Displaying publications 1 - 20 of 150 in total

Abstract:
Sort:
  1. Awang-Kechik NH, Ahmad R, Doustjalali SR, Sabet NS, Abd-Rahman AN
    J Clin Exp Dent, 2019 Mar;11(3):e269-e274.
    PMID: 31001398 DOI: 10.4317/jced.55546
    Background: The biological responses involved during retention phase have been studied for many years but little is known about the effect of saliva proteome during retention phase of post-orthodontic treatment. This study aims to identify the protein profiles during retention phase in relation to biological processes involved by Liquid Chromatography Mass Spectrometry (LC-MS) approach.

    Material and Methods: A total of 5 ml of unstimulated saliva was collected from each subject (10 non-orthodontic patients and 15 post-orthodontic patients with 6-months retention phase). Samples were then subjected to LC-MS analysis. The expressed proteins were identified and compared between groups. Incisor irregularity for both maxilla and mandible were determined with Little's Irregularity Index at 6-months retention phase.

    Results: 146 proteins and 135 proteins were expressed in control and 6-months retention phase group respectively. 15 proteins were identified to be co-expressed between groups. Immune system process was only detected in 6-months retention phase group. Detected protein in immune system process was identified as Tyrosine-protein kinase Tec. Statistical significant of incisor irregularity was only found in mandible at 6-months retention phase.

    Conclusions: Our study suggests that immune system process protein which is Tyrosine-protein kinase Tec could be used as biomarker for prediction of stability during retention phase of post-orthodontic treatment. Key words:Orthodontics, proteomics, retention, LC-MS, saliva.

