Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Said ZSAM, Arifi FAM, Salleh AB, Rahman RNZRA, Leow ATC, Latip W, et al.
    Int J Biol Macromol, 2019 Apr 15;127:575-584.
    PMID: 30658145 DOI: 10.1016/j.ijbiomac.2019.01.056
    The utilization of organic solvents as reaction media for enzymatic reactions provides numerous industrially attractive advantages. However, an adaptation of enzyme towards organic solvent is unpredictable and not fully understood because of limited information on the organic solvent tolerant enzymes. To understand how the enzyme can adapt to the organic solvent environment, structural and computational approaches were employed. A recombinant elastase from Pseudomonas aeruginosa strain K was an organic solvent tolerant zinc metalloprotease was successfully crystallized and diffracted up to 1.39 Å. Crystal structure of elastase from strain K showed the typical, canonical alpha-beta hydrolase fold consisting of 10-helices (118 residues), 10- β-strands (38 residues) and 142 residues were formed other secondary structure such as loop and coil to whole structure. The elastase from Pseusomonas aeruginosa strain K possess His-140, His-144 and Glu-164 served as a ligand for zinc ion. The conserved catalytic triad was composed of Glu-141, Tyr-155 and His-223. Three-dimensional structure features such as calcium-binding and presence of disulphide-bridge contribute to the stabilizing the elastase structure. Molecular dynamic (MD) simulation of elastase revealed that, amino acid residues located at the surface area and disulphide bridge in Cys-30 to Cys-58 were responsible for enzyme stability in organic solvents.
    Matched MeSH terms: Protein Domains
  2. Chiang C, Li Y, Ng SK
    Front Immunol, 2020;11:625504.
    PMID: 33613567 DOI: 10.3389/fimmu.2020.625504
    Both DNA and RNA can maintain left-handed double helical Z-conformation under physiological condition, but only when stabilized by Z-DNA binding domain (ZDBD). After initial discovery in RNA editing enzyme ADAR1, ZDBD has also been described in pathogen-sensing proteins ZBP1 and PKZ in host, as well as virulence proteins E3L and ORF112 in viruses. The host-virus antagonism immediately highlights the importance of ZDBD in antiviral innate immunity. Furthermore, Z-RNA binding has been shown to be responsible for the localization of these ZDBD-containing proteins to cytoplasmic stress granules that play central role in coordinating cellular response to stresses. This review sought to consolidate current understanding of Z-RNA sensing in innate immunity and implore possible roles of Z-RNA binding within cytoplasmic stress granules.
    Matched MeSH terms: Protein Domains
  3. Ahmad NN, Ahmad Kamarudin NH, Leow ATC, Rahman RNZRA
    Molecules, 2020 Aug 25;25(17).
    PMID: 32854267 DOI: 10.3390/molecules25173858
    Surface charge residues have been recognized as one of the stability determinants in protein. In this study, we sought to compare and analyse the stability and conformational dynamics of staphylococcal lipase mutants with surface lysine mutation using computational and experimental methods. Three highly mutable and exposed lysine residues (Lys91, Lys177, Lys325) were targeted to generate six mutant lipases in silico. The model structures were simulated in water environment at 25 °C. Our simulations showed that the stability was compromised when Lys177 was substituted while mutation at position 91 and 325 improved the stability. To illustrate the putative alterations of enzyme stability in the stabilising mutants, we characterized single mutant K325G and double mutant K91A/K325G. Both mutants showed a 5 °C change in optimal temperature compared to their wild type. Single mutant K325G rendered a longer half-life at 25 °C (T1/2 = 21 h) while double mutant K91A/K325G retained only 40% of relative activity after 12 h incubation. The optimal pH for mutant K325G was shifted from 8 to 9 and similar substrate preference was observed for the wild type and two mutants. Our findings indicate that surface lysine mutation alters the enzymatic behaviour and, thus, rationalizes the functional effects of surface exposed lysine in conformational stability and activity of this lipase.
    Matched MeSH terms: Protein Domains
  4. Latip W, Raja Abd Rahman RNZ, Leow ATC, Mohd Shariff F, Kamarudin NHA, Mohamad Ali MS
    Int J Mol Sci, 2018 Feb 13;19(2).
