal.pone.0230363
    A total of 201 patients with major depressive disorder from four hospitals in Malaysia were followed up for 5 years to determine the prognostic factors of recurrent major depressive disorder that could potentially contribute to improving the management of MDD patients. For each individual patient, at the time of recruitment as part of a case-control study, information was collected on recent threatening life events, personality and social and occupational functioning, while blood samples were collected to genotype single nucleotide polymorphisms of vitamin D receptor (VDR), zinc transporter-3 (ZnT3), dopamine transporter-1 (DAT1), brain-derived neurotropic factor (BDNF), serotonin receptor 1A (HT1A) and 2A (HT2A) genes. Kaplan-Meier and Cox-regression were used to estimate hazard functions for recurrence of major depressive disorder. Individuals with severe MDD in previous major depressive episodes had five and a half times higher hazard of developing recurrence compared to mild and moderate MDD (HR = 5.565, 95% CI = 1.631-18.994, p = 0.006). Individuals who scored higher on social avoidance had three and a half times higher hazard of recurrence of MDD (HR = 3.525, 95% CI = 1.349-9.209; p = 0.010). There was significant interaction between ApaI +64978C>A single nucleotide polymorphism and severity. The hazard ratio increased by 6.4 times from mild and moderate to severe MDD for A/A genotype while that for C/A genotype increased by 11.3 times. Social avoidance and severity of depression at first episode were prognostic of recurrence. Screening for personality factors at first encounter with MDD patients needs to be considered as part of the clinical practice. For those at risk of recurrence in relation to social avoidance, the psychological intervention prescribed should be customized to focus on this modifiable factor. Prompt and appropriate management of severe MDD is recommended to reduce risk of recurrence.
    Matched MeSH terms: Polymorphism, Single Nucleotide/genetics
  7. Bhaskar S, Abdullah JM
    Neurosciences (Riyadh), 2013 Apr;18(2):185-6.
    PMID: 23545624
    Matched MeSH terms: Polymorphism, Single Nucleotide*
  8. Zainal-Abidin RA, Zainal Z, Mohamed-Hussein ZA, Sew YS, Simoh S, Ab Razak S, et al.
    Data Brief, 2020 Aug;31:105806.
    PMID: 32566707 DOI: 10.1016/j.dib.2020.105806
    The genomics and genetic data of pigmented and non-pigmented Malaysian rice varieties are still limited. Hence, we performed the genome resequencing of two black rice varieties (Bali, Pulut Hitam 9), two red rice varieties (MRM16, MRQ100) and two white rice varieties (MR297 and MRQ76) using Illumina HiSeq 4000 platform with 30x sequencing coverage. We aimed to identify and annotate single nucleotide polymorphisms (SNPs) from the genome of these four pigmented and two non-pigmented rice varieties. The potential SNPs will be used in developing the functional SNP markers related to nutritional (i.e. antioxidant, folate, amylose) and quality (i.e. aromatic) traits. Raw data of the pigmented and non-pigmented rice varieties have been deposited into the European Nucleotide Archive (ENA) database with accession number PRJEB29070 and PRJEB32344, respectively.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  9. Sam SS, Teoh BT, AbuBakar S
    Genet. Mol. Res., 2015;14(2):3257-63.
    PMID: 25966091 DOI: 10.4238/2015.April.13.4
    Inheritance of polymorphisms in the interleukin (IL)-10 promoter and IL-12B genes, which influence cytokine production and activities, may define the balance in T helper response in infection and autoimmune diseases. In the present study, we investigated the distribution of the IL-10 promoter and IL-12B gene polymorphisms in a multiethnic Malaysian population. Overall, our findings suggest that the IL-12B and IL-10 -592 genotypes were distributed homogenously across all major ethnic groups, including Malays, Chinese, and Indians, except for polymorphisms at IL-10 -1082. At this gene locus, the ethnic Chinese showed a significantly lower allele frequency of -1082G (2.1%) compared to the Malay (12.2%) and Indian (15.3%) populations. Results for the IL-12B and IL-10 gene polymorphisms were consistent with those reported for the Asian population, but markedly different from those of the African and Caucasian populations. Our findings suggest that there are specific genetic variations between different ethnic groups, which should be examined in all gene population-based association studies.
    Matched MeSH terms: Polymorphism, Single Nucleotide*
  10. Tan KK, Tan YC, Chang LY, Lee KW, Nore SS, Yee WY, et al.
    BMC Genomics, 2015;16:93.
    PMID: 25888205 DOI: 10.1186/s12864-015-1294-x
    Brucellosis is an important zoonotic disease that affects both humans and animals. We sequenced the full genome and characterised the genetic diversity of two Brucella melitensis isolates from Malaysia and the Philippines. In addition, we performed a comparative whole-genome single nucleotide polymorphism (SNP) analysis of B. melitensis strains collected from around the world, to investigate the potential origin and the history of the global spread of B. melitensis.
    Matched MeSH terms: Polymorphism, Single Nucleotide*
  11. Kakuda T, Shojo H, Tanaka M, Nambiar P, Minaguchi K, Umetsu K, et al.
    PLoS One, 2016;11(6):e0158463.
    PMID: 27355212 DOI: 10.1371/journal.pone.0158463
    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  12. Ismail NA, Ragab S, Abd El Dayem SM, Baky ANAE, Hamed M, Ahmed Kamel S, et al.
    Med J Malaysia, 2018 10;73(5):286-290.
    PMID: 30350806
    INTRODUCTION: CDKAL1 single-nucleotide polymorphism rs 9465871variant is a risk locus for Type 2 Diabetes (T2DM).The study evaluated the associations of CDKAL1- rs9465871 with glycosylated hemoglobin A1C Level (HbA1c), fasting insulin level, insulin resistance and metabolic syndrome among obese and non- obese Egyptian children.