    Matched MeSH terms: Proteome
  2. Ramdas P, Radhakrishnan AK, Abdu Sani AA, Abdul-Rahman PS
    Nutr Cancer, 2019;71(8):1263-1271.
    PMID: 31084432 DOI: 10.1080/01635581.2019.1607407
    Tocotrienols (T3), a family of vitamin E, are reported to possess potent anti-cancer effects but the molecular mechanisms behind these effects still remain unclear. The aim of this study was to investigate how T3 exert anti-cancer effects on MDA-MB-231 human breast cancer cells. The MDA-MB-231 cells were chosen for this study as they are triple-negative and highly metastatic cells, which form aggressive tumors in experimental models. The MDA-MB-231 cells were treated with varying concentrations (0-20 µg mL-1) of gamma (γ) or delta (δ) T3 and the secretome profiles of these cells treated with half maximal inhibitory concentration (IC50) of γT3 (5.8 µg mL-1) or δT3 (4.0 µg mL-1) were determined using label-free quantitative proteomic strategy. A total of 103, 174 and 141 proteins were identified with ProteinLynx Global Server (PLGS) score of more than 200 and above 25% sequence coverage in the untreated control and T3-treated cell culture supernatant respectively. A total of 18 proteins were dysregulated between untreated control and T3 (δT3 or γT3) treated conditions. The results showed that T3 treatment downregulated the exogenous Cathepsin D and Serpine1 proteins but upregulated Profilin-1 protein, which play a key role in breast cancer in the MDA-MB-231 cells. These findings strongly suggest that T3 may induce differential expression of secreted proteins involved in the cytoskeletal regulation of RHO GTPase signaling pathway.
    Matched MeSH terms: Proteome/analysis*; Proteome/drug effects; Proteome/metabolism
  3. Heidary S, Rahim RA, Eissazadeh S, Moeini H, Chor AL, Abdullah MP
    Biotechnol Lett, 2014 Jul;36(7):1479-84.
    PMID: 24652546 DOI: 10.1007/s10529-014-1504-7
    The periplasmic proteome of recombinant E. coli cells expressing human interferon-α2b (INF-α2b) was analysed by 2D-gel electrophoresis to find the most altered proteins. Of some unique up- and down-regulated proteins in the proteome, ten were identified by MS. The majority of the proteins belonged to the ABC transporter protein family. Other affected proteins were ones involved in the regulation of transcription such as DNA-binding response regulator, stress-related proteins and ecotin. Thus, the production of INF-α2b acts as a stress on the cells and results in the induction of various transporters and stress related proteins.
    Matched MeSH terms: Proteome/analysis*
  4. Sew YS, Aizat WM, Razak MSFA, Zainal-Abidin RA, Simoh S, Abu-Bakar N
    Data Brief, 2020 Aug;31:105927.
    PMID: 32642524 DOI: 10.1016/j.dib.2020.105927
    The proteome data of whole rice grain is considerably limited particularly for rice with pigmentations such as black and red rice. Hence, we performed proteome analysis of two black rice varieties (BALI and Pulut Hitam 9), two red rice varieties (MRM16 and MRQ100) and two white rice varieties (MR297 and MRQ76) using label-free liquid chromatography Triple TOF 6600 tandem mass spectrometry (LC-MS/MS). Our aim was to profile and identify proteins related to nutritional (i.e. antioxidant, folate and low glycaemic index) and quality (i.e. aromatic) traits based on peptide-centric scoring from the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) approach. Both information dependent acquisition (IDA) and SWATH-MS run were performed in this analysis. Raw data was then processed using ProteinPilot software to identify and compare proteins from the six different varieties. In future, this proteomics data will be integrated with previously obtained genomics [1] and transcriptomics [2] data focusing on the above nutritional and quality traits, with an ultimate aim to develop a panel of functional biomarkers related to those traits for future rice breeding programme. The raw MS data of the pigmented and non-pigmented rice varieties have been deposited to ProteomeXchange database with accession number PXD018338.
    Matched MeSH terms: Proteome
  5. Calero R, Mirabal M, Bouza J, Guzmán MV, Carrillo H, López Y, et al.
    BMC Immunol, 2013;14 Suppl 1:S9.
    PMID: 23458073 DOI: 10.1186/1471-2172-14-S1-S9
    TB, caused by Mycobacterium tuberculosis (MTB), is one of the major global infectious diseases. For the pandemic control, early diagnosis with sensitive and specific methods is fundamental. With the advent of bioinformatics' tools, the identification of several proteins involved in the pathogenesis of TB (TB) has been possible. In the present work, the MTB genome was explored to look for molecules with possible antigenic properties for their evaluation as part of new generation diagnostic kits based on the release of cytokines. Seven proteins from the MTB proteome and some of their combinations suited the computational test and the results suggested their potential use for the diagnosis of infection in the following population groups: Cuba, Mexico, Malaysia and sub-Saharan Africa. Our predictions were performed using public bioinformatics tools plus three computer programs, developed by our group, to facilitate information retrieval and processing.
    Matched MeSH terms: Proteome
  6. Naveed M, Hassan JU, Ahmad M, Naeem N, Mughal MS, Rabaan AA, et al.
    Medicina (Kaunas), 2022 Sep 27;58(10).
    PMID: 36295517 DOI: 10.3390/medicina58101356
