Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Kazi RN, Sattar MA, Abdullah NA, Khan MA, Rathore HA, Abdulla MH, et al.
    Yakugaku Zasshi, 2011 Mar;131(3):431-6.
    PMID: 21372540
    α(1D)-adrenoceptors are involved in the genesis/maintenance of hypertension in spontaneously hypertensive rats (SHR). This study aims to investigate the role of α(1D)-adrenoceptors in the antinatriuretic and antidiuretic responses in SHR subjected to high sodium (SHRHNa) and normal sodium (SHRNNa) intake for six weeks. Renal inulin clearance study was performed in which the antinatriuretic and antidiuretic responses to phenylephrine were examined in the presence and absence of α(₁D)-adrenoceptors blocker BMY7378. Data, mean±S.E.M. were subjected to ANOVA with significance at p<0.05. Results show that feeding SHR for six weeks with high salt did not cause any change in blood pressure. SHRHNa had higher (all p<0.05) urine flow rate (UFR), fractional and absolute excretion of sodium (FE(Na) and U(Na)V) compared to SHRNNa. Phenylephrine infusion produced significant reduction in UFR, FE(Na) and U(Na)V in both SHRHNa and SHRNNa. The antidiuretic and antinatriuretic responses to phenylephrine in both groups were attenuated in the presence of BMY7378. Moreover, the antidiuretic and antinatriuretic responses to phenylephrine and BMY7378 were independent on any significant changes in renal and glomerular hemodynamics in both groups. Thus we conclude that high sodium intake did not bring any further increase in blood pressure of SHR, however, it results in exaggerated natriuresis and diuresis in SHRHNa. Irrespective of dietary sodium changes, α₁-adrenoceptors are involved in mediating the antinatriuretic and antidiuretic responses to phenylephrine in SHR. Further, high sodium intake did not significantly influence the functionality of α(₁D)-adrenoceptors in mediating the adrenergically induced antinatriuresis and antidiuresis.
    Matched MeSH terms: Rats, Inbred SHR
  2. Loh WM, Ling WC, Murugan DD, Lau YS, Achike FI, Vanhoutte PM, et al.
    Vascul. Pharmacol., 2015 Aug;71:151-8.
    PMID: 25869508 DOI: 10.1016/j.vph.2015.03.011
    Des-aspartate angiotensin I (DAA-I), an endogenous nonapeptide, counteracts several effects of angiotensin II on vascular tone. The aim of this study was to investigate the acute protective effect of DAA-I on endothelial function in the spontaneously hypertensive rat (SHR) as well as its effect on angiotensin II-induced contractions and oxidative stress. Aortic rings were incubated with DAA-I (0.1μM) for 30min prior to the assessment of angiotensin II-induced contractions (0.1nM-10μM) in WKY and SHR aortas. Total nitrate and nitrite levels were assessed using a colorimetric method and reactive oxygen species (ROS) were measured by dihydroethidium (DHE) fluorescence and lucigenin-enhanced chemiluminescence. The effect of DAA-I was also assessed against endothelium-dependent and -independent relaxations to acetylcholine and sodium nitroprusside, respectively. Angiotensin II-induced contractions were significantly reduced by DAA-I, losartan and tempol. Incubation with ODQ (soluble guanylyl cyclase inhibitor) and removal of the endothelium prevented the reduction of angiotensin II-induced contractions by DAA-I. Total nitrate and nitrite levels were increased in DAA-I, losartan and tempol treated-SHR tissues while ROS level was reduced by DAA-I and the latter inhibitors. In addition, DAA-I significantly improved the impaired acetylcholine-induced relaxation in SHR aortas whilst sodium nitroprusside-induced endothelium-independent relaxation remained unaffected. The present findings indicate that improvement of endothelial function by DAA-I in the SHR aorta is mediated through endothelium-dependent release of nitric oxide and inhibition of angiotensin II-induced oxidative stress.