    PMID: 29438291 DOI: 10.3390/ijms19020560
    Lipase plays an important role in industrial and biotechnological applications. Lipases have been subject to modification at the N and C terminals, allowing better understanding of lipase stability and the discovery of novel properties. A thermotolerant lipase has been isolated from Antarctic Pseudomonas sp. The purified Antarctic AMS3 lipase (native) was found to be stable across a broad range of temperatures and pH levels. The lipase has a partial Glutathione-S-transferase type C (GST-C) domain at the N-terminal not found in other lipases. To understand the influence of N-terminal GST-C domain on the biochemical and structural features of the native lipase, the deletion of the GST-C domain was carried out. The truncated protein was successfully expressed in E. coli BL21(DE3). The molecular weight of truncated AMS3 lipase was approximately ~45 kDa. The number of truncated AMS3 lipase purification folds was higher than native lipase. Various mono and divalent metal ions increased the activity of the AMS3 lipase. The truncated AMS3 lipase demonstrated a similarly broad temperature range, with the pH profile exhibiting higher activity under alkaline conditions. The purified lipase showed a substrate preference for a long carbon chain substrate. In addition, the enzyme activity in organic solvents was enhanced, especially for toluene, Dimethylsulfoxide (DMSO), chloroform and xylene. Molecular simulation revealed that the truncated lipase had increased structural compactness and rigidity as compared to native lipase. Removal of the N terminal GST-C generally improved the lipase biochemical characteristics. This enzyme may be utilized for industrial purposes.
    Matched MeSH terms: Protein Domains
  5. Cao H, Ng MCK, Jusoh SA, Tai HK, Siu SWI
    J Comput Aided Mol Des, 2017 Sep;31(9):855-865.
    PMID: 28864946 DOI: 10.1007/s10822-017-0047-0
    [Formula: see text]-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM . Website is implemented in PHP, MySQL and Apache, with all major browsers supported.
    Matched MeSH terms: Protein Domains
  6. Dass SA, Norazmi MN, Acosta A, Sarmiento ME, Tye GJ
    Int J Biol Macromol, 2020 Jul 15;155:305-314.
    PMID: 32240734 DOI: 10.1016/j.ijbiomac.2020.03.229
    T cell receptor (TCR)-like antibodies, obtained with the use of phage display technology, sandwich the best of the both arms of the adaptive immune system. In this study, in vitro selections against the latency associated Mycobacterium tuberculosis (Mtb) heat shock protein 16 kDa antigen (16 kDa) presented by HLA-A*011 and HLA-A*24 were carried out with the use of a human domain phage antibody library. TCR-like domain antibodies (A11Ab and A24Ab) were successfully generated recognizing 16 kDa epitopes presented by HLA-A*011 and HLA-A*24 molecules respectively. Both antibodies were found to be functional in soluble form and exhibited strong binding capacity against its targets. The results obtained support the future evaluation of these ligands for the development of diagnostic and therapeutic tools for tuberculosis infection.
    Matched MeSH terms: Protein Domains
  7. Yap ML, Klose T, Urakami A, Hasan SS, Akahata W, Rossmann MG
    Proc Natl Acad Sci U S A, 2017 12 26;114(52):13703-13707.
    PMID: 29203665 DOI: 10.1073/pnas.1713166114
    Cleavage of the alphavirus precursor glycoprotein p62 into the E2 and E3 glycoproteins before assembly with the nucleocapsid is the key to producing fusion-competent mature spikes on alphaviruses. Here we present a cryo-EM, 6.8-Å resolution structure of an "immature" Chikungunya virus in which the cleavage site has been mutated to inhibit proteolysis. The spikes in the immature virus have a larger radius and are less compact than in the mature virus. Furthermore, domains B on the E2 glycoproteins have less freedom of movement in the immature virus, keeping the fusion loops protected under domain B. In addition, the nucleocapsid of the immature virus is more compact than in the mature virus, protecting a conserved ribosome-binding site in the capsid protein from exposure. These differences suggest that the posttranslational processing of the spikes and nucleocapsid is necessary to produce infectious virus.