    Background and Objectives: Citrobacter freundii (C. freundii) is an emerging and opportunistic Gram-negative bacteria of the human gastrointestinal tract associated with nosocomial and severe respiratory tract infections. It has also been associated with pneumonia, bloodstream, and urinary tract infections. Intrinsic and adaptive virulence characteristics of C. freundii have become a significant source of diarrheal infections and food poisoning among immune-compromised patients and newborns. Impulsive usage of antibiotics and these adaptive virulence characteristics has modulated the C. freundii into multidrug-resistant (MDR) bacteria. Conventional approaches are futile against MDR C. freundii. Materials and Methods: The current study exploits the modern computational-based vaccine design approach to treat infections related to MDR C. freundii. A whole proteome of C. freundii (strain: CWH001) was retrieved to screen pathogenic and nonhomologous proteins. Six proteins were shortlisted for the selection of putative epitopes for vaccine construct. Highly antigenic, nonallergen, and nontoxic eleven B-cell, HTL, and TCL epitopes were selected for mRNA- and peptide-based multi-epitope vaccine construct. Secondary and tertiary structures of the multi-epitope vaccine (MEVC) were designed, refined, and validated. Results: Evaluation of population coverage of MHC-I and MHC-II alleles were 72% and 90%, respectively. Docking MEVC with TLR-3 receptor with the binding affinity of 21.46 (kcal/mol) occurred through the mmGBSA process. Further validations include codon optimization with an enhanced CAI value of 0.95 and GC content of about 51%. Immune stimulation and molecular dynamic simulation ensure the antibody production upon antigen interaction with the host and stability of the MEVC construct, respectively. Conclusions: These interpretations propose a new strategy to combat MDR C. freundii. Further, in vivo and in vitro trials of this vaccine will be valuable in combating MDR pathogens.
    Matched MeSH terms: Proteome
  7. Abu Bakar N, Chung BLY, Smykla J, Karsani SA, Alias SA
    Mycologia, 2024;116(3):449-463.
    PMID: 38484286 DOI: 10.1080/00275514.2024.2313429
    Proteomics has been used extensively in the field of mycology, mainly in trying to understand the complex network of protein-protein interactions that has been implicated in the molecular functions of fungi. It is also a useful tool to compare metabolic differences within a genus. Species of Pseudogymnoascus, a genus under the phyla Ascomycota, have been shown to play an important role in the soil environment. They have been found in both polar and temperate regions and are a known producer of many extracellular hydrolases that contribute to soil decomposition. Despite the apparent importance of Pseudogymnoascus spp. in the soil ecosystem, investigations into their molecular functions are still very limited. In the present study, proteomic characterization of six Pseudogymnoascus spp. isolated from three biogeographic regions (the Arctic, Antarctic, and temperate regions) was carried out using tandem mass spectrometry. Prior to proteomic analysis, the optimization for protein extraction was carried out. Trichloroacetic acid‑acetone‑phenol was found to be the best extraction method to be used for proteomic profiling of Pseudogymnoascus spp. The proteomic analysis identified 2003 proteins that were successfully mapped to the UniProtKB database. The identified proteins were clustered according to their biological processes and molecular functions. The shared proteins found in all Pseudogymnoascus spp. (1201 proteins) showed a significantly close relationship in their basic cellular functions, despite differences in morphological structures. Analysis of Pseudogymnoascus spp. proteome also identified proteins that were unique to each region. However, a high number of these proteins belonged to protein families of similar molecular functions, namely, transferases and hydrolases. Our proteomic data can be used as a reference for Pseudogymnoascus spp. across different global regions and a foundation for future soil ecosystem function research.
    Matched MeSH terms: Proteome
  8. Mohamad NE, Yeap SK, Ky H, Liew NWC, Beh BK, Boo SY, et al.
    PMID: 33029159 DOI: 10.1155/2020/1257962
    Obesity is a pandemic metabolic syndrome with increasing incidences every year. Among the significant factors that lead to obesity, overconsumption of high-fat food in daily intake is always the main contributor. Functional foods have shown a positive effect on disease prevention and provide health benefits, including counteracting obesity problem. Vinegar is one of the fermented functional beverages that have been consumed for many years, and different types of vinegar showed different bioactivities and efficacies. In this study, we investigated the potential effects of pineapple vinegar as an antiobesity agent on a high-fat diet- (HFD-) induced C57BL/6 obese mice. C57BL/6 mice were treated with pineapple vinegar (1 mL/kg BW and 0.08 mL/kg BW) for 12 weeks after 24 weeks of HFD incubation. Serum biochemistry profiles, antioxidant assays, qPCR, proteome profiler, and 16S metagenomic were done posttreatment. Our data showed that a high concentration of pineapple vinegar (1 mL/kg BW) treatment significantly (p < 0.05) reduced the bodyweight (∼20%), restored lipid profiles, increased the antioxidant activities, and reduced the oxidative stress. Besides, significant (p < 0.05) regulation of several adipokines and inflammatory-related genes was recorded. Through the regulation of gut microbiota, we found a higher abundance of Akkermansia muciniphila, a microbiota reported to be associated with obesity in the high concentration of pineapple vinegar treatment. Collectively, these data established the mechanism of pineapple vinegar as antiobesity in mice and revealed the potential of pineapple vinegar as a functional food for obesity.
    Matched MeSH terms: Proteome
  9. Jiménez-Castellanos JC, Wan Ahmad Kamil WN, Cheung CH, Tobin MS, Brown J, Isaac SG, et al.
    J Antimicrob Chemother, 2016 Jul;71(7):1820-5.
    PMID: 27029850 DOI: 10.1093/jac/dkw088
    OBJECTIVES: In Klebsiella pneumoniae, overproduction of RamA and RarA leads to increased MICs of various antibiotics; MarA and SoxS are predicted to perform a similar function. We have compared the relative effects of overproducing these four AraC-type regulators on envelope permeability (a combination of outer membrane permeability and efflux), efflux pump and porin production, and antibiotic susceptibility in K. pneumoniae.

