Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Mohamed AM, Wong KH, Lee WJ, Marizan Nor M, Mohd Hussaini H, Rosli TI
    Saudi Dent J, 2018 Apr;30(2):142-150.
    PMID: 29628737 DOI: 10.1016/j.sdentj.2017.12.001
    Aim: The aim of the study was to evaluate the effect of resin infiltration on colour changes and surface roughness of artificial white spot lesions (WSLs) on maxillary and mandibular premolar.

    Materials and methods: Sixty (60) extracted sound Maxilla (Mx) and Mandibular (Mn) premolars were randomly divided into 2 groups (test and control). Artificial WSLs were produced on buccal surface of teeth and were immersed in artificial saliva for 8 weeks. Colour components (L∗, a∗, b∗) and surface roughness (Sa∗) were assessed on 40 teeth using colour difference meter RD-100 and Alicona® Infinite Focus profilometer respectively. The measurements were done at baseline (T1), directly after artificial WSLs (T2), after 24 hours immersed in saliva and application of resin (T3) and immersion in artificial saliva for 1 (T4), 2 (T5), 4 (T6), 6 (T7) and 8 (T8) weeks. SEM images analysis were carried out on 20 teeth in four time points.

    Results: The values of L∗ (lightness), b∗ (yellow/blue) and Sa∗ (surface roughness) are gradually reduced to the baseline value. Whereas, the value of a∗ gradually increased with distinct treatment time to achieve the baseline value. The higher value of L∗ and Sa∗, the whiter the lesion suggesting higher degree of enamel demineralization and surface roughness. Lower L∗ values suggest a masking colour effect.

    Conclusion: The material produced favorable esthetics on colour and the surface roughness of teeth at distinct treatment times. It is recommended to be used to improve WSL post orthodontic treatment.

