Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Pascale JV, Wolf A, Kadish Y, Diegisser D, Kulaprathazhe MM, Yemane D, et al.
    Adv Pharmacol, 2023;97:229-255.
    PMID: 37236760 DOI: 10.1016/bs.apha.2023.01.002
    Vascular function is dynamically regulated and dependent on a bevy of cell types and factors that work in concert across the vasculature. The vasoactive eicosanoid, 20-Hydroxyeicosatetraenoic acid (20-HETE) is a key player in this system influencing the sensitivity of the vasculature to constrictor stimuli, regulating endothelial function, and influencing the renin angiotensin system (RAS), as well as being a driver of vascular remodeling independent of blood pressure elevations. Several of these bioactions are accomplished through the ligand-receptor pairing between 20-HETE and its high-affinity receptor, GPR75. This 20-HETE axis is at the root of various vascular pathologies and processes including ischemia induced angiogenesis, arteriogenesis, septic shock, hypertension, atherosclerosis, myocardial infarction and cardiometabolic diseases including diabetes and insulin resistance. Pharmacologically, several preclinical tools have been developed to disrupt the 20-HETE axis including 20-HETE synthesis inhibitors (DDMS and HET0016), synthetic 20-HETE agonist analogues (20-5,14-HEDE and 20-5,14-HEDGE) and 20-HETE receptor blockers (AAA and 20-SOLA). Systemic or cell-specific therapeutic targeting of the 20-HETE-GPR75 axis continues to be an invaluable approach as studies examine the molecular underpinnings activated by 20-HETE under various physiological settings. In particular, the development and characterization of 20-HETE receptor blockers look to be a promising new class of compounds that can provide a considerable benefit to patients suffering from these cardiovascular pathologies.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism
  2. Muralitharan RR, Jama HA, Xie L, Peh A, Snelson M, Marques FZ
    Hypertension, 2020 12;76(6):1674-1687.
    PMID: 33012206 DOI: 10.1161/HYPERTENSIONAHA.120.14473
    There is increasing evidence of the influence of the gut microbiota on hypertension and its complications, such as chronic kidney disease, stroke, heart failure, and myocardial infarction. This is not surprising considering that the most common risk factors for hypertension, such as age, sex, medication, and diet, can also impact the gut microbiota. For example, sodium and fermentable fiber have been studied in relation to both hypertension and the gut microbiota. By combining second- and, now, third-generation sequencing with metabolomics approaches, metabolites, such as short-chain fatty acids and trimethylamine N-oxide, and their producers, have been identified and are now known to affect host physiology and the cardiovascular system. The receptors that bind these metabolites have also been explored with positive findings-examples include known short-chain fatty acid receptors, such as G-protein coupled receptors GPR41, GPR43, GPR109a, and OLF78 in mice. GPR41 and OLF78 have been shown to have inverse roles in blood pressure regulation, whereas GPR43 and GPR109A have to date been demonstrated to impact cardiac function. New treatment options in the form of prebiotics (eg, dietary fiber), probiotics (eg, Lactobacillus spp.), and postbiotics (eg, the short-chain fatty acids acetate, propionate, and butyrate) have all been demonstrated to be beneficial in lowering blood pressure in animal models, but the underlying mechanisms remain poorly understood and translation to hypertensive patients is still lacking. Here, we review the evidence for the role of the gut microbiota in hypertension, its risk factors, and cardiorenal complications and identify future directions for this exciting and fast-evolving field.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism*
  3. Singh Y, Gupta G, Satija S, Pabreja K, Chellappan DK, Dua K
    Drug Dev Res, 2020 09;81(6):647-649.
    PMID: 32329083 DOI: 10.1002/ddr.21674
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism*
  4. Mahalapbutr P, Lee VS, Rungrotmongkol T
    J Agric Food Chem, 2020 Jul 29;68(30):7974-7983.