    METHODS: Regulators were overproduced using a pBAD expression vector. Antibiotic susceptibility was measured using disc testing. Envelope permeability was estimated using a fluorescent dye accumulation assay. Porin and efflux pump production was quantified using proteomics and validated using real-time quantitative RT-PCR.

    RESULTS: Envelope permeability and antibiotic disc inhibition zone diameters both reduced during overproduction of RamA and to a lesser extent RarA or SoxS, but did not change following overproduction of MarA. These effects were associated with overproduction of the efflux pumps AcrAB (for RamA and SoxS) and OqxAB (for RamA and RarA) and the outer membrane protein TolC (for all regulators). Effects on porin production were strain specific.

    CONCLUSIONS: RamA is the most potent regulator of antibiotic permeability in K. pneumoniae, followed by RarA then SoxS, with MarA having very little effect. This observed relative potency correlates well with the frequency at which these regulators are reportedly overproduced in clinical isolates.

    Matched MeSH terms: Proteome/analysis
  10. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Avison MB
    J Antimicrob Chemother, 2018 11 01;73(11):2990-2996.
    PMID: 30053019 DOI: 10.1093/jac/dky293
    Background: In Klebsiella pneumoniae, loss-of-function mutations in the transcriptional repressors RamR and OqxR both have an impact on the production of efflux pumps and porins relevant to antimicrobial efflux/entry.

    Objectives: To define, in an otherwise isogenic background, the relative effects of OqxR and RamR loss-of-function mutations on envelope protein production, envelope permeability and antimicrobial susceptibility. We also investigated the clinical relevance of an OqxR loss-of-function mutation, particularly in the context of β-lactam susceptibility.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. Antimicrobial susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and quantitative RT-PCR was used to measure transcript levels.

    Results: Loss of RamR or OqxR reduced envelope permeability in K. pneumoniae by 45%-55% relative to the WT. RamR loss activated AcrAB efflux pump production ∼5-fold and this reduced β-lactam susceptibility, conferring ertapenem non-susceptibility even in the absence of a carbapenemase. In contrast, OqxR loss specifically activated OqxAB efflux pump production >10 000-fold. This reduced fluoroquinolone susceptibility but had little impact on β-lactam susceptibility even in the presence of a β-lactamase.

    Conclusions: Whilst OqxR loss and RamR loss are both seen in K. pneumoniae clinical isolates, only RamR loss significantly stimulates AcrAB efflux pump production. This means that only RamR mutants have significantly reduced β-lactamase-mediated β-lactam susceptibility and therefore represent a greater clinical threat.