    MATERIALS AND METHODS: The study included 43 obese children and 40 normal weight children. Anthropometric body measurements, bio-specimen and biochemistry assays were done. Genotyping of rs9465871 (CDKAL1) was conducted.

    RESULTS: The percentages of the CC, CT, and TT genotypes of rs9465871in the lean children were 15%, 42.5%, and 42.5%, respectively. Regarding obese children, the frequencies were 18.6%, 58.1% and 23.3% respectively with no significant statistical difference. Comparison between the CDKAL1 rs 9465871 polymorphism showed that the highest value of fasting insulin was recorded in CC genotype (22.80± 15.18 [uIU/mL] P

    Matched MeSH terms: Polymorphism, Single Nucleotide
  13. Lim SW, Tan KJ, Azuraidi OM, Sathiya M, Lim EC, Lai KS, et al.
    Sci Rep, 2021 12 17;11(1):24206.
    PMID: 34921182 DOI: 10.1038/s41598-021-03624-x
    MYB proteins are highly conserved DNA-binding domains (DBD) and mutations in MYB oncoproteins have been reported to cause aberrant and augmented cancer progression. Identification of MYB molecular biomarkers predictive of cancer progression can be used for improving cancer management. To address this, a biomarker discovery pipeline was employed in investigating deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) in predicting damaging and potential alterations on the properties of proteins. The nsSNP of the MYB family; MYB, MYBL1, and MYBL2 was extracted from the NCBI database. Five in silico tools (PROVEAN, SIFT, PolyPhen-2, SNPs&GO and PhD-SNP) were utilized to investigate the outcomes of nsSNPs. A total of 45 nsSNPs were predicted as high-risk and damaging, and were subjected to PMut and I-Mutant 2.0 for protein stability analysis. This resulted in 32 nsSNPs with decreased stability with a DDG score lower than - 0.5, indicating damaging effect. G111S, N183S, G122S, and S178C located within the helix-turn-helix (HTH) domain were predicted to be conserved, further posttranslational modifications and 3-D protein analysis indicated these nsSNPs to shift DNA-binding specificity of the protein thus altering the protein function. Findings from this study would help in the field of pharmacogenomic and cancer therapy towards better intervention and management of cancer.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  14. Osman NH, Sathar J, Leong CF, Zulkifli NF, Raja Sabudin RZA, Othman A, et al.
    Transfus Apher Sci, 2017 Jun;56(3):410-416.
    PMID: 28438419 DOI: 10.1016/j.transci.2017.03.009
    Blood group antigen systems are not limited to the ABO blood groups. There is increasing interest in the detection of extended blood group systems on the red cell surface. The conventional method used to determine extended blood group antigens or red cell phenotype is by serological testing, which is based on the detection of visible haemagglutination or the presence of haemolysis. However, this technique has many limitations due to recent exposure to donor red cell, certain drugs or medications or other diseases that may alter the red cell membrane. We aimed to determine the red cell blood group genotype by SNP real time PCR and to compare the results with the conventional serological methods in multiply transfused patients. Sixty-three patients participated in this study whose peripheral blood was collected and blood group phenotype was determined by serological tube method while the genotype was performed using TaqMan®Single Nucleotide Polymorphism (SNP) RT-PCR assays for RHEe, RHCc, Kidd and Duffy blood group systems. Discrepancies were found between the phenotype and genotype results for all blood groups tested. Accurate red blood cell antigen profiling is important for patients requiring multiple transfusions. The SNP RT-PCR platform is a reliable alternative to the conventional method.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  15. Gopalai AA, Lim SY, Chua JY, Tey S, Lim TT, Mohamed Ibrahim N, et al.
    Biomed Res Int, 2014;2014:867321.
    PMID: 25243190 DOI: 10.1155/2014/867321
    The LRRK2 gene has been associated with both familial and sporadic forms of Parkinson's disease (PD). The G2019S variant is commonly found in North African Arab and Caucasian PD patients, but this locus is monomorphic in Asians. The G2385R and R1628P variants are associated with a higher risk of developing PD in certain Asian populations but have not been studied in the Malaysian population. Therefore, we screened the G2385R and R1628P variants in 1,202 Malaysian subjects consisting of 695 cases and 507 controls. The G2385R and R1628P variants were associated with a 2.2-fold (P = 0.019) and 1.2-fold (P = 0.054) increased risk of PD, respectively. Our data concur with other reported findings in Chinese, Taiwanese, Singaporean, and Korean studies.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  16. Lim JL, Ng EY, Lim SY, Tan AH, Abdul-Aziz Z, Ibrahim KA, et al.
    Neurol Sci, 2021 Oct;42(10):4203-4207.
    PMID: 33559030 DOI: 10.1007/s10072-021-05056-x
    BACKGROUND: Genome-wide association studies (GWAS) have shown that variants in the 3-methylcrotonyl-CoA carboxylase (MCCC1)/lysosome-associated membrane protein 3 (LAMP3) loci (rs10513789, rs12637471, rs12493050) reduce the risk of Parkinson's disease (PD) in Caucasians, Chinese and Ashkenazi-Jews while the rs11248060 variant in the diacylglycerol kinase theta (DGKQ) gene increases the risk of PD in Caucasian and Han Chinese cohorts. However, their roles in Malays are unknown. Therefore, this study aims to investigate the association of these variants with the risk of PD in individuals of Malay ancestry.