    Matched MeSH terms: Protein Domains
  8. Tan CS, Hassan M, Mohamed Hussein ZA, Ismail I, Ho KL, Ng CL, et al.
    Plant Physiol Biochem, 2018 Feb;123:359-368.
    PMID: 29304481 DOI: 10.1016/j.plaphy.2017.12.033
    Geraniol degradation pathway has long been elucidated in microorganisms through bioconversion studies, yet weakly characterised in plants; enzyme with specific nerol-oxidising activity has not been reported. A novel cDNA encodes nerol dehydrogenase (PmNeDH) was isolated from Persicaria minor. The recombinant PmNeDH (rPmNeDH) is a homodimeric enzyme that belongs to MDR (medium-chain dehydrogenases/reductases) superfamily that catalyses the first oxidative step of geraniol degradation pathway in citral biosynthesis. Kinetic analysis revealed that rPmNeDH has a high specificity for allylic primary alcohols with backbone ≤10 carbons. rPmNeDH has ∼3 fold higher affinity towards nerol (cis-3,7-dimethyl-2,6-octadien-1-ol) than its trans-isomer, geraniol. To our knowledge, this is the first alcohol dehydrogenase with higher preference towards nerol, suggesting that nerol can be effective substrate for citral biosynthesis in P. minor. The rPmNeDH crystal structure (1.54 Å) showed high similarity with enzyme structures from MDR superfamily. Structure guided mutation was conducted to describe the relationships between substrate specificity and residue substitutions in the active site. Kinetics analyses of wild-type rPmNeDH and several active site mutants demonstrated that the substrate specificity of rPmNeDH can be altered by changing any selected active site residues (Asp280, Leu294 and Ala303). Interestingly, the L294F, A303F and A303G mutants were able to revamp the substrate preference towards geraniol. Furthermore, mutant that exhibited a broader substrate range was also obtained. This study demonstrates that P. minor may have evolved to contain enzyme that optimally recognise cis-configured nerol as substrate. rPmNeDH structure provides new insights into the substrate specificity and active site plasticity in MDR superfamily.
    Matched MeSH terms: Protein Domains
  9. Mohamed RA, Salleh AB, Leow TC, Yahaya NM, Abdul Rahman MB
    Protein Eng. Des. Sel., 2018 06 01;31(6):221-229.
    PMID: 30239965 DOI: 10.1093/protein/gzy023
    A broad substrate specificity enzyme that can act on a wide range of substrates would be an asset in industrial application. T1 lipase known to have broad substrate specificity in its native form apparently exhibits the same active sites as polyhydroxylalkanoate (PHA) depolymerase. PhaZ6Pl is one of the PHA depolymerases that can degrade semicrystalline P(3HB). The objective of this study is to enable T1 lipase to degrade semicrystalline P(3HB) similar to PhaZ6Pl while maintaining its native function. A structural study on PhaZ6Pl contains no lid in its structure and therefore T1 lipase was designed with removal of its lid region. BSLA lipase was chosen as the reference protein for T1 lipase modification since it contains no lid. Initially, structures of both enzymes were compared via protein-protein superimposition in 3D-space and the location of the lid region of T1 lipase was highlighted. A total of three variants of T1 lipase without lid were successfully designed by referring to BSLA lipase (a lipase without lid). The ability of T1 lipase without lid variants in degrading P(3HB) was investigated quantitatively. All the variants showed activity towards the substrate which confirmed that T1 lipase without lid is indeed able to degrade P(3HB). In addition, D2 was recorded to have the highest activity amongst other variants. Results obtained in this study highlighted the fact that native T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation but also P(3HB) by simply removing the lid region.