    Matched MeSH terms: Proteome/genetics; Proteome/metabolism*
  11. Zulkifli AN, Zakeri HA, Azmi WA
    J Insect Sci, 2018 Sep 01;18(5).
    PMID: 30285257 DOI: 10.1093/jisesa/iey093
    The red palm weevil (RPW), Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) is one of the most dangerous pests of major cultivated palms including coconut, oil palm, and sago. The larval stage of the weevil causes the most destruction of the palms as it completely destroys the palm cabbage. In this study, the larvae were given three different diets-coconut cabbage, oil palm cabbage, and sago stem, under laboratory conditions for food consumption and developmental time experiment. The protein profiles of the digestive systems of the larvae fed on these three diets were also determined. Although the coconut diet was the most consumed by RPW larvae compared to oil palm and sago diets, the growth rate of RPW larvae on oil palm diet was however significantly shorter than those on the coconut and sago diets: the RPW only need 1 mo and 9 d to complete the larval duration. Proteins profiling of eight 2-DE gel protein spots that range 50-20 kDa were identified by mass spectrometry sequence analysis. Based on the Matrix Science Software, the most dominant protein was cationic trypsin. However, based on the NCBI BLAST tool, aminopeptidase N was the most dominant enzyme. This finding can lead to the development of pest control strategies based on the antinutritional protease inhibitors as potential biocontrol agents. Urgent action to find effective control methods should be taken seriously as this weevil is presumed to be one of the serious pests of oil palm industry in Malaysia.
    Matched MeSH terms: Proteome*
  12. Swain N, Samanta L, Agarwal A, Kumar S, Dixit A, Gopalan B, et al.
    Antioxid Redox Signal, 2020 03 10;32(8):504-521.
    PMID: 31691576 DOI: 10.1089/ars.2019.7828
    Aims:
    To understand the molecular pathways involved in oxidative stress (OS)-mediated sperm dysfunction against a hypoxic and hyperthermic microenvironment backdrop of varicocele through a proteomic approach.
    Results:
    Protein selection (261) based on their role in redox homeostasis and/or oxidative/hyperthermic/hypoxic stress response from the sperm proteome data set of unilateral varicocele (UV) in comparison with fertile control displayed 85 to be differentially expressed. Upregulation of cellular oxidant detoxification and glutathione and reduced nicotinamide adenine dinucleotide (NADH) metabolism accompanied with downregulation of protein folding, energy metabolism, and heat stress responses were observed in the UV group. Ingenuity pathway analysis (IPA) predicted suppression of oxidative phosphorylation (OXPHOS) (validated by Western blotting [WB]) along with augmentation in OS and mitochondrial dysfunction in UV. The top affected networks indicated by IPA involved heat shock proteins (HSPs: HSPA2 and HSP90B1). Their expression profile was corroborated by immunocytochemistry and WB. Hypoxia-inducible factor 1A as an upstream regulator of HSPs was predicted by MetaCore. Occurrence of reductive stress in UV spermatozoa was corroborated by thiol redox status.
    Innovation:
    This is the first evidence of a novel pathway showing aberrant redox homeostasis against chronic hypoxic insult in varicocele leading to sperm dysfunction.
    Conclusions:
    Upregulation of antioxidant system and dysfunctional OXPHOS would have shifted the redox balance of biological redox couples (GSH/GSSG, NAD+/NADH, and NADP+/NADPH) to a more reducing state leading to reductive stress. Chronic reductive stress-induced OS may be involved in sperm dysfunction in infertile men with UV, where the role of HSPs cannot be ignored. Intervention with antioxidant therapy warrants proper prior investigation.
    Matched MeSH terms: Proteome/metabolism*
  13. Akpunarlieva S, Weidt S, Lamasudin D, Naula C, Henderson D, Barrett M, et al.
    J Proteomics, 2017 02 23;155:85-98.
    PMID: 28040509 DOI: 10.1016/j.jprot.2016.12.009
    Leishmania parasites multiply and develop in the gut of a sand fly vector in order to be transmitted to a vertebrate host. During this process they encounter and exploit various nutrients, including sugars, and amino and fatty acids. We have previously generated a mutant Leishmania line that is deficient in glucose transport and which displays some biologically important phenotypic changes such as reduced growth in axenic culture, reduced biosynthesis of hexose-containing virulence factors, increased sensitivity to oxidative stress, and dramatically reduced parasite burden in both insect vector and macrophage host cells. Here we report the generation and integration of proteomic and metabolomic approaches to identify molecular changes that may explain these phenotypes. Our data suggest changes in pathways of glycoconjugate production and redox homeostasis, which likely represent adaptations to the loss of sugar uptake capacity and explain the reduced virulence of this mutant in sand flies and mammals. Our data contribute to understanding the mechanisms of metabolic adaptation in Leishmania and illustrate the power of integrated proteomic and metabolomic approaches to relate biochemistry to phenotype.