    METHODS: A total of 1114 subjects comprising of 536 PD patients and 578 healthy controls of Malay ancestry were recruited and genotyped using Taqman® allelic discrimination assays.

    RESULTS: The G allele of rs10513789 (OR = 0.83, p = 0.001) and A allele of rs12637471 (OR = 0.79, p = 0.007) in the MCCC1/LAMP3 locus were associated with a protective effect against developing PD in the Malay population. A recessive model of penetrance showed a protective effect of the GG genotype for rs10513789 and the AA genotype for rs12637471. No association with PD was found with the other MCCC1/LAMP3 rs12493050 variant or with the DGKQ (rs11248060) variant. No significant associations were found between the four variants with the age at PD diagnosis.

    CONCLUSION: MCCC1/LAMP3 variants rs10513789 and rs12637471 protect against PD in the Malay population.

    Matched MeSH terms: Polymorphism, Single Nucleotide/genetics
  17. Wong FL, Wang MK, Boo NY, Hamidah NH, Ainoon BO
    J Clin Lab Anal, 2007;21(3):167-72.
    PMID: 17506482
    The UGT1A1 Taqman MGB probe single nucleotide polymorphism (SNP) genotyping assay was developed to detect nucleotide 211 of the UDP-glucoronocyltransferase 1A1 (UGT1A1) gene. Defects in this enzyme interfere with process of conjugation of bilirubin and cause unconjugated hyperbilirubinemia. Variation at nucleotide 211 in the coding region of the UGT1A1 gene has been shown to be prevalent in Japanese and Chinese. Using an ABI sequence detection system (SDS) 7000, an allele-specific real-time PCR-based genotyping method was established to detect nucleotide G211A. Cord blood from 125 infants without hyperbilirubinemia (controls) were compared with cord blood from 74 infants (cases) with severe hyperbilirubinemia (total serum bilirubin > 300 micromol/L). Homozygous variation of the UGT1A1 gene at nucleotide 211(A/A) is significantly more common in cases (14.9%) than in controls (0.8%) (P<0.001). Direct sequencing from 20 randomly selected samples showed eight samples with homozygous wild type, seven with homozygous variant, and five samples were heterozygous. The result from this assay was in complete concordance with the DNA sequencing result and clearly discriminate wild-type (G/G), homozygous variant (A/A), and heterozygous (G/A). This assay is rapid and robust for screening of SNP G211A to determine if this polymorphism plays a role in causing severe neonatal jaundice in the local context.
    Matched MeSH terms: Polymorphism, Single Nucleotide*
  18. Azlin I, Wong FL, Ezham M, Hafiza A, Ainoon O
    Malays J Pathol, 2011 Dec;33(2):95-100.
    PMID: 22299209 MyJurnal
    A number of genetic risk factors have been implicated in the development of neonatal severe hyperbilirubinaemia. This includes mutations in the uridine glucoronosyl transferase 1A1 (UGT1A1) gene which is responsible for unconjugated hyperbilirubinemia in Gilbert's Syndrome. We studied the prevalence of UGT1A1 gene mutations in a group of Malay neonates to determine whether they are risk factors to severe neonatal jaundice. One hundred and twenty-five Malay neonates with severe hyperbilirubinemia were studied. Ninety-eight infants without severe hyperbilirubinaemia were randomly selected from healthy Malay term infants (controls). DNA from EDTA cord blood samples were examined for UGT1A1 mutations nt211G > A and nt247T > C using established Taqman SNP genotyping assays and the UGT1A1*28 variant was detected by the Agilent 2100 bioanalyzer. All samples were also screened for common Malay G6PD variants using established techniques. The frequency of UGT1A1 211G > A mutation is significantly higher in the severely hyperbilirubinemic group (13%) than the control group (4%; p = 0.015) and all the positive cases were heterozygous for the mutation. There was no significant difference in the frequency of UGT1A1*28 mutation between the severely hyperbilirubinemic (3.5%) and the control group (0.01%; p = 0.09). None of the neonates in both groups carried the nt247 T > C mutation. The prevalence of G6PD mutation was significantly higher in the severely jaundiced group than control (9% vs 4%; p = 0.04). In conclusion, nt 211 G > A alleles constitute at least 12% of UGT1A1 mutations underlying unconjugated hyperbilirubinemia and appears to be a significant independent risk factor associated with severe neonatal hyperbilirubinemia in the Malay newborns.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  19. Mohamoud HS, Hussain MR, El-Harouni AA, Shaik NA, Qasmi ZU, Merican AF, et al.