    Matched MeSH terms: Rats, Inbred SHR
  3. Salman IM, Sattar MA, Ameer OZ, Abdullah NA, Yam MF, Salman HM, et al.
    Indian J Med Res, 2010 Jun;131:786-92.
    PMID: 20571167
    A wealth of information concerning the essential role of renal sympathetic nerve activity (RSNA) in the regulation of renal function and mean arterial blood pressure homeostasis has been established. However, many important parameters with which RSNA interacts are yet to be explicitly characterized. Therefore, the present study aimed to investigate the impact of acute renal denervation (ARD) on sodium and water excretory responses to intravenous (iv) infusions of either norepinephrine (NE) or angiotensin II (Ang II) in anaesthetized spontaneously hypertensive rats (SHR).
    Matched MeSH terms: Rats, Inbred SHR/physiology*
  4. Ling WC, Murugan DD, Lau YS, Vanhoutte PM, Mustafa MR
    Sci Rep, 2016 09 12;6:33048.
    PMID: 27616322 DOI: 10.1038/srep33048
    Sodium nitrite (NaNO2) induces relaxation in isolated arteries partly through an endothelium-dependent mechanism involving NO-eNOS-sGC-cGMP pathway. The present study was designed to investigate the effect of chronic NaNO2 administration on arterial systolic blood pressure (SBP) and vascular function in hypertensive rats. NaNO2 (150 mg L-1) was given in drinking water for four weeks to spontaneously (SHR) and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) treated hypertensive SD rats. Arterial SBP and vascular function in isolated aortae were studied. Total plasma nitrate/nitrite and vascular cyclic guanosine monophosphate (cGMP) levels were measured using commercially available assay kits. Vascular nitric oxide (NO) levels were evaluated by DAF-FM fluorescence while the proteins involved in endothelial nitric oxide synthase (eNOS) activation was determined by Western blotting. NaNO2 treatment reduced SBP, improved the impaired endothelium-dependent relaxation, increased plasma total nitrate/nitrite level and vascular tissue NO and cGMP levels in SHR. Furthermore, increased presence of phosphorylated eNOS and Hsp-90 was observed in NaNO2-treated SHR. The beneficial effect of nitrite treatment was not observed in L-NAME treated hypertensive SD rats. The present study provides evidence that chronic treatment of genetically hypertensive rats with NaNO2 improves endothelium-dependent relaxation in addition to its antihypertensive effect, partly through mechanisms involving activation of eNOS.
    Matched MeSH terms: Rats, Inbred SHR
  5. Malina Jasamai, Nurul Hanis Samsudin, Norazrina Azmi, Endang Kumolosasi
    Sains Malaysiana, 2018;47:1221-1226.
    Durian or scientifically known as Durio zibethinus is one of the most well-known seasonal fruits in the Southeast Asia
    region. However, its safe consumption in individuals with hypertension is still controversial. This study was conducted
    to investigate the effect of durian on blood pressure of spontaneously hypertensive rat model. Four groups of rats (n=5)
    were fed with either a low dose durian (26 g/kg), a high dose durian (52 g/kg), sugar solution (8 mL/kg) which has
    similar sugar composition in the durian as placebo control, and distilled water as vehicle control (8 mL/kg) for 14 days.
    The durian doses for rats were obtained by converting from human doses. Baseline reading of blood pressure and heart
    rate were recorded before the first oral administration of durian. The blood pressure and heart rate were also measured
    1 h after the durian oral administration on day 1, 3, 7 and 14 of the experiment. In conclusion, durian fruit possessed
    an acute effect on the blood pressure of hypertensive rats but heart rate was unaffected. High dose administration of
    durian led to significant elevation of blood pressure after 1 h of consumption. Meanwhile, low dose of durian (26 g/kg)
    caused an insignificant reduction in systolic and diastolic blood pressure. Tolerance to the durian fruit was observed after
    three to seven days of the oral administration and low dose consumption of durian fruit was safe in the hypertensive rat.