    Matched MeSH terms: Protein Domains
  10. Bukhari N, Leow ATC, Abd Rahman RNZR, Mohd Shariff F
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731608 DOI: 10.3390/molecules25153433
    Rational design is widely employed in protein engineering to tailor wild-type enzymes for industrial applications. The typical target region for mutation is a functional region like the catalytic site to improve stability and activity. However, few have explored the role of other regions which, in principle, have no evident functionality such as the N-terminal region. In this study, stability prediction software was used to identify the critical point in the non-functional N-terminal region of L2 lipase and the effects of the substitution towards temperature stability and activity were determined. The results showed 3 mutant lipases: A8V, A8P and A8E with 29% better thermostability, 4 h increase in half-life and 6.6 °C higher thermal denaturation point, respectively. A8V showed 1.6-fold enhancement in activity compared to wild-type. To conclude, the improvement in temperature stability upon substitution showed that the N-terminal region plays a role in temperature stability and activity of L2 lipase.
    Matched MeSH terms: Protein Domains
  11. Ling I, Taha M, Al-Sharji NA, Abou-Zied OK
    PMID: 29316482 DOI: 10.1016/j.saa.2018.01.005
    The ability of human serum albumin (HSA) to bind medium-sized hydrophobic molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, the interaction between pyrene, a hydrophobic fluorescent probe, and HSA was thoroughly investigated using steady-state and time-resolved fluorescence techniques, ligand docking, and molecular dynamics (MD) simulations. A slight quenching of the fluorescence signal from Trp214 (the sole tryptophan residue in the protein) in the presence of pyrene was used to determine the ligand binding site in the protein, using Förster's resonance energy transfer (FRET) theory. The estimated FRET apparent distance between pyrene and Trp214 was 27Å, which was closely reproduced by the docking analysis (29Å) and MD simulation (32Å). The highest affinity site for pyrene was found to be in subdomain IB from the docking results. The calculated equilibrium structure of the complex using MD simulation shows that the ligand is largely stabilized by hydrophobic interaction with Phe165, Phe127, and the nonpolar moieties of Tyr138 and Tyr161. The fluorescence vibronic peak ratio I1/I3 of bound pyrene inside HSA indicates the presence of polar effect in the local environment of pyrene which is less than that of free pyrene in buffer. This was clarified by the MD simulation results in which an average of 5.7 water molecules were found within 0.5nm of pyrene in the binding site. Comparing the fluorescence signals and lifetimes of pyrene inside HSA to that free in buffer, the high tendency of pyrene to form dimer was almost completely suppressed inside HSA, indicating a high selectivity of the binding pocket toward pyrene monomer. The current results emphasize the ability of HSA, as a major carrier of several drugs and ligands in blood, to bind hydrophobic molecules in cavities other than subdomain IIA which is known to bind most hydrophobic drugs. This ability stems from the nature of the amino acids forming the binding sites of the protein that can easily adapt their shape to accommodate a variety of molecular structures.
    Matched MeSH terms: Protein Domains
  12. El-Sharnouby S, Fischer B, Magbanua JP, Umans B, Flower R, Choo SW, et al.
    PLoS One, 2017;12(3):e0172725.
    PMID: 28282436 DOI: 10.1371/journal.pone.0172725
    It is now well established that eukaryote genomes have a common architectural organization into topologically associated domains (TADs) and evidence is accumulating that this organization plays an important role in gene regulation. However, the mechanisms that partition the genome into TADs and the nature of domain boundaries are still poorly understood. We have investigated boundary regions in the Drosophila genome and find that they can be identified as domains of very low H3K27me3. The genome-wide H3K27me3 profile partitions into two states; very low H3K27me3 identifies Depleted (D) domains that contain housekeeping genes and their regulators such as the histone acetyltransferase-containing NSL complex, whereas domains containing moderate-to-high levels of H3K27me3 (Enriched or E domains) are associated with regulated genes, irrespective of whether they are active or inactive. The D domains correlate with the boundaries of TADs and are enriched in a subset of architectural proteins, particularly Chromator, BEAF-32, and Z4/Putzig. However, rather than being clustered at the borders of these domains, these proteins bind throughout the H3K27me3-depleted regions and are much more strongly associated with the transcription start sites of housekeeping genes than with the H3K27me3 domain boundaries. While we have not demonstrated causality, we suggest that the D domain chromatin state, characterised by very low or absent H3K27me3 and established by housekeeping gene regulators, acts to separate topological domains thereby setting up the domain architecture of the genome.
