Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Chai, L.C., Fatimah, C.A., Norhisyam, M.S., Rozila, A., Nadzirah, A.S., Natasha, L.H.Y.
    MyJurnal
    The objective of the present study was to develop a rapid, reliable and yet inexpensive protocol for genomic DNA extraction from frozen and ethanol-preserved Asian green-lipped mussels for random amplified microsatelite (RAM) analysis. The procedure comprised of three major steps: (1) Tissue degradation by boiling in 6% Chelex 100 resin in TE buffer; (2) Protein digestion by Proteinase K; and (3) DNA precipitation by adding 2 volumes of cold absolute ethanol. The entire procedure can be completed within two hours. The resulting RAM profiles were clear and reproducible. Our results demonstrate that the combined protocol of Chelex 100-Proteinase K-ethanol precipitation is a powerful yet economical DNA isolation method for population genetic studies involving a large sample size.
    Matched MeSH terms: Proteolysis
  2. Handayani N, Achmad S, Miletic N, Loos K, Wahyuningrum D
    In spite of their excellent catalytic properties, enzymes should be improved before their implementation both in industrial and laboratorium scales. Immobilization of enzyme is one of the ways to improve their properties. Candida antarctica lipase B (Cal-B) has been reported in numerous publications to be a particularly useful enzyme catalizing in many type of reaction including regio- and enantio- synthesis. For this case, cross-linking of immobilized Cal-B with 1,2,7,8 diepoxy octane is one of methods that proved significantly more stable from denaturation by heat, organic solvents, and proteolysis than lyophilized powder or soluble enzymes. More over, the aim of this procedure is to improve the activity and reusability of lipase. Enzyme kinetics test was carried out by transesterification reaction between 4-nitrophenyl acetate (pNPA) and methanol by varying substrate concentrations, and the result is immobilized enzymes follows the Michaelis-Menten models and their activity is match with previous experiment. Based on the Vmax values, the immobilized enzymes showed higher activity than the free enzyme. Cross-linking of immobilized lipase indicate that cross-linking by lower concentration of cross-linker, FIC (immobilized lipase that was incubated for 24 h) gave the highest activity and cross-linking by higher concentration of cross-linker, PIC (immobilized lipase that was incubated for 2 h) gives the highest activity. However, pore size and saturation level influenced their activity.
    Matched MeSH terms: Proteolysis
  3. Dahlan HM, Karsani SA, Rahman MA, Hamid NA, Top AG, Ngah WZ
    J Nutr Biochem, 2012 Jul;23(7):741-51.
    PMID: 21840697 DOI: 10.1016/j.jnutbio.2011.03.018
    Vitamin E has been suggested to modulate age-associated changes by altering the redox balance resulting in altered gene and/or protein expression. Here we have utilized proteomics to determine whether such regulation in protein expression occurs in human lymphocytes from two different age groups stressed with H₂O₂ and then treated with vitamin E in the form of tocotrienol-rich fraction (TRF). In this study, lymphocytes obtained from young (30-49 years old) and old (>50 years old) volunteers were first challenged with 1 mM H₂O₂. They were then treated by exposure to 50, 100 and 200 μg/ml TRF. Two-dimensional gel electrophoresis followed by MALDI-TOF/TOF (matrix-assisted laser desorption/ionization time-of-flight/time-of-flight) tandem mass spectrometry was then performed on whole-cell protein extracts to identify proteins that have changed in expression. A total of 24 proteins were found to be affected by H₂O₂ and/or TRF treatment. These included proteins that were related to metabolism, antioxidants, structural proteins, protein degradation and signal transduction. Of particular interest was the regulation of a number of proteins involved in stress response--peroxiredoxin-2, peroxiredoxin-3 and peroxiredoxin-6-all of which were shown to be down-regulated with H₂O₂ exposure. The effect was reversed following TRF treatment. The expression of peroxiredoxin-2 and peroxiredoxin-6 was confirmed by quantitative reverse transcriptase polymerase chain reaction. These results suggested that TRF directly influenced the expression dynamics of the peroxiredoxin-2, thus improving the cells ability to resist damage caused by oxidative stress.