    PMID: 32551626 DOI: 10.1021/acs.jafc.0c02580
    Human sweet taste receptor (hSTR) recognizes a wide array of sweeteners, resulting in sweet taste perception. Maltitol and lactitol have been extensively used in place of sucrose due to their capability to prevent dental caries. Herein, several molecular modeling approaches were applied to investigate the structural and energetic properties of these two polyols/hSTR complexes. Triplicate 500 ns molecular dynamics (MD) simulations and molecular mechanics/generalized Born surface area (MM/GBSA)-based free energy calculations revealed that the TAS1R2 monomer is the preferential binding site for maltitol and lactitol rather than the TAS1R3 region. Several polar residues (D142, S144, Y215, D278, E302, R383, and especially N143) were involved in polyols binding through electrostatic attractions and H-bond formations. The molecular complexation process not only induced the stable form of ligands but also stimulated the conformational adaptation of the TAS1R2 monomer to become a close-packed structure through an induced-fit mechanism. Notably, the binding affinity of the maltitol/TAS1R2 complex (ΔGbind of -17.93 ± 1.49 kcal/mol) was significantly higher than that of the lactitol/TAS1R2 system (-8.53 ± 1.78 kcal/mol), in line with the experimental relative sweetness. These findings provide an in-depth understanding of the differences in the sweetness response between maltitol and lactitol, which could be helpful to design novel polyol derivatives with higher sweet taste perception.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism*
  5. Altamish M, Samuel VP, Dahiya R, Singh Y, Deb PK, Bakshi HA, et al.
    Drug Dev Res, 2020 02;81(1):23-31.
    PMID: 31785110 DOI: 10.1002/ddr.21627
    The well-known condition of heart failure is a clinical syndrome that results when the myocardium's ability to pump enough blood to meet the body's metabolic needs is impaired. Most of the cardiac activity is maintained by adrenoceptors, are categorized into two main α and β and three distinct subtypes of β receptor: β1-, β2-, and β3-adrenoceptors. The β adrenoreceptor is the main regulatory macro proteins, predominantly available on heart and responsible for down regulatory cardiac signaling. Moreover, the pathological involvement of Angiotensin-converting enzyme 1 (ACE1)/angiotensin II (Ang II)/angiotensin II type 1 (AT1) axis and beneficial ACE2/Ang (1-7)/Mas receptor axis also shows protective role via Gi βγ, during heart failure these receptors get desensitized or internalized due to increase in the activity of G-protein-coupled receptor kinase 2 (GRK2) and GRK5, responsible for phosphorylation of G-protein-mediated down regulatory signaling. Here, we investigate the various clinical and preclinical data that exhibit the molecular mechanism of upset level of GRK change the cardiac activity during failing heart.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism*
  6. Yau MQ, Emtage AL, Chan NJY, Doughty SW, Loo JSE
    J Comput Aided Mol Des, 2019 05;33(5):487-496.
    PMID: 30989574 DOI: 10.1007/s10822-019-00201-3
    The recent expansion of GPCR crystal structures provides the opportunity to assess the performance of structure-based drug design methods for the GPCR superfamily. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)-based methods are commonly used for binding affinity prediction, as they provide an intermediate compromise of speed and accuracy between the empirical scoring functions used in docking and more robust free energy perturbation methods. In this study, we systematically assessed the performance of MM/PBSA in predicting experimental binding free energies using twenty Class A GPCR crystal structures and 934 known ligands. Correlations between predicted and experimental binding free energies varied significantly between individual targets, ranging from r = - 0.334 in the inactive-state CB1 cannabinoid receptor to r = 0.781 in the active-state CB1 cannabinoid receptor, while average correlation across all twenty targets was relatively poor (r = 0.183). MM/PBSA provided better predictions of binding free energies compared to docking scores in eight out of the twenty GPCR targets while performing worse for four targets. MM/PBSA binding affinity predictions calculated using a single, energy minimized structure provided comparable predictions to sampling from molecular dynamics simulations and may be more efficient when computational cost becomes restrictive. Additionally, we observed that restricting MM/PBSA calculations to ligands with a high degree of structural similarity to the crystal structure ligands improved performance in several cases. In conclusion, while MM/PBSA remains a valuable tool for GPCR structure-based drug design, its performance in predicting the binding free energies of GPCR ligands remains highly system-specific as demonstrated in a subset of twenty Class A GPCRs, and validation of MM/PBSA-based methods for each individual case is recommended before prospective use.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism
  7. Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, Gupta G, Dua K
    Panminerva Med, 2018 Sep;60(3):117-131.
