Displaying publications 1 - 20 of 306 in total

Abstract:
Sort:
  1. Ab Halim MH, Nor Anuar A, Azmi SI, Jamal NS, Wahab NA, Ujang Z, et al.
    Bioresour Technol, 2015 Jun;185:445-9.
    PMID: 25851807 DOI: 10.1016/j.biortech.2015.03.024
    With inoculum sludge from a conventional activated sludge wastewater treatment plant, three sequencing batch reactors (SBRs) fed with synthetic wastewater were operated at different high temperatures (30, 40 and 50±1°C) to study the formation of aerobic granular sludge (AGS) for simultaneous organics and nutrients removal with a complete cycle time of 3h. The AGS were successfully cultivated with influent loading rate of 1.6CODg(Ld)(-1). The COD/N ratio of the influent wastewater was 8. The results revealed that granules developed at 50°C have the highest average diameter, (3.36mm) with 98.17%, 94.45% and 72.46% removal efficiency observed in the system for COD, ammonia and phosphate, respectively. This study also demonstrated the capabilities of AGS formation at high temperatures which is suitable to be applied for hot climate conditions.
    Matched MeSH terms: Sewage/chemistry*
  2. Ab Halim MH, Nor Anuar A, Abdul Jamal NS, Azmi SI, Ujang Z, Bob MM
    J Environ Manage, 2016 Dec 15;184(Pt 2):271-280.
    PMID: 27720606 DOI: 10.1016/j.jenvman.2016.09.079
    The effect of temperature on the efficiency of organics and nutrients removal during the cultivation of aerobic granular sludge (AGS) in biological treatment of synthetic wastewater was studied. With this aim, three 3 L sequencing batch reactors (SBRs) with influent loading rate of 1.6 COD g (L d)(-1) were operated at different high temperatures (30, 40 and 50 °C) for simultaneous COD, phosphate and ammonia removal at a complete cycle time of 3 h. The systems were successfully started up and progressed to steady state at different cultivation periods. The statistical comparison of COD, phosphate and ammonia for effluent from the three SBRs revealed that there was a significant difference between groups of all the working temperatures of the bioreactors. The AGS cultivated at different high temperatures also positively correlated with the accumulation of elements including carbon, oxygen, phosphorus, silicon, iron, aluminium, calcium and magnesium that played important roles in the granulation process.
    Matched MeSH terms: Sewage*
  3. Abdul Zali M, Juahir H, Ismail A, Retnam A, Idris AN, Sefie A, et al.
    Environ Sci Pollut Res Int, 2021 Apr;28(16):20717-20736.
    PMID: 33405159 DOI: 10.1007/s11356-020-11680-5
    Sewage contamination is a principal concern in water quality management as pathogens in sewage can cause diseases and lead to detrimental health effects in humans. This study examines the distribution of seven sterol compounds, namely coprostanol, epi-coprostanol, cholesterol, cholestanol, stigmasterol, campesterol, and β-sitosterol in filtered and particulate phases of sewage treatment plants (STPs), groundwater, and river water. For filtered samples, solid-phase extraction (SPE) was employed while for particulate samples were sonicated. Quantification was done by using gas chromatography-mass spectrometer (GC-MS). Faecal stanols (coprostanol and epi-coprostanol) and β-sitosterol were dominant in most STP samples. Groundwater samples were influenced by natural/biogenic sterol, while river water samples were characterized by a mixture of sources. Factor loadings from principal component analysis (PCA) defined fresh input of biogenic sterol and vascular plants (positive varimax factor (VF)1), aged/treated sewage sources (negative VF1), fresh- and less-treated sewage and domestic sources (positive VF2), biological sewage effluents (negative VF2), and fresh-treated sewage sources (VF3) in the samples. Association of VF loadings and factor score values illustrated the correlation of STP effluents and the input of biogenic and plant sterol sources in river and groundwater samples of Linggi. This study focuses on sterol distribution and its potential sources; these findings will aid in sewage assessment in the aquatic environment.
    Matched MeSH terms: Sewage/analysis
  4. Abdul-Talib S, Ujang Z, Vollertsen J, Hvitved-Jacobsen T
    Water Sci Technol, 2005;52(3):181-9.