    Matched MeSH terms: Resins, Plant
  2. Zainuddin NAMN, Razak NAA, Karim MSA, Osman NAA
    Sci Rep, 2023 Feb 15;13(1):2664.
    PMID: 36792914 DOI: 10.1038/s41598-022-21990-y
    Acrylic and epoxy are common types of resin used in fabricating sockets. Different types of resin will affect the internal surface of a laminated socket. This paper is to determine the best combination of ratio for epoxy and acrylic resin for a laminated prosthesis socket and to evaluate the surface profile analysis of different combinations of laminated prosthetic sockets for surface roughness. Transfemoral sockets were created using various resin-to-hardener ratios of 2:1, 3:1, 3:2, 2:3, and 1:3 for epoxy resin and 100:1, 100:2, 100:3, 100:4, and 100:5 for acrylic resin. Eight layers of stockinette consisting of four elastic stockinette and four Perlon stockinette were used. A sample with a size of 4 cm × 6 cm was cut out from the socket on the lateral side below the Greater Trochanter area. The Mitutoyo Sj-210 Surface Tester stylus was run through the sample and gave the Average Surface Roughness value (Ra), Root Mean Square Roughness value (Rq), and Ten-Point Mean Roughness value (Rz). Epoxy resin shows a smoother surface compared to acrylic resin with Ra values of is 0.766 µm, 0.9716 µm, 0.9847 µm and 1.5461 µm with 3:2, 3:1, 2:1 and 2:3 ratio respectively. However, for epoxy resin with ratio 1:3, the resin does not cure with the hardener. As for acrylic resin the Ra values are 1.0086 µm, 2.362 µm, 3.372 µm, 4.762 µm and 6.074 µm with 100: 1, 100:2, 100:5, 100:4 and 100:3 ratios, respectively. Epoxy resin is a better choice in fabricating a laminated socket considering the surface produced is smoother.
    Matched MeSH terms: Resins, Plant
  3. Khairiah Badri, Amamer Musbah Redwan
    Fire-retarding polyurethane (PU) composite was produced by adding 2,4-ditert-butylphenyl phosphite (FR) to palm-based monoester resin with loading percentage of 0, 2, 4, and 6 wt%. The Shore D hardness index increased marginally with increasing FR content. However, the impact and flexural strengths decreased with increasing FR loading attributed to the weak interfacial bonding between FR and PU matrix. The fire test indicated lowering of burning rate (from 5.30 mm.s-1 to 2.80 mm.s-1) as the loading percentage of FR increased. The combustion enthalpy of the composites also decreased with higher loading percentage of FR.
    Matched MeSH terms: Resins, Plant
  4. Se YEN, Sahrim Armad, Rozaidi Rasid, Yew CH, Lee YS, Tarawneh MA
    Sains Malaysiana, 2014;43:1231-1237.
    Komposit epoksi berpengisi hibrid OMMT (organ-monmorilonit) dan getah asli terepoksida (ENR) telah dihasilkan dengan menggunakan kaedah penyemperitan berskru kembar pusingan searah. Ujian regangan ke atas sistem epoksi yang dihasilkan menunjukkan modulus Young bagi komposit hibrid epoksi adalah lebih tinggi daripada resin tanpa pengisi dan nilai modulus didapati meningkat dengan peningkatan komposisi OMMT dalam matriks (setinggi 40% peningkatan). Hal ini dipercayai adalah disebabkan oleh sifat tegar lapisan MMT. Sementara itu, peningkatan luas permukaan kawasan antara fasa ekoran kehadiran fasa penambah didapati telah mengurangkan tegasan alah dan terikan akhir komposit hibrid yang dihasilkan. Pemeriksaan mikrostruktur komposit hibrid epoksi melalui TEM dan xRD mendedahkan taburan OMMT dalam matriks epoksi dengan susunan interkalasi dan pengelupasan. Analisis DSC ke atas sampel yang termatang menunjukkan bahawa T g sistem komposit hibrid adalah rendah berbanding dengan sistem perduaan (ESB dan ESLE). Pengurangan ketumpatan taut silang disyaki merupakan punca penyusutan T g ini.
    Matched MeSH terms: Resins, Plant
  5. Nor Rabbi’atul ‘Adawiyah Norzali, Khairiah Badri, Mohd Zaki Nuawi
    The effect of adding aluminum hydroxide (ATH) in the palm-based polyurethane hybrid composite was studied. The compression stress and modulus, thermal conductivity and acoustic property were determined. The hybrid composite was prepared by adding 10 wt% of oil palm empty fruit bunch fibre (EFB) followed by ATH at varying amount of 2, 4 and 6 wt% of the overall mass of the resin. The compression stress and modulus gave the highest values of 575 kPa and 2301 kPa, respectively at 2 wt% ATH. At 4 wt% ATH, the compression stress and modulus decreased to 431 kPa and 1659 kPa, respectively and further decreased at 6 wt% ATH to 339 kPa and 1468 kPa respectively. The k-value increased with the increment of the ATH loading exhibited a poor thermal conductivity. Sound absorption analysis indicated that the absorption coefficient was higher at higher frequency (4000 Hz) for all samples with PU-EFB/ATH with 4% ATH showed the highest absorption coefficient.