    Matched MeSH terms: Rats, Inbred SHR
  6. Ahmad FU, Sattar MA, Rathore HA, Tan YC, Akhtar S, Jin OH, et al.
    Ren Fail, 2014 May;36(4):598-605.
    PMID: 24502512 DOI: 10.3109/0886022X.2014.882218
    Oxidative stress and suppressed H2S production lead to increased renal vascular resistance, disturbed glomerular hemodynamics, and abnormal renal sodium and water handling, contribute to the pathogenesis and maintenance of essential hypertension in man and the spontaneously hypertensive rat. This study investigated the impact of H2S and tempol alone and in combination on blood pressure and renal hemodynamics and excretory functions in the SHR. Groups of WKY rats or SHR (n=6) were treated for 4 weeks either as controls or received NaHS (SHR+NaHS), tempol (SHR+Tempol), or NaHS plus tempol (SHR+NaHS +Tempol). Metabolic studies were performed on days 0, 14, and 28, thereafter animals were anaesthetized to measure renal hemodynamics and plasma oxidative and antioxidant markers. SHR control rats had higher mean arterial blood pressure (140.0 ± 2 vs. 100.0 ± 3 mmHg), lower plasma and urinary H2S, creatinine clearance, urine flow rate and urinary sodium excretion, and oxidative stress compared to WKY (all p<0.05). Treatment either with NaHS or with tempol alone decreased blood pressure and oxidative stress and improved renal hemodynamic and excretory function compared to untreated SHR. Combined NaHS and tempol therapy in SHRs caused larger decreases in blood pressure (∼20-22% vs. ∼11-15% and ∼10-14%), increases in creatinine clearance, urinary sodium excretion and fractional sodium excretion and up-regulated the antioxidant status compared to each agent alone (all p<0.05). These findings demonstrated that H2S and tempol together resulted in greater reductions in blood pressure and normalization of kidney function compared with either compound alone.
    Matched MeSH terms: Rats, Inbred SHR
  7. Ahmad FU, Sattar MA, Rathore HA, Abdullah MH, Tan S, Abdullah NA, et al.
    Ren Fail, 2012;34(2):203-10.
    PMID: 22229751 DOI: 10.3109/0886022X.2011.643365
    The coexistence of hypertension and diabetes results in the rapid development of nephropathy. Hydrogen sulfide (H2S) is claimed to control the vascular and renal functions. This study tested the hypothesis that exogenous H2S lowers the blood pressure and decreases the progression of nephropathy in spontaneously hypertensive rats (SHR) that were diabetic. Eighteen SHR were divided into three groups: SHR, SHR diabetic, and SHR diabetic treated with a group of Wistar-Kyoto rats serving as normotensive nondiabetic control. Diabetes was induced with streptozotocin (STZ) in two groups and one diabetic group received sodium hydrosulfide (NaHS), a H2S donor for 5 weeks. Blood pressure was measured in conscious and anesthetized states and renal cortical blood perfusion in acute studies. Plasma and urinary H2S levels, creatinine concentrations, and electrolytes were measured on three different occasions throughout the 35-day period. Diabetic SHR had higher blood pressure, lower plasma and urinary H2S levels, and renal dysfunction as evidenced by increased plasma creatinine, creatinine clearance, and decreased urinary sodium-to-potassium ratio and renal cortical blood perfusion. NaHS reduced blood pressure, increased H2S levels in plasma and urinary excretion, and reversed the STZ-induced renal dysfunction. The findings of this study suggest that the administration of exogenous H2S lowers the blood pressure and confers protection against the progression of STZ-induced nephropathy in SHR.
    Matched MeSH terms: Rats, Inbred SHR
  8. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Regul. Pept., 2005 Jul 15;129(1-3):213-9.