    PMID: 29696964 DOI: 10.23736/S0031-0808.18.03455-9
    The prevalence of type 2 diabetes mellitus (T2DM) has been increasing at an alarming rate. With an increased understanding of the pathophysiology and pathogenesis of T2DM, various new therapeutic options have been developed to target different key defects in T2DM. Incremental innovations of existing therapies either through unprecedented drug combinations, modified drug molecules, or improved delivery systems are capable to nullify some of the undesirable side effects of traditional therapies as well as to enhance effectiveness. The existing administration routes include inhalation, nasal, buccal, parenteral and oral. Newer drug targets such as protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), sirtuin (SIRT), and others are novel approaches that act via different mechanisms and possibly treating T2DM of distinct variations and aetiologies. Other therapies such as endobarrier, gene therapy, and stem cell technology utilize advanced techniques to treat T2DM, and the potential of these therapies are still being explored. Gene therapy is plausible to fix the underlying pathology of T2DM instead of using traditional reactive treatments, especially with the debut of Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein9 (CRISPR-Cas9) gene editing tool. Molecular targets in T2DM are also being extensively studied as it could target the defects at the molecular level. Furthermore, antibody therapies and vaccinations are also being developed against T2DM; but the ongoing clinical trials are relatively lesser and the developmental progress is slower. Although, there are many therapies designed to cure T2DM, each of them has their own advantages and disadvantages. The preference for the treatment plan usually depends on the health status of the patient and the treatment goal. Therefore, an ideal treatment should take patient's compliance, efficacy, potency, bioavailability, and other pharmacological and non-pharmacological properties into account.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism
  8. Camerino MA, Liu M, Moriya S, Kitahashi T, Mahgoub A, Mountford SJ, et al.
    J. Pept. Sci., 2016 Jun;22(6):406-14.
    PMID: 27282137 DOI: 10.1002/psc.2883
    Kisspeptin analogues with improved metabolic stability may represent important ligands in the study of the kisspeptin/KISS1R system and have therapeutic potential. In this paper we assess the activity of known and novel kisspeptin analogues utilising a dual luciferase reporter assay in KISS1R-transfected HEK293T cells. In general terms the results reflect the outcomes of other assay formats and a number of potent agonists were identified among the analogues, including β(2) -hTyr-modified and fluorescently labelled forms. We also showed, by assaying kisspeptin in the presence of protease inhibitors, that proteolysis of kisspeptin activity within the reporter assay itself may diminish the agonist outputs. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism*
  9. Son YL, Ubuka T, Soga T, Yamamoto K, Bentley GE, Tsutsui K
    FASEB J, 2016 06;30(6):2198-210.
    PMID: 26929433 DOI: 10.1096/fj.201500055
    Gonadotropin-inhibitory hormone (GnIH) acts as a negative regulator of reproduction by acting on gonadotropes and gonadotropin-releasing hormone (GnRH) neurons. Despite its functional significance, the molecular mechanism of GnIH action in the target cells has not been fully elucidated. To expand our previous study on GnIH actions in gonadotropes, we investigated the potential signal transduction pathway that conveys the inhibitory action of GnIH in GnRH neurons by using the GnRH neuronal cell line, GT1-7. We examined whether GnIH inhibits the action of kisspeptin and vasoactive intestinal polypeptide (VIP), positive regulators of GnRH neurons. Although GnIH significantly suppressed the stimulatory effect of kisspeptin on GnRH release in hypothalamic culture, GnIH had no inhibitory effect on kisspeptin stimulation of serum response element and nuclear factor of activated T-cell response element activities and ERK phosphorylation, indicating that GnIH may not directly inhibit kisspeptin signaling in GnRH neurons. On the contrary, GnIH effectively eliminated the stimulatory effect of VIP on p38 and ERK phosphorylation, c-Fos mRNA expression, and GnRH release. The use of pharmacological modulators strongly demonstrated the specific inhibitory action of GnIH on the adenylate cyclase/cAMP/protein kinase A pathway, suggesting a common inhibitory mechanism of GnIH action in GnRH neurons and gonadotropes.-Son, Y. L., Ubuka, T., Soga, T., Yamamoto, K., Bentley, G. E., Tsutsui, K. Inhibitory action of gonadotropin-inhibitory hormone on the signaling pathways induced by kisspeptin and vasoactive intestinal polypeptide in GnRH neuronal cell line, GT1-7.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism
  10. Nairismägi ML, Tan J, Lim JQ, Nagarajan S, Ng CC, Rajasegaran V, et al.
    Leukemia, 2016 06;30(6):1311-9.