    Matched MeSH terms: Proteolysis/drug effects
  4. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM
    J Food Sci, 2012 Nov;77(11):M624-30.
    PMID: 23106104 DOI: 10.1111/j.1750-3841.2012.02955.x
    The viability and activity of Bifidobacterium pseudocatenulatum G4, B. longum BB 536 and yoghurt cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) were studied in yoghurt containing 0.75% Mangefira pajang fibrous polysaccharides (MPFP) and inulin. Growth of probiotic organisms, their proteolytic activities, the production of short chain fatty acids (lactic, acetic and propionic) and the pH of the yoghurt samples were determined during refrigerated storage at 4 °C for 28 d. B. pseudocatenulatum G4 and B. longum BB 536 showed better growth and activity in the presence of MPFP and inulin, which significantly increased the production of short chain fatty acids as well as the proteolytic activity of these organisms.
    Matched MeSH terms: Proteolysis
  5. Shori AB, Baba AS, Keow JN
    Pak J Biol Sci, 2012 Dec 15;15(24):1160-7.
    PMID: 23755406
    There is an increasing demand of functional foods in developed countries. Yogurt plays an important role in the management of blood pressure. Several bioactive peptides isolated from Allium sativum or fish collagen have shown antihypertensive activity. Thus, in the present study the effects of A. sativum and/or Fish Collagen (FC) on proteolysis and ACE inhibitory activity in yogurt (0, 7 and 14 day) and cheese (0, 14 and 28 day) were investigated. Proteolytic activities were the highest on day 7 of refrigerated storage in A. sativum-FC-yogurt (337.0 +/- 5.3 microg g(-1)) followed by FC-yogurt (275.3 +/- 2.0 microg g(-1)), A. sativum-yogurt (245.8 +/- 4.2 microg g(-1)) and plain-yogurt (40.4 +/- 1.2 microg g(-1)). On the other hand, proteolytic activities in cheese ripening were the highest (p < 0.05) on day 14 of storage for plain and A. sativum-cheeses (411.4 +/- 4.3 and 528.7 +/- 1.6 microg g(-1), respectively). However, the presence of FC increased the proteolysis to the highest level on day 28 of storage for FC- and A. sativum-FC cheeses (641.2 +/- 0.1 and 1128.4 +/- 4.5 microg g(-1), respectively). In addition, plain- and A. sativum-yogurts with or without FC showed maximal inhibition of ACE on day 7 of storage. Fresh plain- and A. sativum-cheeses showed ACE inhibition (72.3 +/- 7.8 and 50.4 +/- 1.6 % respectively), the presence of FC in both type of cheeses reduced the ACE inhibition to 62.9 +/- 0.8 and 44.5 +/- 5.0%, respectively. However, refrigerated storage increased ACE inhibition in cheeses (p < 0.05 on day 28) in the presence of FC more than in the absence. In conclusion, the presence of FC in A. sativum-yogurt or cheese enhanced the proteolytic activity. Thus, it has potential in the development of an effective dietary strategy for hypertension associated cardiovascular diseases.
    Matched MeSH terms: Proteolysis
  6. Zarei M, Ebrahimpour A, Abdul-Hamid A, Anwar F, Saari N
    Int J Mol Sci, 2012;13(7):8097-111.
    PMID: 22942692 DOI: 10.3390/ijms13078097
    The aim of this study was to produce a valuable protein hydrolysate from palm kernel cake (PKC) for the development of natural antioxidants. Extracted PKC protein was hydrolyzed using different proteases (alcalase, chymotrypsin, papain, pepsin, trypsin, flavourzyme, and bromelain). Subsequently, antioxidant activity and degree of hydrolysis (DH) of each hydrolysate were evaluated using DPPH• radical scavenging activity and O-phthaldialdehyde spectrophotometric assay, respectively. The results revealed a strong correlation between DH and radical scavenging activity of the hydrolysates, where among these, protein hydrolysates produced by papain after 38 h hydrolysis exhibited the highest DH (91 ± 0.1%) and DPPH• radical scavenging activity (73.5 ± 0.25%) compared to the other hydrolysates. In addition, fractionation of the most effective (potent) hydrolysate by reverse phase high performance liquid chromatography indicated a direct association between hydrophobicity and radical scavenging activity of the hydrolysates. Isoelectric focusing tests also revealed that protein hydrolysates with basic and neutral isoelectric point (pI) have the highest radical scavenging activity, although few fractions in the acidic range also exhibited good antioxidant potential.