    Comput Math Methods Med, 2014;2014:904052.
    PMID: 24723968 DOI: 10.1155/2014/904052
    GalNAc-T1, a key candidate of GalNac-transferases genes family that is involved in mucin-type O-linked glycosylation pathway, is expressed in most biological tissues and cell types. Despite the reported association of GalNAc-T1 gene mutations with human disease susceptibility, the comprehensive computational analysis of coding, noncoding and regulatory SNPs, and their functional impacts on protein level, still remains unknown. Therefore, sequence- and structure-based computational tools were employed to screen the entire listed coding SNPs of GalNAc-T1 gene in order to identify and characterize them. Our concordant in silico analysis by SIFT, PolyPhen-2, PANTHER-cSNP, and SNPeffect tools, identified the potential nsSNPs (S143P, G258V, and Y414D variants) from 18 nsSNPs of GalNAc-T1. Additionally, 2 regulatory SNPs (rs72964406 and #x26; rs34304568) were also identified in GalNAc-T1 by using FastSNP tool. Using multiple computational approaches, we have systematically classified the functional mutations in regulatory and coding regions that can modify expression and function of GalNAc-T1 enzyme. These genetic variants can further assist in better understanding the wide range of disease susceptibility associated with the mucin-based cell signalling and pathogenic binding, and may help to develop novel therapeutic elements for associated diseases.
    Matched MeSH terms: Polymorphism, Single Nucleotide*
  20. Al-Khateeb, A, Al-Talib, H
    JUMMEC, 2016;19(2):1-11.
    MyJurnal
    Background:
    Familial hypercholesterolaemia (FH) is one of the most frequent inherited metabolic disorders that can lead
    to a risk of premature cardiovascular disease. Publications on FH are mainly from western patients as there is
    little research on Asians, including Malaysians. The aim of this review is to provide an up-to- date information
    on Malaysian studies on FH genotyping and its relation to the phenotype of the affected patients.
    Method:
    A search was conducted for data from online databases on FH in Malaysia.
    Results:
    The mutation spectrum for FH among Malaysian patients was extremely broad. The gene variants were located
    mainly in the low-density lipoprotein receptor (LDLR) and apolipoprotein B-100 (APOB-100) genes rather than
    in the proprotein convertase subtilisin kexin type 9 (PCSK9) gene. The exon 9 and 14 were the hotspots in the
    LDLR gene. The most frequent mutation was p.Cys255Ser, at 12.5%, followed by p.Arg471Gly, at 11%, and the
    most common single nucleotide polymorphism (SNP) was c.1060+7 T>C at 11.7%. The LDLR gene variants were
    more common compared to the APOB-100 gene variants, while variants in the PCSK9 gene were very few.
    Phenotype-genotype associations were identified. Subjects with LDLR and APOB-100 genes mutations had a
    higher frequency of cardiovascular disease, a family history of hyperlipidaemia and tendon xanthoma and a
    higher low-density lipoprotein cholesterol (LDL-C) level than non-carriers.
    Conclusion:
    Research on Malaysian familial hypercholesterolaemic patients by individual groups is encouraging. However,
    more extensive molecular studies on FH on a national scale, with a screening of the disease-causing mutations
    together with a comprehensive genotype-phenotype association study, can lead to a better outcome for
    patients with the disease.
    Matched MeSH terms: Polymorphism, Single Nucleotide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links