    PMID: 26854024 DOI: 10.1038/leu.2016.13
    Epitheliotropic intestinal T-cell lymphoma (EITL, also known as type II enteropathy-associated T-cell lymphoma) is an aggressive intestinal disease with poor prognosis and its molecular alterations have not been comprehensively characterized. We aimed to identify actionable easy-to-screen alterations that would allow better diagnostics and/or treatment of this deadly disease. By performing whole-exome sequencing of four EITL tumor-normal pairs, followed by amplicon deep sequencing of 42 tumor samples, frequent alterations of the JAK-STAT and G-protein-coupled receptor (GPCR) signaling pathways were discovered in a large portion of samples. Specifically, STAT5B was mutated in a remarkable 63% of cases, JAK3 in 35% and GNAI2 in 24%, with the majority occurring at known activating hotspots in key functional domains. Moreover, STAT5B locus carried copy-neutral loss of heterozygosity resulting in the duplication of the mutant copy, suggesting the importance of mutant STAT5B dosage for the development of EITL. Dysregulation of the JAK-STAT and GPCR pathways was also supported by gene expression profiling and further verified in patient tumor samples. In vitro overexpression of GNAI2 mutants led to the upregulation of pERK1/2, a member of MEK-ERK pathway. Notably, inhibitors of both JAK-STAT and MEK-ERK pathways effectively reduced viability of patient-derived primary EITL cells, indicating potential therapeutic strategies for this neoplasm with no effective treatment currently available.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism*
  11. Dehghan F, Yusof A, Muniandy S, Salleh N
    Environ Toxicol Pharmacol, 2015 Nov;40(3):785-91.
    PMID: 26447688 DOI: 10.1016/j.etap.2015.09.004
    The high risk of knee injuries in female may be associated with sex-steroid hormone fluctuations during the menstrual cycle by its effect on ligaments and tendons stiffness. This study examined changes in knee range of motion in presence of estrogen and progesterone and investigated the interaction of their antagonists to relaxin receptors.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism
  12. Nathan FM, Ogawa S, Parhar IS
    J Neurochem, 2015 Nov;135(4):814-29.
    PMID: 26250886 DOI: 10.1111/jnc.13273
    The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5-HT) system in the MR. However, the connectivity between the Kiss1 neurons and the 5-HT system remains unknown. To resolve this issue, we generated a specific antibody against zebrafish Kiss1 receptor (Kiss-R1); using this primary antibody we found intense immunohistochemical labeling in the ventro-anterior corner of the MR (vaMR) but not in 5-HT neurons, suggesting the potential involvement of interneurons in 5-HT modulation by Kiss1. Double-fluorescence labeling showed that the majority of habenular Kiss1 neurons are glutamatergic. In the MR region, Kiss1 fibers were mainly seen in close association with glutamatergic neurons and only scarcely within GABAergic and 5-HT neurons. Our findings indicate that the habenular Kiss1 neurons potentially modulate the 5-HT system primarily through glutamatergic neurotransmission via as yet uncharacterized interneurons. The neuropeptide kisspeptin (Kiss1) play a key role in vertebrate reproduction. We have previously shown modulatory role of habenular Kiss1 in the raphe serotonin (5-HT) systems. This study proposed that the habenular Kiss1 neurons modulate the 5-HT system primarily through glutamatergic neurotransmission, which provides an important insight for understanding of the modulation of 5-HT system by the habenula-raphe pathway.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism
  13. Tang H, Liu Y, Luo D, Ogawa S, Yin Y, Li S, et al.
    Endocrinology, 2015 Feb;156(2):589-99.
    PMID: 25406015 DOI: 10.1210/en.2014-1204
    The kiss1/gpr54 signaling system is considered to be a critical regulator of reproduction in most vertebrates. However, this presumption has not been tested vigorously in nonmammalian vertebrates. Distinct from mammals, multiple kiss1/gpr54 paralogous genes (kiss/kissr) have been identified in nonmammalian vertebrates, raising the possibility of functional redundancy among these genes. In this study, we have systematically generated the zebrafish kiss1(-/-), kiss2(-/-), and kiss1(-/-);kiss2(-/-) mutant lines as well as the kissr1(-/-), kissr2(-/-), and kissr1(-/-);kissr2(-/-) mutant lines using transcription activator-like effector nucleases. We have demonstrated that spermatogenesis and folliculogenesis as well as reproductive capability are not impaired in all of these 6 mutant lines. Collectively, our results indicate that kiss/kissr signaling is not absolutely required for zebrafish reproduction, suggesting that the kiss/kissr systems play nonessential roles for reproduction in certain nonmammalian vertebrates. These findings also demonstrated that fish and mammals have evolved different strategies for neuroendocrine control of reproduction.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism*
  14. Murugan D, Lau YS, Lau CW, Lau WC, Mustafa MR, Huang Y
    PLoS One, 2015;10(12):e0145413.