    Matched MeSH terms: Proteolysis
  7. Abedin MZ, Karim AA, Ahmed F, Latiff AA, Gan CY, Che Ghazali F, et al.
    J Sci Food Agric, 2013 Mar 30;93(5):1083-8.
    PMID: 22936269 DOI: 10.1002/jsfa.5854
    Sea cucumber (Stichopus vastus) is considered an underutilized resource, since only its stomach and intestines are eaten raw as salad in a few countries and the remaining parts, especially the integument rich in collagen, is discarded. Hence a valuable by-product having potential nutraceutical and pharmaceutical applications is wasted. In the present investigation, pepsin-solubilized collagen (PSC) from the integument of S. vastus was isolated, purified and characterized.
    Matched MeSH terms: Proteolysis
  8. Loganathan R, Selvaduray KR, Nesaretnam K, Radhakrishnan AK
    Cell Prolif, 2013 Apr;46(2):203-13.
    PMID: 23510475 DOI: 10.1111/cpr.12014
    OBJECTIVES: Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells.

    MATERIALS AND METHODS: Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits.

    RESULTS: Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis.

    CONCLUSION: Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines.

    Matched MeSH terms: Proteolysis*
  9. Ooi LC, Watanabe N, Futamura Y, Sulaiman SF, Darah I, Osada H
    Cancer Sci, 2013 Nov;104(11):1461-7.
    PMID: 23910095 DOI: 10.1111/cas.12246
    Dysregulation of p27(Kip1) due to proteolysis that involves the ubiquitin ligase (SCF) complex with S-phase kinase-associated protein 2 (Skp2) as the substrate-recognition component (SCF(Skp2)) frequently results in tumorigenesis. In this report, we developed a high-throughput screening system to identify small-molecule inhibitors of p27(Kip1) degradation. This system was established by tagging Skp2 with fluorescent monomeric Azami Green (mAG) and CDK subunit 1 (Cks1) (mAGSkp2-Cks1) to bind to p27(Kip1) phosphopeptides. We identified two compounds that inhibited the interaction between mAGSkp2-Cks1 and p27(Kip1): linichlorin A and gentian violet. Further studies have shown that the compounds inhibit the ubiquitination of p27(Kip1) in vitro as well as p27(Kip1) degradation in HeLa cells. Notably, both compounds exhibited preferential antiproliferative activity against HeLa and tsFT210 cells compared with NIH3T3 cells and delayed the G1 phase progression in tsFT210 cells. Our approach indicates a potential strategy for restoring p27(Kip1) levels in human cancers.
    Matched MeSH terms: Proteolysis/drug effects
  10. Darah I, Nur-Diyana A, Nurul-Husna S, Jain K, Lim SH
    Appl Biochem Biotechnol, 2013 Dec;171(7):1900-10.
    PMID: 24013862 DOI: 10.1007/s12010-013-0496-4
    Keratinous wastes have increasingly become a problem and accumulate in the environment mainly in the form of feathers, generated mainly from a large number of poultry industries. As keratins are very difficult to degrade by general proteases, they pose a major environmental problem. Therefore, microorganisms which would effectively degrade keratins are needed for recycling such wastes. A geophilic dermatophyte, Microsporum fulvum IBRL SD3 which was isolated from a soil sample collected from a chicken feather dumping site using a baiting technique, was capable to produce keratinase significantly. The crude keratinase was able to degrade whole chicken feathers effectively. The end product of the degradation was protein that contained essential amino acids and may have potential application in animal feed production. Thus, M. fulvum could be a novel organism to produce keratinase for chicken feathers degradation.