    BIOLOGICAL SIGNIFICANCE: This paper reports the application of comparative proteomic and metabolomic approaches to reveal the molecular basis for important phenotypic changes Leishmania parasites that are deficient in glucose uptake. Leishmania cause a very significant disease burden across the world and there are few effective drugs available for control. This work shows that proteomics and metabolomics can produce complementary data that advance understanding of parasite metabolism and highlight potential new targets for chemotherapy.

    Matched MeSH terms: Proteome/metabolism*
  14. Rusmili MRA, Othman I, Abidin SAZ, Yusof FA, Ratanabanangkoon K, Chanhome L, et al.
    PLoS One, 2019;14(12):e0227122.
    PMID: 31887191 DOI: 10.1371/journal.pone.0227122
    Malayan krait (Bungarus candidus) is a medically important snake species found in Southeast Asia. The neurotoxic effects of envenoming present as flaccid paralysis of skeletal muscles. It is unclear whether geographical variation in venom composition plays a significant role in the degree of clinical neurotoxicity. In this study, the effects of geographical variation on neurotoxicity and venom composition of B. candidus venoms from Indonesia, Malaysia and Thailand were examined. In the chick biventer cervicis nerve-muscle preparation, all venoms abolished indirect twitches and attenuated contractile responses to nicotinic receptor agonists, with venom from Indonesia displaying the most rapid neurotoxicity. A proteomic analysis indicated that three finger toxins (3FTx), phospholipase A2 (PLA2) and Kunitz-type serine protease inhibitors were common toxin groups in the venoms. In addition, venom from Thailand contained L-amino acid oxidase (LAAO), cysteine rich secretory protein (CRISP), thrombin-like enzyme (TLE) and snake venom metalloproteinase (SVMP). Short-chain post-synaptic neurotoxins were not detected in any of the venoms. The largest quantity of long-chain post-synaptic neurotoxins and non-conventional toxins was found in the venom from Thailand. Analysis of PLA2 activity did not show any correlation between the amount of PLA2 and the degree of neurotoxicity of the venoms. Our study shows that variation in venom composition is not limited to the degree of neurotoxicity. This investigation provides additional insights into the geographical differences in venom composition and provides information that could be used to improve the management of Malayan krait envenoming in Southeast Asia.
    Matched MeSH terms: Proteome/analysis; Proteome/toxicity
  15. Chan SY, Sam IC, Lai JK, Chan YF
    J Proteomics, 2015 Jul 1;125:121-30.
    PMID: 26003530 DOI: 10.1016/j.jprot.2015.05.016
    Hand, foot and mouth disease is mainly caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16), but EV-A71 is also associated with severe neurological complications. Host factors may contribute to the different clinical outcomes of EV-A71 and CV-A16 infections. A neurovirulent EV-A71 strain (EV-A71/UH1) from a fatal case, a non-neurovirulent EV-A71 strain (EV-A71/Sha66) and a CV-A16 strain (CV-A16/22159) from cases of uncomplicated HFMD were used. Replication of the viruses in SK-N-MC (neuronal) and HT-29 (intestinal) cell lines correlated with the severity of clinical disease associated with each virus. EV-A71/UH1 showed the greatest replication in neuronal cells. In HT-29 cells, both EV-A71 strains replicated well, but CV-A16/22159 showed no effective replication. The proteomes of mock and infected SK-N-MC and HT-29 cell lines were compared by 2D-SDS-PAGE. The differentially expressed proteins were identified by MALDI-TOF/TOF analysis. There were 46 and 44 differentially expressed proteins identified from SK-N-MC and HT-29 cells, respectively, categorized under apoptosis, stress, cytoskeletal, energy metabolism proteins and others. Western blot validation showed that EV-A71/UH1 and CV-A16 also differentially induced proteins involved in viral RNA translation and host cell stress responses in neuronal and intestinal cell lines.
    Matched MeSH terms: Proteome/biosynthesis*