    PMID: 26709511 DOI: 10.1371/journal.pone.0145413
    Angiotensin 1-7 (Ang 1-7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1-7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1-7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1-7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1-7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1-7. In addition, Ang 1-7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1-7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism*
  15. Jasamai M, Jalil J, Jantan I
    Nat Prod Res, 2015;29(11):1055-8.
    PMID: 25332053 DOI: 10.1080/14786419.2014.971317
    A handful of bioactive compounds from plants have been reported to possess platelet-activating factor (PAF) antagonist activity. However, their mode of action is not well understood. Selected bioactive compounds that exhibit PAF antagonist activity and synthetic PAF antagonists were subjected to docking simulations using the MOE 2007.09 software package. The docking study of PAF antagonists was carried out on the PAF receptor (PAFR) protein which involves in various pathological responses mediated by PAF. The docking results revealed that amentoflavone (3) showed good interactions with the PAFR model where the flavone and phenolic moieties were mostly involved in these interactions. Knowledge on PAF antagonists' interactions with the PAFR model is a useful screening tool of potential PAF antagonists prior to performing PAF inhibitory assay.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism
  16. Hang CY, Kitahashi T, Parhar IS
    J. Comp. Neurol., 2014 Dec 1;522(17):3847-60.
    PMID: 25043553 DOI: 10.1002/cne.23645
    In addition to vision, light information is used to regulate a range of animal physiology. Such nonimage-forming functions of light are mediated by nonvisual photoreceptors expressed in distinct neurons in the retina and the brain in most vertebrates. A nonvisual photoreceptor vertebrate ancient long opsin (VAL-opsin) possesses two functional isoforms in the zebrafish, encoded by valopa and valopb, which has received little attention. To delineate the neurochemical identities of valop cells and to test for colocalization of the valop isoforms, we used in situ hybridization to characterize the expression of the valop genes along with that of neurotransmitters and a neuropeptide known to be present at the sites of valop expression. Double labeling showed that the thalamic valop population coexpresses valopa and valopb. All the thalamic valop cells overlapped with a GABAergic cell mass that continues from the anterior nucleus to the intercalated thalamic nucleus. A novel valopa cell population found in the superior raphe was serotonergic in nature. A valopb cell population in the Edinger-Westphal nucleus was identified as containing thyrotropin-releasing hormone. Valopb cells localized in the hindbrain intermediate reticular formation were noncholinergic in nature (nonmotorneurons). Thus, the presence of valop cell populations in different brain regions with coexpression of neurotransmitters and neuropeptides and the colocalization of valop isoforms in the thalamic cell population indicate regulatory and functional complexity of VAL-opsin in the brain of the zebrafish.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism*
  17. Chin SP, Buckle MJ, Chalmers DK, Yuriev E, Doughty SW
    J Mol Graph Model, 2014 Apr;49:91-8.
    PMID: 24631873 DOI: 10.1016/j.jmgm.2014.02.002
    Structure-based virtual screening offers a good opportunity for the discovery of selective M1 muscarinic acetylcholine receptor (mAChR) agonists for the treatment of Alzheimer's disease. However, no 3-D structure of an M1 mAChR is yet available and the homology models that have been previously reported are only able to identify antagonists in virtual screening experiments. In this study, we generated a homology model of the human M1 mAChR, based on the crystal structure of an M3 mAChR as the template. This initial model was modified, using the agonist-bound crystal structure of a β2-adrenergic receptor as a guide, to give two possible activated structures. The T192 side chain was adjusted in both structures and one of the structures also had the whole of transmembrane (TM) 5 rotated and tilted toward the inner channel of the transmembrane region. The binding sites of all three structures were then refined by induced-fit docking (IFD) with acetylcholine. Virtual screening experiments showed that all three refined models could efficiently differentiate agonists from decoy molecules, with the TM5-modified models also giving good agonist/antagonist selectivity. The whole range of agonists and antagonists was observed to bind within the orthosteric site of the structure obtained by IFD refinement alone, implying that it has inactive state character. In contrast, the two TM5-modified structures were unable to accommodate the antagonists, supporting the proposition that they possess activated state character.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism
  18. Dehghan F, Muniandy S, Yusof A, Salleh N
    Int J Mol Sci, 2014;15(3):4619-34.