    Matched MeSH terms: Resins, Plant
  6. Khairul Nizam Mohd Ramli, Che Abd. Rahim Mohamed, Zaharuddin Ahmad
    Sains Malaysiana, 2007;36:9-13.
    Kajian ini dijalankan bagi mengenalpasti kepelbagaian nisbah 234U/238U yang wujud di dalam jumlah pepejal terampai (TSS) pada lapan stesen yang berbeza di Kuala Selangor, Selangor. Prosedur kajian ini melibatkan proses persampelan, pemendakan, resin penukaran anion, pemendakan elektrik dan teknik pengiraaan spektrometer alfa. Nisbah 234U/238U adalah paling tinggi di Stesen 8 (234U/238U = 2.98) dan Stesen 2 (234U/238U = 3.34) pada persampelan pertama. Manakala pada persampelan kedua julat nisbah 234U/238U adalah lebih luas iaitu antara 1.29 (Stesen 4) hingga 11.57 (Stesen 6). Ini disebabkan oleh berlakunya pergerakan 234U bersama-sama mikroorganisme di dalam fasa terampai dan berlaku proses penurunan U(VI) kepada U(IV) yang akan memendakkan uranium daripada air ke dalam sedimen.
    Matched MeSH terms: Resins, Plant
  7. Sharifah Nabihah Syed Jaafar, Sarani Zakaria, Rozaidi Rasid, Nurul Ain Zulkifli, Ali Ahmadzadeh
    Proses pencecairan lignin soda telah dilakukan dengan menggunakan fenol dengan nisbah 1:3. Proses dilakukan selama 90 minit pada suhu 130oC dalam keadaan refluk. Hasil pencecairan iaitu pemfenolan lignin (PL) telah dianalisis dengan Spektrometer Inframerah Transformasi Fourier (FTIR), reometer dan analisis termogravimetri (TGA). Sampel yang disintesis dengan menggunakan asid hidroklorik sebagai mangkin memberikan keputusan yang terbaik. Analisis FTIR menunjukkan kehadiran kumpulan berfungsi yang signifikan seperti gelang aromatik, alkohol dan karbonil. Kesemua sampel PL mematuhi persamaan Arhenius dan bersifat pseudo-plastik. Peratus kehilangan berat sampel dan kadar penguraian sampel PL dipengaruhi oleh jenis mangkin yang digunakan. Sampel PL yang disintesis dikelaskan sebagai biopolimer resin fenolik.
    Matched MeSH terms: Resins, Plant
  8. Siti Farhana Hisham, Ishak Ahmad, Rusli Daik, Anita Ramli
    Sains Malaysiana, 2011;40:1179-1186.
    In this study, poly(ethylene terephthalate) (PET) wastes bottle was recycled by glycolysis process using ethylene glycol. The unsaturated polyester resin (UPR) was then prepared by reacting the glycolysed product with maleic anhydride. The blend of UPR based on recycled PET wastes with liquid natural rubber (LNR) was carried out by varying the amount of LNR from 0 to 7.5 wt%. Mechanical tests such as tensile and impact were conducted to investigate the effects of LNR on the mechanical properties. Scanning Electron Microscopy (SEM) was used to analyze the morphology of the breaking area resulted from the tensile tests on the UPR and blend samples. From the results, the blend of 2.5 wt% LNR in UPR based recycled PET wastes achieved the highest strength in the mechanical properties and showed a well dispersed of elastomer particles in the sample morphology compared to other blends concentrations. This blend sample was then compared to the optimum blend of LNR with commercial resin through the glass transition temperature value Tg, mechanical strength and morphology properties. The comparison study showed that the Tg for UPR based recycled PET was higher than the value represented from commercial resin due to the degree of crystalinity in the molecular structure of the materials. LNR was found to be an effective impact modifier which gave a greater improvement in UPR from recycled PET wastes structure but not to the commercial one which needs 5% LNR to achieve the optimum properties. Thus, the compatibility between the UP resin based recycled PET and LNR was much better than with the commercial resin.
    Matched MeSH terms: Resins, Plant
  9. Nor Rabbi’atul ‘Adawiyah Norzali, Khairiah Badri, Mohd Zaki Nuawi
    Sains Malaysiana, 2011;40:1179-1186.