    PMID: 15927718
    The present study investigated the action of des-aspartate-angiotensin I (DAA-I) on the pressor action of angiotensin II in the renal and mesenteric vasculature of WKY, SHR and streptozotocin (STZ)-induced diabetic rats. Angiotensin II-induced a dose-dependent pressor response in the renal vasculature. Compared to the WKY, the pressor response was enhanced in the SHR and reduced in the STZ-induced diabetic rat. DAA-I attenuated the angiotensin II pressor action in renal vasculature of WKY and SHR. The attenuation was observed for DAA-I concentration as low as 10(-18) M and was more prominent in SHR. However, the ability of DAA-I to reduce angiotensin II response was lost in the STZ-induced diabetic kidney. Instead, enhancement of angiotensin II pressor response was seen at the lower doses of the octapeptide. The effect of DAA-I was not inhibited by PD123319, an AT2 receptor antagonist, and indomethacin, a cyclo-oxygenase inhibitor in both WKY and SHR, indicating that its action was not mediated by angiotensin AT2 receptor and prostaglandins. The pressor responses to angiotensin II in mesenteric vascular bed were also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses were significantly smaller in SHR but no significant difference was observed between STZ-induced diabetic and WKY rat. Similarly, PD123319 and indomethacin had no effect on the action of DAA-I. The findings reiterate a regulatory role for DAA-I in vascular bed of the kidney and mesentery. By being active at circulating level, DAA-I subserves a physiological role. This function appears to be present in animals with diseased state of hypertension and diabetes. It is likely that DAA-I functions are modified to accommodate the ongoing vascular remodeling.
    Matched MeSH terms: Rats, Inbred SHR
  9. Mustafa MR, Dharmani M, Kunheen NK, Sim MK
    Regul. Pept., 2004 Aug 15;120(1-3):15-22.
    PMID: 15177916
    An earlier study showed that des-aspartate-angiotensin I (DAA-I) attenuated the pressor action of angiotensin III in aortic rings of the spontaneously hypertensive rat (SHR) but not the normotensive Wistar Kyoto (WKY) rat. The present study investigated similar properties of DAA-I in isolated perfused kidneys and mesenteric beds of WKY and SHR. In the renal vasculature, angiotensin III induced a dose-dependent pressor response, which was more marked in the SHR than WKY in terms of significant greater magnitude of response and lower threshold. DAA-I attenuated the pressor action of angiotensin III in both the WKY and SHR. The attenuation in SHR was much more marked, occurring at doses as low as 10(-15) M DAA-I, while effective attenuation was only seen with 10(-9) M in WKY. The effects of DAA-I was not inhibited by PD123319 and indomethacin, indicating that its action was not mediated by angiotensin AT2 receptors and prostaglandins. However, the direct pressor action of angiotensin III in the SHR but not the WKY was attenuated by indomethacin suggesting that this notable difference could be due to known decreased response of renal vasculature to vasodilator prostaglandins in the SHR. Pressor responses to angiotensin III in the mesenteric vascular bed was also dose dependent, but smaller in magnitude compared to the renal response. The responses in the SHR, though generally smaller, were not significantly different from those of the WKY. This trend is in line with the similar observations with angiotensin III and II by other investigators. In terms of the effect of DAA-I, indomethacin and PD123319 on angiotensin III action, similar patterns to those of the renal vasculature were observed. This reaffirms that in the perfused kidney and mesenteric bed, where the majority of the vessels are contractile, femtomolar concentrations of DAA-I attenuates the pressor action of angiotensin III. The attenuation is not indomethacin sensitive and does not involve the angiotensin AT2 receptor. The findings suggest that DAA-I possesses protective vascular actions and is involved in the pathophysiology of hypertension.
    Matched MeSH terms: Rats, Inbred SHR
  10. Boon CM, Ng MH, Choo YM, Mok SL
    PLoS One, 2013;8(2):e55908.