    PMID: 24642882 DOI: 10.3390/ijms15034619
    Ovarian steroids such as estrogen and progesterone have been reported to influence knee laxity. The effect of testosterone, however, remains unknown. This study investigated the effect of testosterone on the knee range of motion (ROM) and the molecular mechanisms that might involve changes in the expression of relaxin receptor isoforms, Rxfp1 and Rxfp2 in the patella tendon and lateral collateral ligament of the female rat knee. Ovariectomized adult female Wistar rats received three days treatment with peanut oil (control), testosterone (125 and 250 μg/kg) and testosterone (125 and 250 μg/kg) plus flutamide, an androgen receptor blocker or finasteride, a 5α-reductase inhibitor. Duplicate groups received similar treatment however in the presence of relaxin (25 ng/kg). A day after the last drug injection, knee passive ROM was measured by using a digital miniature goniometer. Both tendon and ligament were harvested and then analysed for protein and mRNA expression for Rxfp1 and Rxfp2 respectively. Knee passive ROM, Rxfp1 and Rxfp2 expression were significantly reduced following treatment with testosterone. Flutamide or finasteride administration antagonized the testosterone effect. Concomitant administration of testosterone and relaxin did not result in a significant change in knee ROM as compared to testosterone only treatment; however this was significantly increased following flutamide or finasteride addition. Testosterone effect on knee passive ROM is likely mediated via dihydro-testosterone (DHT), and involves downregulation of Rxfp1 and Rxfp2 expression, which may provide the mechanism underlying testosterone-induced decrease in female knee laxity.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism*
  19. Ogawa S, Parhar IS
    Gen Comp Endocrinol, 2013 Jan 15;181:169-74.
    PMID: 22967958 DOI: 10.1016/j.ygcen.2012.08.023
    Kisspeptin and its cognate receptor, GPR54 (kisspeptin receptor, Kiss-R) have recently been recognized potent regulators of reproduction in vertebrates. In non-mammalian vertebrates, kisspeptin-Kiss-R homologous and paralogous genes have been identified with their conserved functions in reproduction. Teleosts possess two paralogous genes encoding kisspeptin (kiss1 and kiss2) and Kiss-R (kissr1 and kissr2). Identification of the location and the distribution of the kisspeptin-Kiss-R systems as well as their connectivity with other neural system in the brain is important to elucidate the role of kisspeptin in neuroendocrine functions. This review focuses on the comparative aspects of neuroanatomical distribution of two kisspeptin-Kiss-R systems in the brain of teleosts and their potential roles in reproductive and non-reproductive functions. Finally, based on the association of kisspeptin types with tachykinin peptides, their potential neuromodulatory roles in the brain of teleost will be discussed. The existence of two kisspeptin systems suggests their independent functions in the brain of teleosts. Understanding of teleosts Kiss1 and Kiss2 systems will provide insight into the physiological and evolutional significance of multiple kisspeptin systems in the vertebrate brain.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism
  20. Jalil J, Jantan I, Ghani AA, Murad S
    Molecules, 2012 Sep 10;17(9):10893-901.
    PMID: 22964504 DOI: 10.3390/molecules170910893
    The methanol extract of the leaves of Garcinia nervosa var. pubescens King, which showed strong inhibitory effects on platelet-activating factor (PAF) receptor binding, was subjected to bioassay-guided isolation to obtain a new biflavonoid, II-3,I-5, II-5,II-7,I-4',II-4'-hexahydroxy-(I-3,II-8)-flavonylflavanonol together with two known flavonoids, 6-methyl-4'-methoxyflavone and acacetin. The structures of the compounds were elucidated by spectroscopic methods. The compounds were evaluated for their ability to inhibit PAF receptor binding to rabbit platelets using ³H-PAF as a ligand. The biflavonoid and acacetin showed strong inhibition with IC₅₀ values of 28.0 and 20.4 µM, respectively. The results suggest that these compounds could be responsible for the strong PAF antagonistic activity of the plant.
    Matched MeSH terms: Receptors, G-Protein-Coupled/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links