    Effects of aluminium hydroxide (ATH) addition on the properties of palm-based polyurethane composites were investigated. The hybrid composites were prepared by mixing 10 wt% of oil palm empty fruit bunch fiber (EFB) with ATH at varying amount of 2, 4 and 6 wt% of the overall mass of the resin. The compression stress and modulus gave the highest values of 575 and 2301 kPa, respectively at 2 wt% loading of ATH. The compression stress and modulus decreased drastically at 4 wt% (431 kPa and 1659 kPa, respectively) and further decreased at 6 wt% ATH (339 and 1468 kPa, respectively). However, the burning rate is inversely proportional to the loading percentage where the highest burning rate was observed at 2 wt% ATH. Sound absorption analysis indicated a large absorption coefficient at high frequency (4000 Hz) for all samples. The highest absorption coefficient was obtained from PU-EFB/ATH with 4 wt% ATH.
    Matched MeSH terms: Resins, Plant
  10. Md Jamil M, Jones F, Muhamad N, Makenan S
    Sains Malaysiana, 2015;44:843-852.
    A clear understanding on the fundamental mechanism in solid state self-healing resin system might significantly improve the optimization of healing performance. The focus of this study was to prove the diffusion (through thermal inter-diffusion) of a linear healing agent within the network matrix resin. The results had demonstrated that 45 to 21 percentage recoveries in fracture toughness (K1C) were observed within the third healing cycles of the healable resin. Based on the optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIM) analyst; the diffusion of healing agent was also demonstrated by the change in the morphology and chemical images of the healing agent on the fracture surface specimen, before and after healing process.
    Matched MeSH terms: Resins, Plant
  11. Siti Noorul Aina Ab Rahim, Sarani Zakaria, Sharifah Nabihah Syed Jaafar, Chin HC, Rasidi Roslan, Hatika Kaco, et al.
    Sains Malaysiana, 2017;46:1659-1665.
    Bio-novolac fibre made from phenol-formaldehyde derived oil palm empty fruit bunch (EFB) was produced using electrospinning method. The bio-novolac phenol-formaldehyde was prepared via liquefaction and resinification at two different molar ratios of formaldehyde to liquefied EFB (LEFB) (F:LEFB = 0.5:1 and 0.8:1). Electrospinning was applied to the bio-novolac phenol-formaldehyde (BPF) in order to form smooth and thin as-spun fibre. The BPF was electrospun at 15 kV and 15 cm distance between needle and collector at a flow rate of 0.5 mL/h. At lower molecular weight of BPF resin, beads formation was observed. The addition of poly(vinyl) butyral (Mw = 175,000 - 250,000) has improved the fibre formation with lesser beads hence produced more fibre. Polymer solution with higher molecular weight produced better quality fibre.
    Matched MeSH terms: Resins, Plant
  12. Pang AL, Azhar Abu Bakar, Hanafi Ismail
    Sains Malaysiana, 2018;47:571-580.
    The development of natural fiber polymer composites is increasing worldwide and in some applications, these composites
    are used at outdoor rendering them exposed to ultra-violet (UV) radiation. The paper investigates the degradation behavior
    of linear low density polyethylene/poly (vinyl alcohol)/kenaf (LLDPE/PVOH/KNF) composites after exposure to different
    natural weathering durations. The composites with KNF loadings of 10, 20 and 40 parts per hundred resin (phr) were
    exposed to natural weathering for 3 months and 6 months, respectively. The weathered composites were characterized by
    Fourier transform infrared (FTIR) spectroscopy, universal testing machine, field emission scanning electron microscopy
    (FESEM) and differential scanning calorimetry (DSC). The FTIR analysis showed an obvious carbonyl peak in composites
    after weathering as an evidence of oxidation. The weight loss percentage of composites increased with respect to exposure
    duration due to higher absorption of UV irradiation. The tensile properties of weathered composites were lower than
    that of control composites and these properties also decreased with increasing exposure duration. FESEM micrographs
    illustrated that composites with longer exposure duration suffered more surface damaged. The crystallinity percentage