    PMID: 23409085 DOI: 10.1371/journal.pone.0055908
    Oleic acid has been shown to lower high blood pressure and provide cardiovascular protection. Curiosity arises as to whether super olein (SO), red palm olein (RPO) and palm olein (PO), which have high oleic acid content, are able to prevent the development of hypertension.
    Matched MeSH terms: Rats, Inbred SHR
  11. Afzal S, Abdul Sattar M, Johns EJ, Eseyin OA
    PLoS One, 2020;15(11):e0229803.
    PMID: 33170841 DOI: 10.1371/journal.pone.0229803
    Pioglitazone, a therapeutic drug for diabetes, possesses full PPAR-γ agonist activity and increase circulating adiponectin plasma concentration. Plasma adiponectin concentration decreases in hypertensive patients with renal dysfunctions. Present study investigated the reno-protective, altered excretory functions and renal haemodynamic responses to adrenergic agonists and ANG II following separate and combined therapy with pioglitazone in diabetic model of hypertensive rats. Pioglitazone was given orally [10mg/kg/day] for 28 days and adiponectin intraperitoneally [2.5μg/kg/day] for last 7 days. Groups of SHR received either pioglitazone or adiponectin in combination. A group of Wistar Kyoto rats [WKY] served as normotensive controls, whereas streptozotocin administered SHRs served as diabetic hypertensive rats. Metabolic data and plasma samples were taken on day 0, 8, 21 and 28. In acute studies, the renal vasoconstrictor actions of Angiotensin II [ANGII], noradrenaline [NA], phenylephrine [PE] and methoxamine [ME] were determined. Diabetic SHRs control had a higher basal mean arterial blood pressure than the WKY, lower RCBP and plasma adiponectin, higher creatinine clearance and urinary sodium excretion compared to WKY [all P<0.05] which were normalized by the individual drug treatments and to greater degree following combined treatment. Responses to intra-renal administration of NA, PE, ME and ANGII were larger in diabetic SHR than WKY and SHRs [P<0.05]. Adiponectin significantly blunted responses to NA, PE, ME and ANG II in diabetic treated SHRs by 40%, whereas the pioglitazone combined therapy with adiponectin further attenuated the responses to adrenergic agonists by 65%. [all P <0.05]. These findings suggest that adiponectin possesses renoprotective effects and improves renal haemodynamics through adiponectin receptors and PPAR-γ in diabetic SHRs, suggesting that synergism exists between adiponectin and pioglitazone. A cross-talk relationship also supposed to exists between adiponectin receptors, PPAR-γ and alpha adrenoceptors in renal vasculature of diabetic SHRs.
    Matched MeSH terms: Rats, Inbred SHR
  12. Tan HJ, Ling WC, Chua AL, Lee SK
    Phytomedicine, 2021 Sep;90:153623.
    PMID: 34303263 DOI: 10.1016/j.phymed.2021.153623
    BACKGROUND: Concurrent use of epigallocatechin-3-gallate (EGCG) and medication may lead to botanical-drug interactions, subsequently therapeutic failure or drug toxicity. It has been reported that EGCG reduces plasma nadolol bioavailability in normotensive models. Nevertheless, evidence on the effects of EGCG on hypertensive model, and the possible underlying mechanism have not been elucidated.

    OBJECTIVES: This study aims (i) to investigate the effects of EGCG on nadolol pharmacokinetics (maximum plasma concentration, time to achieve maximum concentration, area under the time-plasma concentration curve, plasma half-life and total clearance) and subsequently its impact on blood pressure control; and (ii) to identify transcriptional regulatory roles of EGCG on the nadolol intestinal and hepatic drug-transporters in SHR.

    METHODS: Male SHR were pre-treated with a daily dose of EGCG (10 mg/kg body weight, i.g.) for 13 days. On day-14, a single dose of nadolol (10 mg/kg body weight) was given to the rats 30 min after the last dose of EGCG administration. Systolic blood pressure (SBP) was measured at 6-h and 22-h post-nadolol administration. Plasma and urinary nadolol concentrations were quantified using high-performance liquid chromatography, and pharmacokinetic parameters were analyzed by using non-compartmental analysis. Hepatic and ileal Oatp1a5, P-gp, and Oct1 mRNA expressions were determined by real-time PCR.