    PMID: 16206858
    A two-stage anoxic transformation process, involving growth of biomass utilizing two types of different electron acceptors, namely nitrate and nitrite, has been observed. The present water quality modules established for sewer processes cannot account for the two-stage process. This paper outlines the development of a model concept that enables the two-stage anoxic transformation process to be simulated. The proposed model is formulated in a matrix form that is similar to the Activated Sludge Models and Sewer Process Model matrices. The model was successfully applied to simulate changes in nitrate and nitrite concentrations during anoxic transformations in the bulkwater phase of municipal wastewater.
    Matched MeSH terms: Sewage/chemistry*
  5. Abdul-Talib S, Hvitved-Jacobsen T, Vollertsen J, Ujang Z
    Water Sci Technol, 2002;46(9):185-92.
    PMID: 12448468
    A significant breakthrough and progress have been made in the study of the kinetics of microbial transformation in sewers under aerobic and under changing aerobic/anaerobic conditions. Fundamental knowledge on anoxic kinetics of wastewater is still lacking, so it is not now possible to apply an integrated approach to municipal wastewater treatment incorporating sewer networks as a bio-chemical reactor. This paper presents the results of studies on determining half saturation constants for nitrate, KNO3, and nitrite, KNO2, in raw wastewater. The average values of KNO3 and KNO2, determined from experiments conducted on 7 different wastewater samples were found to be 0.76 gNO3-N/m3 and 0.33 gNO2-N/m3 respectively.
    Matched MeSH terms: Sewage
  6. Abdullah N, Yuzir A, Curtis TP, Yahya A, Ujang Z
    Bioresour Technol, 2013 Jan;127:181-7.
    PMID: 23131639 DOI: 10.1016/j.biortech.2012.09.047
    Understanding the relationship between microbial community and mechanism of aerobic granulation could enable wider applications of granules for high-strength wastewater treatment. The majority of granulation studies principally determine the engineering aspects of granules formation with little emphasis on the microbial diversity. In this study, three identical reactors namely R1, R2 and R3 were operated using POME at volumetric loadings of 1.5, 2.5 and 3.5 kg COD m(-3) d(-1), respectively. Aeration was provided at a volumetric flow rate of 2.5 cms(-1). Aerobic granules were successfully developed in R2 and R3 while bioflocs dominated R1 until the end of experiments. Fractal dimension (D(f)) averaged at 1.90 suggesting good compactness of granules. The PCR-DGGE results indicated microbial evolutionary shift throughout granulation despite different operating OLRs based on decreased Raup and Crick similarity indices upon mature granule formation. The characteristics of aerobic granules treating high strength agro-based wastewater are determined at different volumetric loadings.
    Matched MeSH terms: Sewage/microbiology*
  7. Abdullah N, Ujang Z, Yahya A
    Bioresour Technol, 2011 Jun;102(12):6778-81.
    PMID: 21524907 DOI: 10.1016/j.biortech.2011.04.009
    The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m(-3) d(-1). The biomass concentration was 7600 mg L(-1) while the sludge volume index (SVI) was 31.3 mL g SS(-1) indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment.
    Matched MeSH terms: Sewage/analysis; Sewage/microbiology*
  8. Abioye KJ, Harun NY, Sufian S, Yusuf M, Jagaba AH, Waqas S, et al.
    Environ Res, 2024 Apr 01;246:118027.
    PMID: 38159670 DOI: 10.1016/j.envres.2023.118027
    The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.
    Matched MeSH terms: Sewage*
  9. Adeel M, Zain M, Fahad S, Rizwan M, Ameen A, Yi H, et al.
    Environ Sci Pollut Res Int, 2018 Dec;25(36):36712-36723.