    was found to increase with increasing exposure duration.
    Matched MeSH terms: Resins, Plant
  13. Nor FM, Lim JY, Tamin MN, Lee HY, Kurniawan D
    Polymers (Basel), 2020 Apr 14;12(4).
    PMID: 32295111 DOI: 10.3390/polym12040904
    The mechanics of damage and fracture process in unidirectional carbon fiber reinforced polymer (CFRP) composites subjected to shear loading (Mode II) were examined using the experimental method of the three-point end-notch flexure (3ENF) test. The CFRP composite consists of [0o]16 with an insert film in the middle plane for a starter defect. A 3ENF test sample with a span of 50 mm and interface delamination crack length of 12.5 mm was tested to yield the load vs. deformation response. A sudden load drop observed at maximum force value indicates the onset of delamination crack propagation. The results are used to extract the energy release rate, GIIC, of the laminates with an insert film starter defect. The effect of the starter defect on the magnitude of GIIC was examined using the CFRP composite sample with a Mode II delamination pre-crack. The higher magnitude of GIIC for the sample with insert film starter defect was attributed to the initial straight geometry of the notch/interface crack and the toughness of the resin at the notch front of the fabricated film insert. The fractured sample was examined using a micro-computerized tomography scanner to establish the shape of the internal delamination crack front. Results revealed that the interface delamination propagated in a non-uniform manner, leaving a curved-shaped crack profile.
    Matched MeSH terms: Resins, Plant
  14. Hashim YZ, Phirdaous A, Azura A
    Pharmacognosy Res, 2014 Jul;6(3):191-4.
    PMID: 25002797 DOI: 10.4103/0974-8490.132593
    Agarwood is a priceless non-timber forest product from Aquilaria species belonging to the Thymelaeaceae family. As a result of a defence mechanism to fend off pathogens, Aquilaria species develop agarwood or resin which can be used for incense, perfumery, and traditional medicines. Evidences from ethnopharmacological practices showed that Aquilaria spp. have been traditionally used in the Ayurvedic practice and Chinese medicine to treat various diseases particularly the inflammatory-associated diseases. There have been no reports on traditional use of agarwood towards cancer treatment. However, this is most probably due to the fact that cancer nomenclature is used in modern medicine to describe the diseases associated with unregulated cell growth in which inflammation and body pain are involved.
    Matched MeSH terms: Resins, Plant
  15. Abd Ghani Aizat, Paiman, Bawon, Lee, Seng Hua, Ashaari Zaidon
    MyJurnal
    In this study, the effects of addition of ammonium and aluminium-based hardeners into
    urea formaldehyde resin (UF) on the physico-mechanical properties and formaldehyde
    emission of the rubberwood particleboard were investigated. Four types of hardeners,
    namely ammonium chloride (AC), ammonium sulphate (AS), aluminium chloride (AlC)
    and aluminium sulphate (AlS), were added into UF resin. The acidity, gelation time,
    viscosity and free formaldehyde content of the UF/hardener mixtures were determined.
    Particleboard made with the UF/hardener mixtures were tested for physico-mechanical
    properties and formaldehyde emission. The pH values of the resin after addition of
    aluminium-based hardeners were higher and resulted in higher viscosity and shorter
    gelation time. Consequently, despite lower formaldehyde emission was recorded, the
    physico-mechanical properties of the resulted particleboard were inferior compared to
    that of ammonium-based hardeners. The best quality particleboard in terms of mechanical,
    physical and formaldehyde emission were obtained from the particleboard made with AS,
    followed by AC.
    Matched MeSH terms: Resins, Plant
  16. Beh YH, Halim MS, Ariffin Z
    PeerJ, 2023;11:e16469.
    PMID: 38025677 DOI: 10.7717/peerj.16469
    BACKGROUND: This study aimed to evaluate the load capacity of maxillary central incisors with simulated flared root canal restored with different fiber-reinforced composite (FRC) post cemented with either self-adhesive or self-etch resin cement and its mode of fracture.