    RESULTS: SBP of SHR pre-treated with EGCG and received nadolol was significantly higher than those which were not pre-treated with EGCG but received nadolol. Pre-treatment of EGCG resulted in a marked reduction of plasma nadolol maximum concentration (Cmax) and area under the time-plasma concentration curve (AUC) by 53% and 51% compared to its control. The 14-day treatment with oral EGCG led to a significant downregulation of mRNA levels of ileal Oatp1a5, P-gp, and Oct1 genes by 4.03-, 8.01- and 4.03-fold; and hepatic P-gp, and Oct1 genes by 2.61- and 2.66-fold.

    CONCLUSION: These data concluded that exposure to EGCG could lead to reduced nadolol bioavailability and therefore, uncontrolled raised blood pressure and higher risks of cardiovascular events. Our data suggest that the reduced nadolol bioavailability is associated with the downregulation of ileal Oatp1a5 and Oct1 mRNA levels that subsequently lead to poor absorption of nadolol to the systemic circulation.

    Matched MeSH terms: Rats, Inbred SHR
  13. Loh SY, Salleh N
    Physiol Int, 2017 Mar 01;104(1):25-34.
    PMID: 28361574 DOI: 10.1556/2060.104.2017.1.3
    Introduction Testosterone plays an important role in the blood pressure regulation. However, information with regard to the effect of this hormone on blood pressure in normotensive and hypertensive conditions is limited. Therefore, in this study, the relationship between plasma testosterone level and mean arterial pressure (MAP) was investigated under these conditions. Methods Normotensive Wistar-Kyoto (WKY) and hypertensive Spontaneous Hypertensive (SHR) male and female rats were gonadectomized with female rats treated with testosterone. Estrous cycle stages of intact female rats of both strains were identified by vaginal smear. Pressure in the carotid artery of anesthetized rats was measured via direct cannulation technique. The blood was withdrawn for plasma testosterone level measurement by enzyme-linked immunosorbent assay. Results Treatment of ovariectomized female WKY and SHR rats with testosterone for 6-week duration has resulted in MAP to increase (P SHR rats, MAP and plasma testosterone levels decreased by orchidectomy (P SHR rats between stages of the estrous cycle. Conclusions The effects seen in testosterone-treated ovariectomized female rats and in orchidectomized male rats suggested that testosterone could play an important role in causing the blood pressure to increase.
    Matched MeSH terms: Rats, Inbred SHR
  14. Sharma JN, Amrah SS, Noor AR
    Pharmacology, 1995 Jun;50(6):363-9.
    PMID: 7568335
    The present investigation evaluated the effects of aprotinin, an inhibitor of kallikrein, on blood pressure responses, heart rate, and duration of hypotension induced by acute administration of captopril and enalapril (angiotensin-converting enzyme inhibitors) in anaesthetized spontaneously hypertensive rats. Captopril (20 mg/kg) and enalapril (20 mg/kg) administered intravenously caused a significant (p < 0.001) fall in systolic and diastolic blood pressures in the absence of aprotinin. In contrast, captopril (20 mg/kg) and enalapril (20 mg/kg) failed (p > 0.05) to cause a fall in systolic and diastolic blood pressures in the presence of aprotinin (2 mg/kg). Captopril and enalapril were able to significantly reduce the heart rate (p < 0.05 and p < 0.001) in the presence as well as in the absence of aprotinin. The duration of hypotension produced by captopril and enalapril was abolished significantly (p < 0.001) in the presence of aprotinin. These findings may suggest that captopril and enalapril caused hypotension via the kallikrein pathway, since the kallikrein inhibitor aprotinin can antagonize the hypotensive responses of these agents. Thus, kallikrein may be an independent mediator in the regulation of blood pressure.