    Matched MeSH terms: Proteolysis*
  11. Makpol S, Jam FA, Khor SC, Ismail Z, Mohd Yusof YA, Ngah WZ
    Oxid Med Cell Longev, 2013;2013:298574.
    PMID: 24396567 DOI: 10.1155/2013/298574
    Biodynes, tocotrienol-rich fraction (TRF), and tocopherol have shown antiaging properties. However, the combined effects of these compounds on skin aging are yet to be investigated. This study aimed to elucidate the skin aging effects of biodynes, TRF, and tocopherol on stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs) by determining the expression of collagen and MMPs at gene and protein levels. Primary HDFs were treated with biodynes, TRF, and tocopherol prior to hydrogen peroxide (H2O2) exposure. The expression of COL1A1, COL3A1, MMP1, MMP2, MMP3, and MMP9 genes was determined by qRT-PCR. Type I and type III procollagen proteins were measured by Western blotting while the activities of MMPs were quantified by fluorometric Sensolyte MMP Kit. Our results showed that biodynes, TRF, and tocopherol upregulated collagen genes and downregulated MMP genes (P < 0.05). Type I procollagen and type III procollagen protein levels were significantly increased in response to biodynes, TRF, and tocopherol treatment (P < 0.05) with reduction in MMP-1, MMP-2, MMP-3, and MMP-9 activities (P < 0.05). These findings indicated that biodynes, TRF, and tocopherol effectively enhanced collagen synthesis and inhibited collagen degradation and therefore may protect the skin from aging.
    Matched MeSH terms: Proteolysis/drug effects*
  12. Bordbar S, Ebrahimpour A, Abdul Hamid A, Abdul Manap MY, Anwar F, Saari N
    Biomed Res Int, 2013;2013:849529.
    PMID: 23586061 DOI: 10.1155/2013/849529
    The stone fish (Actinopyga lecanora) ethanolic and methanolic tissue extracts were investigated for total phenolic contents (TPCs) as well as antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical scavenging activity and ferric reducing antioxidant power (FRAP) assays. Both extracts showed low amount of phenolics (20.33 to 17.03 mg of gallic acid equivalents/100 g dried sample) and moderate antioxidant activity (39% to 34% DPPH(•) radical scavenging activity and 23.95 to 22.30 mmol/100 mL FeSO4 FRAP value). Enzymatic proteolysis was carried out in order to improve the antioxidant activity using six commercially available proteases under their optimum conditions. The results revealed that the highest increase in antioxidant activity up to 85% was obtained for papain-generated proteolysate, followed by alcalase (77%), trypsin (75%), pepsin (68%), bromelain (68%), and flavourzyme (50%) as measured by DPPH(•) radical scavenging activity, whilst for the FRAP value, the highest increase in the antioxidant activity up to 39.2 mmol/100 mL FeSO4 was obtained for alcalase-generated proteolysate, followed by papain (29.5 mmol/100 mL FeSO4), trypsin (23.2 mmol/100 mL FeSO4), flavourzyme (24.7 mmol/100 mL FeSO4), bromelain (22.9 mmol/100 mL FeSO4), and pepsin (20.8 mmol/100 mL FeSO4). It is obvious that proteolysis of stone fish tissue by proteolytic enzymes can considerably enhance its antioxidant activity.
    Matched MeSH terms: Proteolysis*
  13. Ghassem M, Fern SS, Said M, Ali ZM, Ibrahim S, Babji AS
    J Food Sci Technol, 2014 Mar;51(3):467-75.