    Matched MeSH terms: Protein Domains
  13. Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, et al.
    Microbiologyopen, 2017 12;6(6).
    PMID: 29055967 DOI: 10.1002/mbo3.513
    Helicobacter pylori is a gram-negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host-pathogen interactions mediated by Helicobacter-specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C-terminal β-barrel domain, which requires their assembly by the β-barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C-terminal β-barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter-specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β-barrel architecture that might constitute H. pylori-specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β-barrel-complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
    Matched MeSH terms: Protein Domains
  14. Soong JX, Chan SK, Lim TS, Choong YS
    J Comput Aided Mol Des, 2019 03;33(3):375-385.
    PMID: 30689080 DOI: 10.1007/s10822-019-00186-z
    Mycobacterium tuberculosis (Mtb) 16.3 kDa heat shock protein 16.3 (HSP16.3) is a latency-associated antigen that can be targeted for latent tuberculosis (TB) diagnostic and therapeutic development. We have previously developed human VH domain antibodies (dAbs; clone E3 and F1) specific against HSP16.3. In this work, we applied computational methods to optimise and design the antibodies in order to improve the binding affinity with HSP16.3. The VH domain antibodies were first docked to the dimer form of HSP16.3 and further sampled using molecular dynamics simulation. The calculated binding free energy of the HSP16.3-dAb complexes showed non-polar interactions were responsible for the antigen-antibody association. Per-residue free energy decomposition and computational alanine scanning have identified one hotspot residue for E3 (Y391) and 4 hotspot residues for F1 (M394, Y396, R397 and M398). These hotspot residues were then mutated and evaluated by binding free energy calculations. Phage ELISA assay was carried out on the potential mutants (E3Y391W, F1M394E, F1R397N and F1M398Y). The experimental assay showed improved binding affinities of E3Y391W and F1M394E against HSP16.3 compared with the wild type E3 and F1. This case study has thus showed in silico methods are able to assist in optimisation or improvement of antibody-antigen binding.
    Matched MeSH terms: Protein Domains
  15. Huq AM, Wai LK, Rullah K, Mohd Aluwi MFF, Stanslas J, Jamal JA
    Chem Biol Drug Des, 2019 03;93(3):222-231.
    PMID: 30251480 DOI: 10.1111/cbdd.13404
    Hormone replacement therapy has been a conventional treatment for postmenopausal symptoms in women. However, it has potential risks of breast and endometrial cancers. The aim of this study was to evaluate the oestrogenicity of a plant-based compound, mimosine, in MCF-7 cells by in silico model. Cell viability and proliferation, ERα-SRC1 coactivator activity and expression of specific ERα-dependent marker TFF1 and PGR genes were evaluated. Binding modes of 17β-oestradiol and mimosine at the ERα ligand binding domain were compared using docking and molecular dynamics simulation experiments followed by binding interaction free energy calculation with molecular mechanics/Poisson-Boltzmann surface area. Mimosine showed increased cellular viability (64,450 cells/ml) at 0.1 μM with significant cell proliferation (120.5%) compared to 17β-oestradiol (135.2%). ER antagonist tamoxifen significantly reduced proliferative activity mediated by mimosine (49.9%). Mimosine at 1 μM showed the highest ERα binding activity through increased SRC1 recruitment at 186.9%. It expressed TFF1 (11.1-fold at 0.1 μM) and PGR (13.9-fold at 0.01 μM) genes. ERα-mimosine binding energy was -49.9 kJ/mol, and it interacted with Thr347, Gly521 and His524 of ERα-LBD. The results suggested that mimosine has oestrogenic activity.
    Matched MeSH terms: Protein Domains
  16. Noruddin NAA, Hamzah MF, Rosman Z, Salin NH, Shu-Chien AC, Muhammad TST
    Molecules, 2021 May 03;26(9).