    Matched MeSH terms: Rats, Inbred SHR
  15. Sharma JN, Kesavarao U
    Pharmacology, 2002 Apr;64(4):196-200.
    PMID: 11893900 DOI: 10.1159/000056171
    We investigated the total urinary kallikrein levels, left-ventricular wall thickness and mean arterial blood pressure of nontreated and captopril-treated diabetic and nondiabetic spontaneously hypertensive rats. The mean arterial blood pressure was significantly elevated in diabetic spontaneously hypertensive rats as compared to nondiabetic spontaneously hypertensive rats. Captopril treatment caused a significant reduction in the arterial blood pressure of both nondiabetic and diabetic spontaneously hypertensive rats. The left-ventricular wall thickness was also significantly reduced in diabetic and nondiabetic spontaneously hypertensive treated with captopril as compared to nontreated diabetic and nondiabetic spontaneously hypertensive rats. The total urinary kallikrein levels were significantly raised in captopril-treated diabetic and nondiabetic spontaneously hypertensive rats against the values obtained from nontreated diabetic and nondiabetic spontaneously hypertensive rats. These results indicate that blood pressure reduction and left ventricular wall regression with captopril treatment might be due to enhanced renal kallikrein formation. The significance of these findings is discussed.
    Matched MeSH terms: Rats, Inbred SHR
  16. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Rats, Inbred SHR
  17. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Peptides, 2008 Oct;29(10):1773-80.
    PMID: 18603328 DOI: 10.1016/j.peptides.2008.05.017
    Angiotensin II is known to act primarily on the angiotensin AT(1) receptors to mediate its physiological and pathological actions. Des-aspartate-angiotensin I (DAA-I) is a bioactive angiotensin peptide and have been shown to have contrasting vascular actions to angiotensin II. Previous work in this laboratory has demonstrated an overwhelming vasodepressor modulation on angiotensin II-induced vasoconstriction by DAA-I. The present study investigated the involvement of the AT(1) receptor in the actions of DAA-I on angiotensin II-induced vascular actions in the renal vasculature of normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR) and streptozotocin (STZ)-induced diabetic rats. The findings revealed that the angiotensin receptor in rat kidney homogenate was mainly of the AT(1) subtype. The AT(1) receptor density was significantly higher in the kidney of the SHR. The increase in AT(1) receptor density was also confirmed by RT-PCR and Western blot analysis. In contrast, AT(1) receptor density was significantly reduced in the kidney of the streptozotocin-induced diabetic rat. Perfusion with 10(-9)M DAA-I reduced the AT(1) receptor density in the kidneys of WKY and SHR rats suggesting that the previously observed vasodepressor modulation of the nonapeptide could be due to down-regulation or internalization of AT(1) receptors. RT-PCR and Western blot analysis showed no significant changes in the content of AT(1) receptor mRNA and protein. This supports the suggestion that DAA-I causes internalization of AT(1) receptors. In the streptozotocin-induced diabetic rat, no significant changes in renal AT(1) receptor density and expression were seen when its kidneys were similarly perfused with DAA-I.
    Matched MeSH terms: Rats, Inbred SHR
  18. Chandran G, Sirajudeen KN, Yusoff NS, Swamy M, Samarendra MS
    Oxid Med Cell Longev, 2014;2014:608512.