    PMID: 24587521 DOI: 10.1007/s13197-011-0526-6
    This study was conducted to evaluate the kinetic characteristics of proteolytic activity of proteases on Channa striatus protein fractions. Degree of hydrolysis (DH), amino acid composition and kinetic parameters of sarcoplasmic and myofibrillar proteins were investigated when incubated with proteinase K and thermolysin, separately. After 30 min incubation with proteases, a decrease in DH of sarcoplasmic protein was observed whereas, hydrolysis of myofibrillar protein with proteases took 2 h with an increase in DH. The major amino acids were glutamic acid (16.6%) in thermolysin- myofibrillar hydrolysate followed by aspartic acid (11.1%) in sarcoplasmic protein fraction with no enzyme treatment and lysine (10%) in thermolysin-myofibrillar hydrolysate. The apparent Michaelis constant of proteinase K was lower than thermolysin for both sarcoplasmic and myofibrillar proteins. However, rate of turnover and enzyme efficiency suggested that sarcoplasmic and myofibrillar proteins are suitable substrates for proteinase K and thermolysin hydrolytic reaction, respectively.
    Matched MeSH terms: Proteolysis
  14. Ansari SA, Devi S, Tenguria S, Kumar A, Ahmed N
    Cytokine, 2014 Aug;68(2):110-7.
    PMID: 24767863 DOI: 10.1016/j.cyto.2014.03.006
    HP0986 protein of Helicobacter pylori has been shown to trigger induction of proinflammatory cytokines (IL-8 and TNF-α) through the activation of NF-κB and also to induce Fas mediated apoptosis of human macrophage cells (THP-1). In this study, we unravel mechanistic details of the biological effects of this protein in a murine macrophage environment. Up regulation of MCP-1 and TNF-α in HP0986-induced RAW 264.7 cells occurred subsequent to the activation and translocation of NF-κB to the cell nucleus. Further, HP0986 induced apoptosis of RAW 264.7 cells through Fas activation and this was in agreement with previous observations made with THP-1 cells. Our studies indicated activation of TNFR1 through interaction with HP0986 and this elicited the aforementioned responses independent of TLR2, TLR4 or TNFR2. We found that mouse TNFR1 activation by HP0986 facilitates formation of a complex comprising of TNFR1, TRADD and TRAF2, and this occurs upstream of NF-κB activation. Furthermore, FADD also forms a second complex, at a later stage, together with TNFR1 and TRADD, resulting in caspase-8 activation and thereby the apoptosis of RAW 264.7 cells. In summary, our observations reveal finer details of the functional activity of HP0986 protein in relation to its behavior in a murine macrophage cell environment. These findings reconfirm the proinflammatory and apoptotic role of HP0986 signifying it to be an important trigger of innate responses. These observations form much needed baseline data entailing future in vivo studies of the functions of HP0986 in a murine model.
    Matched MeSH terms: Proteolysis
  15. Saadi S, Saari N, Anwar F, Abdul Hamid A, Ghazali HM
    Biotechnol Adv, 2014 12 12;33(1):80-116.
    PMID: 25499177 DOI: 10.1016/j.biotechadv.2014.12.003
    The growing momentum of several common life-style diseases such as myocardial infarction, cardiovascular disorders, stroke, hypertension, diabetes, and atherosclerosis has become a serious global concern. Recent developments in the field of proteomics offering promising solutions to solving such health problems stimulates the uses of biopeptides as one of the therapeutic agents to alleviate disease-related risk factors. Functional peptides are typically produced from protein via enzymatic hydrolysis under in vitro or in vivo conditions using different kinds of proteolytic enzymes. An array of biological activities, including antioxidative, antihypertensive, antidiabetic and immunomodulating has been ascribed to different types of biopeptides derived from various food sources. In fact, biopeptides are nutritionally and functionally important for regulating some physiological functions in the body; however, these are yet to be extensively addressed with regard to their production through advance strategies, mechanisms of action and multiple biological functionalities. This review mainly focuses on recent biotechnological advances that are being made in the field of production in addition to covering the mode of action and biological activities, medicinal health functions and therapeutic applications of biopeptides. State-of-the-art strategies that can ameliorate the efficacy, bioavailability, and functionality of biopeptides along with their future prospects are likewise discussed.