  16. Tan AA, Phang WM, Gopinath SC, Hashim OH, Kiew LV, Chen Y
    Biomed Res Int, 2015;2015:453289.
    PMID: 26167486 DOI: 10.1155/2015/453289
    Breast cancer is one of the major issues in the field of oncology, reported with a higher prevalence rate in women worldwide. In attempt to reveal the potential biomarkers for breast cancer, the findings of differentially glycosylated haptoglobin and osteonectin in previous study have drawn our attention towards glycoproteins of secretome from the MCF-7 cancer cell line. In the present study, further analyses were performed on the medium of MCF-7 cells by subjecting it to two-dimensional analyses followed by image analysis in contrast to the medium of human mammary epithelial cells (HMEpC) as a negative control. Carboxypeptidase A4 (CPA4), alpha-1-antitrypsin (AAT), haptoglobin (HP), and HSC70 were detected in the medium of MCF-7, while only CPA4 and osteonectin (ON) were detected in HMEpC medium. In addition, CPA4 was detected as upregulated in the MCF-7 medium. Further analysis by lectin showed that CPA4, AAT, HP, and HSC70 were secreted as N-glycan in the medium of MCF-7, with HP also showing differentially N-glycosylated isoforms. For the HMEpC, only CPA4 was detected as N-glycan. No O-glycan was detected in the medium of HMEpC but MCF-7 expressed O-glycosylated CPA4 and HSC70. All these revealed that glycoproteins could be used as glycan-based biomarkers for the prognosis of breast cancer.
    Matched MeSH terms: Proteome/analysis*; Proteome/secretion
  17. Tan AA, Azman SN, Abdul Rani NR, Kua BC, Sasidharan S, Kiew LV, et al.
    Trop Biomed, 2011 Dec;28(3):620-9.
    PMID: 22433892 MyJurnal
    There is a great diversity of protein samples types and origins, therefore the optimal procedure for each sample type must be determined empirically. In order to obtain a reproducible and complete sample presentation which view as many proteins as possible on the desired 2DE gel, it is critical to perform additional sample preparation steps to improve the quality of the final results, yet without selectively losing the proteins. To address this, we developed a general method that is suitable for diverse sample types based on phenolchloroform extraction method (represented by TRI reagent). This method was found to yield good results when used to analyze human breast cancer cell line (MCF-7), Vibrio cholerae, Cryptocaryon irritans cyst and liver abscess fat tissue. These types represent cell line, bacteria, parasite cyst and pus respectively. For each type of samples, several attempts were made to methodically compare protein isolation methods using TRI-reagent Kit, EasyBlue Kit, PRO-PREP™ Protein Extraction Solution and lysis buffer. The most useful protocol allows the extraction and separation of a wide diversity of protein samples that is reproducible among repeated experiments. Our results demonstrated that the modified TRI-reagent Kit had the highest protein yield as well as the greatest number of total proteins spots count for all type of samples. Distinctive differences in spot patterns were also observed in the 2DE gel of different extraction methods used for each type of sample.
    Matched MeSH terms: Proteome/analysis*
  18. Lee PY, Gam LH, Yong VC, Rosli R, Ng KP, Chong PP
    J Appl Microbiol, 2014 Apr;116(4):999-1009.
    PMID: 24299471 DOI: 10.1111/jam.12408
    Systemic candidiasis is the leading fungal bloodstream infection, and its incidence has been on the rise. Recently, Candida parapsilosis has emerged as an increasingly prevalent fungal pathogen, but little is known about its antigenic profile. Hence, the current work was performed to discover immunogenic proteins of C. parapsilosis using serological proteome analysis.
    Matched MeSH terms: Proteome/genetics; Proteome/immunology*
  19. Maarof M, Lokanathan Y, Ruszymah HI, Saim A, Chowdhury SR
    Protein J, 2018 12;37(6):589-607.
    PMID: 30343346 DOI: 10.1007/s10930-018-9800-z