    METHODS: Sixty-five extracted maxillary incisors were decoronated, its canal was artificially flared and randomly categorized into group tFRC (tapered FRC post) (n = 22), mFRC (multi-FRC post) (n = 21), and DIS-FRC (direct individually shaped-FRC (DIS-FRC) post) (n = 22), which were further subdivided based on cementation resin. The posts were cemented and a standardized resin core was constructed. After thermocycling, the samples were loaded statically and the maximum load was recorded.

    RESULTS: The load capacity of the maxillary central incisor was influenced by the different FRC post system and not the resin cement (p = 0.289), and no significant interaction was found between them. Group mFRC (522.9N) yielded a significantly higher load capacity compared to DIS-FRC (421.1N). Overall, a 55% favorable fracture pattern was observed, and this was not statistically significant.

    CONCLUSION: Within the limitation of the study, it can be concluded that prefabricated FRC posts outperform DIS-FRC posts in terms of the load capacity of a maxillary central incisor with a simulated flared root canal. The cementation methods whether a self-adhesive or self-etch resin cement, was not demonstrated to influence the load capacity of a maxillary central incisor with a flared root canal. There were no significant differences between the favorable and non-favorable fracture when FRC post systems were used to restored a maxillary central incisor with a flared root canal.

    Matched MeSH terms: Resins, Plant
  17. Sulaiman MR, Zakaria ZA, Kamaruddin A, Meng TF, Ali DI, Moin S
    Methods Find Exp Clin Pharmacol, 2008 Nov;30(9):691-6.
    PMID: 19229377 DOI: 10.1358/mf.2008.30.9.1305824
    Trigonopleura malayana L. (Euphorbiaceae) resin, locally known as Gambir Sarawak, has been used traditionally to alleviate pain associated with insect bites, muscle ache, toothache and minor injuries. The present study was carried out using various animal models to determine the antinociceptive and antiinflammatory activities of the T. malayana resin aqueous extract. Antinociceptive activity was measured using the abdominal constriction, hot plate and formalin tests, while antiinflammatory activity was measured using the carrageenan-induced paw edema test. The extract, obtained after 24 h of soaking the dried resin in distilled water, was prepared in doses of 0.3, 3 and 10 mg/kg and administered subcutaneously 30 min prior to the assays. The mechanism of action was also determined by prechallenging with naloxone (10 mg/kg), a nonselective opioid antagonist. The extract was found to exhibit significant (P < 0.05) and dose-dependent antinociceptive and antiinflammatory activities; naloxone failed to inhibit the former activity. In conclusion, the aqueous extract of T. malayana resin possesses nonopioid antinociceptive and antiinflammatory activities, thus supporting previous claims regarding its traditional use by the Malays to treat various ailments, particularly those related to pain.
    Matched MeSH terms: Resins, Plant/chemistry
  18. Khairiah Yazid @ Khalid, Roslan Yahya, Nadira Kamarudini, Mohd. Zaid Abdullah, Mohd Ashhar Khalid, Abdul Aziz Mohamed
    MyJurnal
    Detection and analysis of resin is particularly significant since the commercial value of agarwood is related to the quantity of resins that are present. This article explores the potential of a scanning electron microscope in combination with new non-destructive 3D visualization technique, X-ray micro-computed tomography, as imaging tools to visualize micro-structure resin in agarwood. These techniques were used to compare two samples of agarwood chips: high grade and low grade. From the results, it can be concluded that a wood cell filled with resin deposit have a higher attenuation. It can be shown that the combination of scanning electron microscopy and micro-CT can offer high resolution images concerning the localization and structure of resin inside Agarwood. While the second allows the 3D investigation of internal structure of agarwood, the first technique can provide details 2D morphological information. These imaging techniques, although sophisticated can be used for standard development especially in grading of agarwoodlbr commercial activities.
    Matched MeSH terms: Resins, Plant
  19. Ho YC, Norli I, Alkarkhi AF, Morad N
    J Water Health, 2015 Jun;13(2):489-99.
    PMID: 26042980 DOI: 10.2166/wh.2014.100
    In view of green developments in water treatment, plant-based flocculants have become the focus due to their safety, degradation and renewable properties. In addition, cost and energy-saving processes are preferable. In this study, malva nut gum (MNG), a new plant-based flocculant, and its composite with Fe in water treatment using single mode mixing are demonstrated. The result presents a simplified extraction of the MNG process. MNG has a high molecular weight of 2.3 × 10⁵ kDa and a high negative charge of -58.7 mV. From the results, it is a strong anionic flocculant. Moreover, it is observed to have a branch-like surface structure. Therefore, it conforms to the surface of particles well and exhibits good performance in water treatment. In water treatment, the Fe-MNG composite treats water at pH 3.01 and requires a low concentration of Fe and MNG of 0.08 and 0.06 mg/L, respectively, when added to the system. It is concluded that for a single-stage flocculation process, physico-chemical properties such as molecular weight, charge of polymer, surface morphology, pH, concentration of cation and concentration of biopolymeric flocculant affect the flocculating performance.
    Matched MeSH terms: Resins, Plant/chemistry*
  20. Kannaiyan K, Biradar Sharashchandra M, Kattimani S, Devi M, Vengal Rao B, Kumar Chinna S
    J Pharm Bioallied Sci, 2020 Aug;12(Suppl 1):S399-S403.
    PMID: 33149494 DOI: 10.4103/jpbs.JPBS_117_20
    Introduction: Polymethyl methacrylate (PMMA) has been widely accepted and used in dentistry owing to its working characteristics, aesthetics and stability in the oral environment, ease in manipulation, and inexpensive processing methods and equipment.

    Aim and Objectives: The aim of this study was to evaluate the flexural strength of a high-impact PMMA denture base resin material and flexural strength of a commonly available heat cure PMMA denture base material with Kevlar, glass, and nylon fibers.

    Materials and Methods: The test samples were studied under two groups. The Group I (control group) comprised pre-reinforced PMMA (Lucitone 199; Dentsply Sirona Prosthetics, York, Pennsylvania, USA) consisting of 12 samples and second group comprised regular PMMA (DPI, Mumbai, India) reinforced with different fibers. The second test group was further divided into three subgroups as Group 2, Group 3, and Group 4 comprising 12 samples each designated by the letters a-l. All the samples were marked on both ends. A total of 48 samples were tested. Results were analyzed and any P value ≤0.05 was considered as statistically significant (t test).

    Results: All the 48 specimens were subjected to a 3-point bending test on a universal testing machine (MultiTest 10-i, Sterling, VA, USA) at a cross-head rate of 2 mm/min. A load was applied on each specimen by a centrally located rod until fracture occurred; span length taken was 50 mm. Flexural strength was then calculated.

    Conclusion: Reinforcement of conventional denture base resin with nylon and glass fibers showed statistical significance in the flexural strength values when compared to unreinforced high impact of denture base resin.

    Matched MeSH terms: Resins, Plant
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links