    Matched MeSH terms: Proteolysis
  16. Adeyemi, K.D., Mislan, N., Aghwan, Z.A., Sarah, S.A., Sazili, A.Q.
    MyJurnal
    The study examined the protein profile of Pectoralis major muscle in broiler chickens subjected to different freezing and thawing methods. Pectoralis major muscle was excised from the carcasses of twenty broiler chickens and split into left and right halves. The left half was subjected to slow freezing (-20oC) while the right half was rapidly frozen (-80oC). The samples were stored at their respective temperature for 2 weeks and assigned to either of tap water (27oC, 30 min), room temperature (26oC, 60 min), microwave (750W, 10 min) or chiller (4oC, 6 h) thawing. Changes in myofibrillar proteins following the thawing methods were monitored through sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The electrophoretic profile indicated differences (p < 0.05) in intensities of the components of myofibrillar proteins among the thawing methods in both slow and rapidly frozen samples. Chiller thawing had significantly higher (p < 0.05) protein concentration than other methods in rapidly frozen samples. However, in slow freezing, there were no significant differences in protein concentration among the thawing methods. In rapidly frozen samples, the protein optical densities at molecular weight of 21, 27, 55 and 151kDa in tap water, chiller and room temperature thawing did not differ (p < 0.05). Similarly, in slowly frozen samples, protein optical densities at molecular weight of 21, 27, 85 and 151 kDa were not significantly different among chill, tap water and room temperature thawing. Microwave thawing consistently caused higher protein degradation resulting in significantly lower (p < 0.05) protein quality and quantity in both freezing methods.
    Matched MeSH terms: Proteolysis
  17. Stebbing J, Zhang H, Xu Y, Lit LC, Green AR, Grothey A, et al.
    Oncogene, 2015 Apr 16;34(16):2103-14.
    PMID: 24909178 DOI: 10.1038/onc.2014.129
    Kinase suppressor of Ras-1 (KSR1) facilitates signal transduction in Ras-dependent cancers, including pancreatic and lung carcinomas but its role in breast cancer has not been well studied. Here, we demonstrate for the first time it functions as a tumor suppressor in breast cancer in contrast to data in other tumors. Breast cancer patients (n>1000) with high KSR1 showed better disease-free and overall survival, results also supported by Oncomine analyses, microarray data (n=2878) and genomic data from paired tumor and cell-free DNA samples revealing loss of heterozygosity. KSR1 expression is associated with high breast cancer 1, early onset (BRCA1), high BRCA1-associated ring domain 1 (BARD1) and checkpoint kinase 1 (Chk1) levels. Phospho-profiling of major components of the canonical Ras-RAF-mitogen-activated protein kinases pathway showed no significant changes after KSR1 overexpression or silencing. Moreover, KSR1 stably transfected cells formed fewer and smaller size colonies compared to the parental ones, while in vivo mouse model also demonstrated that the growth of xenograft tumors overexpressing KSR1 was inhibited. The tumor suppressive action of KSR1 is BRCA1 dependent shown by 3D-matrigel and soft agar assays. KSR1 stabilizes BRCA1 protein levels by reducing BRCA1 ubiquitination through increasing BARD1 abundance. These data link these proteins in a continuum with clinical relevance and position KSR1 in the major oncoprotein pathways in breast tumorigenesis.
    Matched MeSH terms: Proteolysis
  18. Aqeel Y, Siddiqui R, Farooq M, Khan NA
    Exp Parasitol, 2015 Oct;157:170-6.
    PMID: 26297676 DOI: 10.1016/j.exppara.2015.08.007
    Acanthamoeba is an opportunistic protist pathogen that is responsible for serious human and animal infection. Being one of the most frequently isolated protists from the environment, it is likely that it readily encounters microaerophilic environments. For respiration under anaerobic or low oxygen conditions in several amitochondriate protists, decarboxylation of pyruvate is catalyzed by pyruvate ferredoxin oxidoreductase instead of pyruvate dehydrogenase. In support, Nitazoxanide, an inhibitor of pyruvate ferredoxin oxidoreductase, is effective and non-mutagenic clinically against a range of amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The overall aim of the present study was to determine in vitro efficacy of Nitazoxanide against Acanthamoeba castellanii. At micromolar concentrations, the findings revealed that Nitazoxanide neither affected A. castellanii growth or viability nor amoeba-mediated host cell monolayer damage in vitro or extracellular proteolytic activities. Similarly, microaerophilic conditions alone had no significant effects. In contrast, microaerophilic conditions together with Nitazoxanide showed amoebicidal effects and inhibited A. castellanii-mediated host cell monolayer damage as well as extracellular proteases. Using encystation assays, it was observed that Nitazoxanide inhibited trophozoite transformation into cysts both under aerophilic and microaerophilic conditions. Furthermore, pre-treatment of cysts with Nitazoxanide inhibited A. castellanii excystation. These findings are important in the identification of potential targets that could be useful against parasite-specific respiration as well as to understand the basic biology of the life cycle of Acanthamoeba.