    PMID: 34063700 DOI: 10.3390/molecules26092682
    Momordica charantia is a popular vegetable associated with effective complementary and alternative diabetes management in some parts of the world. However, the molecular mechanism is less commonly investigated. In this study, we investigated the association between a major cucurbitane triterpenoid isolated from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (THCB) and peroxisome proliferator activated receptor gamma (PPARγ) activation and its related activities using cell culture and molecular biology techniques. In this study, we report on both M. charantia fruit crude extract and THCB in driving the luciferase activity of Peroxisome Proliferator Response Element, associated with PPARγ activation. Other than that, THCB also induced adipocyte differentiation at far less intensity as compared to the full agonist rosiglitazone. In conjunction, THCB treatment on adipocytes also resulted in upregulation of PPAR gamma target genes expression; AP2, adiponectin, LPL and CD34 at a lower magnitude compared to rosiglitazone's induction. THCB also induced glucose uptake into muscle cells and the mechanism is via Glut4 translocation to the cell membrane. In conclusion, THCB acts as one of the many components in M. charantia to induce hypoglycaemic effect by acting as PPARγ ligand and inducing glucose uptake activity in the muscles by means of Glut4 translocation.
    Matched MeSH terms: Protein Domains
  17. Singh Y, Fuloria NK, Fuloria S, Subramaniyan V, Meenakshi DU, Chakravarthi S, et al.
    J Med Virol, 2021 Oct;93(10):5726-5728.
    PMID: 34232521 DOI: 10.1002/jmv.27181
    Matched MeSH terms: Protein Domains
  18. den Hoed J, de Boer E, Voisin N, Dingemans AJM, Guex N, Wiel L, et al.
    Am J Hum Genet, 2021 02 04;108(2):346-356.
    PMID: 33513338 DOI: 10.1016/j.ajhg.2021.01.007
    Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.
    Matched MeSH terms: Protein Domains
  19. Sharma G, Vasanth Kumar S, Wahab HA
    J Biomol Struct Dyn, 2018 01;36(1):233-242.
    PMID: 28013578 DOI: 10.1080/07391102.2016.1274271
    A series of dimeric naphthoquinones containing natural 2-hydroxy-1-4-naphthoquinone moiety was designed, synthesized, and evaluated against neuraminidase of H5N1 virus. p-hydroxy derivatives showed higher inhibition when compared to p-halogenated compounds. Molecular docking studies conducted with H5N1 neuraminidase clearly demonstrated different binding modes of the most active compound onto the open and closed conformations of loop 150. The results thus provide not only evidences of a novel scaffold evaluated as inhibitor, but also a rational explanation involving molecular modeling and the role of loop 150 in the binding.
    Matched MeSH terms: Protein Domains
  20. Tan KS, Zhang Y, Liu L, Li S, Zou X, Zeng W, et al.
    PMID: 33662568 DOI: 10.1016/j.cbpb.2021.110590
    Cholinesterases act as bio scavengers to clear organophosphorus (OP) compounds and prodrugs. The butyrylcholinesterase (BChE) gene has been found in several types of teleost fish but this gene has yet to be identified in cyprinid fish. Indeed, BChE homologs have not been found in the zebrafish (Danio rerio) genomic database. Here, we demonstrate that BChE activity is present in zebrafish, in line with other groups' findings. Using in-gel native-PAGE enzymatic activity staining and LC-MS/MS technique, an atypical BChE-like protein was identified in zebrafish. The si:ch211-93f2.1 gene was cloned, and His-tagged recombinant protein was expressed using the Pichia yeast system. The purified protein (molecular weight ~ 180 kDa) showed BChE activity, and degraded acetylcholinesterase (ACh) at a higher rate than BCh. However, phylogram analysis shows that this novel cholinesterase shared an evolutionary origin with carboxylic esterase rather than BChE. The zebrafish BChE-like protein shares structural characteristics with cholinesterase and carboxylesterase. The 2-arachidonoylglycerol (2-AG), nicosulfuron, and triacetin exhibited a higher binding affinity to the zebrafish BChE-like protein than BCh and ACh. With the identification of BChE-like protein in zebrafish, this study could shed light on the origin of BChE and may contribute towards the development of a BChE knockout zebrafish model for sensitive drug or toxin screening.
    Matched MeSH terms: Protein Domains
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links