    Growth factors and extracellular matrix (ECM) proteins are involved in wound healing. Human dermal fibroblasts secrete wound-healing mediators in culture medium known as dermal fibroblast conditioned medium (DFCM). However, the composition and concentration of the secreted proteins differ with culture conditions and environmental factors. We cultured human skin fibroblasts in vitro using serum-free keratinocyte-specific media (EpiLife™ Medium [KM1] and defined keratinocyte serum-free medium [KM2]) and serum-free fibroblast-specific medium (FM) to obtain DFCM-KM1, DFCM-KM2 and DFCM-FM, respectively. We identified and compared their proteomic profiles using bicinchoninic acid assay (BCA), 1-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (1D SDS-PAGE), enzyme-linked immunosorbent assay (ELISA), matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and liquid chromatography MS (LC-MS/MS). DFCM-KM1 and DFCM-KM2 had higher protein concentrations than DFCM-FM but not statistically significant. MALDI-TOF/TOF MS identified the presence of fibronectin, serotransferrin, serpin and serum albumin. LC-MS/MS and bioinformatics analysis identified 59, 46 and 58 secreted proteins in DFCM-KM1, DFCM-KM2 and DFCM-FM, respectively. The most significant biological processes identified in gene ontology were cellular process, metabolic process, growth and biological regulation. STRING® analysis showed that most secretory proteins in the DFCMs were associated with biological processes (e.g. wound healing and ECM organisation), molecular function (e.g. ECM binding) and cellular component (e.g. extracellular space). ELISA confirmed the presence of fibronectin and collagen in the DFCMs. In conclusion, DFCM secretory proteins are involved in cell adhesion, attachment, proliferation and migration, which were demonstrated to have potential wound-healing effects by in vitro and in vivo studies.
    Matched MeSH terms: Proteome/metabolism*
  20. Muhammad SA, Nordin N, Mehat MZ, Fakurazi S
    Cell Tissue Res, 2019 Feb;375(2):329-344.
    PMID: 30084022 DOI: 10.1007/s00441-018-2884-0
    Articular cartilage defect remains the most challenging joint disease due to limited intrinsic healing capacity of the cartilage that most often progresses to osteoarthritis. In recent years, stem cell therapy has evolved as therapeutic strategies for articular cartilage regeneration. However, a number of studies have shown that therapeutic efficacy of stem cell transplantation is attributed to multiple secreted factors that modulate the surrounding milieu to evoke reparative processes. This systematic review and meta-analysis aim to evaluate and compare the therapeutic efficacy of stem cell and secretome in articular cartilage regeneration in animal models. We systematically searched the PubMed, CINAHL, Cochrane Library, Ovid Medline and Scopus databases until August 2017 using search terms related to stem cells, cartilage regeneration and animals. A random effect meta-analysis of the included studies was performed to assess the treatment effects on new cartilage formation on an absolute score of 0-100% scale. Subgroup analyses were also performed by sorting studies independently based on similar characteristics. The pooled analysis of 59 studies that utilized stem cells significantly improved new cartilage formation by 25.99% as compared with control. Similarly, the secretome also significantly increased cartilage regeneration by 26.08% in comparison to the control. Subgroup analyses revealed no significant difference in the effect of stem cells in new cartilage formation. However, there was a significant decline in the effect of stem cells in articular cartilage regeneration during long-term follow-up, suggesting that the duration of follow-up is a predictor of new cartilage formation. Secretome has shown a similar effect to stem cells in new cartilage formation. The risk of bias assessment showed poor reporting for most studies thereby limiting the actual risk of bias assessment. The present study suggests that both stem cells and secretome interventions improve cartilage regeneration in animal trials. Graphical abstract ᅟ.
    Matched MeSH terms: Proteome/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links