    Matched MeSH terms: Proteolysis/drug effects
  19. Siddiqui R, Saleem S, Khan NA
    Exp Parasitol, 2016 Jun 18;168:16-24.
    PMID: 27327524 DOI: 10.1016/j.exppara.2016.06.006
    The treatment of Acanthamoeba infections remains problematic, suggesting that new targets and/or chemotherapeutic agents are needed. Bioassay-guided screening of drugs that are clinically-approved for non-communicable diseases against opportunistic eukaryotic pathogens is a viable strategy. With known targets and mode of action, such drugs can advance to clinical trials at a faster pace. Recently Bortezomib (proteasome inhibitor) has been approved by FDA in the treatment of multiple myeloma. As proteasomal pathways are well known regulators of a variety of eukaryotic cellular functions, the overall aim of the present study was to study the effects of peptidic and non-peptidic proteasome inhibitors on the biology and pathogenesis of Acanthamoeba castellanii of the T4 genotype, in vitro. Zymographic assays revealed that inhibition of proteasome had detrimental effects on the extracellular proteolytic activities of A. castellanii. Proteasome inhibition affected A. castellanii growth (using amoebistatic assays), but not viability of A. castellanii. Importantly, proteasome inhibitors affected encystation as determined by trophozoite transformation into the cyst form, as well as excystation, as determined by cyst transformation into the trophozoite form. The ability of proteasome inhibitor to block Acanthamoeba differentiation is significant, as it presents a major challenge in the successful treatment of Acanthamoeba infection. As these drugs are used clinically against non-communicable diseases, the findings reported here have the potential to be tested in a clinical setting against amoebic infections.
    Matched MeSH terms: Proteolysis
  20. Ng CH, Chan CW, Lai JW, Ooi IH, Chong KV, Maah MJ, et al.
    J Inorg Biochem, 2016 07;160:1-11.
    PMID: 27105312 DOI: 10.1016/j.jinorgbio.2016.04.003
    Like chiral organic drugs, the chemical and biological properties of metal complexes can be dependent on chirality. Two pairs of [Cu(phen)(ala)(H2O)]X·xH2O (phen=1.10-phenanthroline: X=NO3(-); ala: l-alanine (l-ala), 1 and d-alanine (d-ala) 2; and (X=Cl(-); ala: l-ala, 3 and d-ala, 4) complex salts (x=number of lattice water molecules) have been synthesized and characterized. The crystal structure of 3 has been determined. The same pair of enantiomeric species, viz. [Cu(phen)(l-ala)(H2O)](+) and [Cu(phen)(d-ala)(H2O)](+), have been identified to be present in the aqueous solutions of both 1 and 3, and in those of both 2 and 4 respectively. Both 3 and 4 bind more strongly to ds(AT)6 than ds(CG)6. There is no or insignificant effect of the chirality of 3 and 4 on the production of hydroxyl radicals, binding to deoxyribonucleic acid from calf thymus (CT-DNA), ds(CG)6, G-quadruplex and 17-base pair duplex, and inhibition of both topoisomerase I and proteasome. Among the three proteasome proteolytic sites, the trypsin-like site is inhibited most strongly by these complexes. However, the chirality of 3 and 4 does affect the number of restriction enzymes inhibited, and their binding constants towards ds(AT)6 and serum albumin.
    Matched MeSH terms: Proteolysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links