    PMID: 25254079 DOI: 10.1155/2014/608512
    Oxidative stress has been suggested to play a role in hypertension and hypertension induced organ damage. This study examined the effect of enalapril, an antihypertensive drug, on oxidative stress markers and antioxidant enzymes in kidney of spontaneously hypertensive rat (SHR) and Nω -nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups (SHR, SHR+enalapril, SHR+L-NAME, and SHR+enalapril+L-NAME). Enalapril (30 mg kg(-1) day(-1)) was administered from week 4 to week 28 and L-NAME (25 mg kg(-1) day(-1)) was administered from week 16 to week 28 in drinking water. Systolic blood pressure (SBP) was measured during the experimental period. At the end of experimental periods, rats were sacrificed; urine, blood, and kidneys were collected for the assessment of creatinine clearance, total protein, total antioxidant status (TAS), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and catalase (CAT), as well as histopathological examination. Enalapril treatment significantly enhanced the renal TAS level (P < 0.001) and SOD activity (P < 0.001), reduced the TBARS levels (P < 0.001), and also prevented the renal dysfunction and histopathological changes. The results indicate that, besides its hypotensive and renoprotective effects, enalapril treatment also diminishes oxidative stress in the kidneys of both the SHR and SHR+L-NAME groups.
    Matched MeSH terms: Rats, Inbred SHR
  19. Nik Yusoff NS, Mustapha Z, Govindasamy C, Sirajudeen KN
    Oxid Med Cell Longev, 2013;2013:927214.
    PMID: 23766863 DOI: 10.1155/2013/927214
    Hypertension is a risk factor for several cardiovascular diseases and oxidative stress suggested to be involved in the pathophysiology. Antihypertensive drug Clonidine action in ameliorating oxidative stress was not well studied. Therefore, this study investigate the effect of Clonidine on oxidative stress markers and nitric oxide (NO) in SHR and nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups [SHR, SHR+Clonidine (SHR-C), SHR+L-NAME, SHR+Clonidine+L-NAME(SHRC+L-NAME)]. Rats (SHRC) were administered with Clonidine (0.5 mg kg(-1) day(-1)) from 4 weeks to 28 weeks in drinking water and L-NAME (25 mg kg(-1) day(-1)) from 16 weeks to 28 weeks to SHRC+L-NAME. Systolic blood pressure (SBP) was measured. At the end of 28 weeks, all rats were sacrificed and in their heart homogenate, oxidative stress parameters and NO was assessed. Clonidine treatment significantly enhanced the total antioxidant status (TAS) (P < 0.001) and reduced the thibarbituric acid reactive substances (TBARS) (P < 0.001) and protein carbonyl content (PCO) (P < 0.05). These data suggest that oxidative stress is involved in the hypertensive organ damage and Clonidine not only lowers the SBP but also ameliorated the oxidative stress in the heart of SHR and SHR+L-NAME.
    Matched MeSH terms: Rats, Inbred SHR
  20. Erejuwa OO, Sulaiman SA, Ab Wahab MS, Sirajudeen KN, Salleh S, Gurtu S
    Oxid Med Cell Longev, 2012;2012:374037.
    PMID: 22315654 DOI: 10.1155/2012/374037
    Oxidative stress is implicated in the pathogenesis and/or maintenance of elevated blood pressure in hypertension. This study investigated the effect of honey on elevated systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR). It also evaluated the effect of honey on the amelioration of oxidative stress in the kidney of SHR as a possible mechanism of its antihypertensive effect. SHR and Wistar Kyoto (WKY) rats were randomly divided into 2 groups and administered distilled water or honey by oral gavage once daily for 12 weeks. The control SHR had significantly higher SBP and renal malondialdehyde (MDA) levels than did control WKY. The mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione S-transferase (GST) were significantly downregulated while total antioxidant status (TAS) and activities of GST and catalase (CAT) were higher in the kidney of control SHR. Honey supplementation significantly reduced SBP and MDA levels in SHR. Honey significantly reduced the activities of GST and CAT while it moderately but insignificantly upregulated the Nrf2 mRNA expression level in the kidney of SHR. These results indicate that Nrf2 expression is impaired in the kidney of SHR. Honey supplementation considerably reduces elevated SBP via amelioration of oxidative stress in the kidney of SHR.
    Matched MeSH terms: Rats, Inbred SHR
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links