    PMID: 30377972 DOI: 10.1007/s11356-018-3588-4
    Since the inception of global industrialization, the growth of steroid estrogens becomes a matter of emerging serious concern for the rapid population. Steroidal estrogens are potent endocrine-upsetting chemicals that are excreted naturally by vertebrates (e.g., humans and fish) and can enter natural waters through the discharge of treated and raw sewage. Steroidal estrogens in plants may enter the food web and become a serious threat to human health. We evaluated the uptake and accumulation of ethinylestradiol (EE2) and 17β-estradiol (17β-E2) in lettuce plants (Lactuca sativa) grown under controlled environmental condition over 21 days growth period. An effective analytical method based on ultrasonic liquid extraction (ULE) for solid samples and solid phase extraction (SPE) for liquid samples with gas chromatography-mass spectrometry (GC/MS) has been developed to determine the steroid estrogens in lettuce plants. The extent of uptake and accumulation was observed in a dose-dependent manner and roots were major organs for estrogen deposition. Unlike the 17β-E2, EE2 was less accumulated and translocated from root to leaves. For 17β-E2, the distribution in lettuce was primarily to roots after the second week (13%), whereas in leaves it was (10%) over the entire study period. The distribution of EE2 at 2000 μg L-1 in roots and leaves was very low (3.07% and 0.54%) during the first week and then was highest (12% in roots and 8% in leaves) in last week. Bioaccumulation factor values of 17β-E2 and EE2 in roots were 0.33 and 0.29 at 50 μg L-1 concentration as maximum values were found at 50 μg L-1 rather than 500 and 2000 in all observed plant tissues. Similar trend was noticed in roots than leaves for bioconcentration factor as the highest bioconcentration values were observed at 50 μg L-1 concentration instead of 500 and 2000 μg L-1 spiked concentration. These findings mainly indicate the potential for uptake and bioaccumulation of estrogens in lettuce plants. Overall, the estrogen contents in lettuce were compared to the FAO/WHO recommended toxic level and were found to be higher than the toxic level which is of serious concern to the public health. This analytical procedure may aid in future studies on risks associated with uptake of endocrine-disrupting chemicals in lettuce plants.
    Matched MeSH terms: Sewage/chemistry
  10. Adnan NH, Zakaria MP, Juahir H, Ali MM
    J Environ Sci (China), 2012;24(9):1600-8.
    PMID: 23520867
    The Langat River in Malaysia has been experiencing anthropogenic input from urban, rural and industrial activities for many years. Sewage contamination, possibly originating from the greater than three million inhabitants of the Langat River Basin, were examined. Sediment samples from 22 stations (SL01-SL22) along the Langat River were collected, extracted and analysed by GC-MS. Six different sterols were identified and quantified. The highest sterol concentration was found at station SL02 (618.29 ng/g dry weight), which situated in the Balak River whereas the other sediment samples ranged between 11.60 and 446.52 ng/g dry weight. Sterol ratios were used to identify sources, occurrence and partitioning of faecal matter in sediments and majority of the ratios clearly demonstrated that sewage contamination was occurring at most stations in the Langat River. A multivariate statistical analysis was used in conjunction with a combination of biomarkers to better understand the data that clearly separated the compounds. Most sediments of the Langat River were found to contain low to mid-range sewage contamination with some containing 'significant' levels of contamination. This is the first report on sewage pollution in the Langat River based on a combination of biomarker and multivariate statistical approaches that will establish a new standard for sewage detection using faecal sterols.
    Matched MeSH terms: Sewage*
  11. Aghbashlo M, Tabatabaei M, Soltanian S, Ghanavati H, Dadak A
    Waste Manag, 2019 Mar 15;87:485-498.
    PMID: 31109549 DOI: 10.1016/j.wasman.2019.02.029
    A comprehensive exergoeconomic performance analysis of a municipal solid waste digestion plant integrated with a biogas genset was conducted throughout this study in order to highlight its bottlenecks for further improvements. Exergoeconomic performance parameters of each component of the plant were determined by solving exergy and cost balance equations based on Specific Exergy Costing (SPECO) approach. The analysis was conducted to reveal the cost structure of the plant based on actual operating information and economic data. The exergy unitary cost of two main products of the plant, i.e., bioelectricity and biofertilizer were determined at 26.27 and 2.27 USD/GJ, respectively. The genset showed the highest overall cost rate (101.27 USD/h) followed by digester (68.41 USD/h). Furthermore, the net bioelectricity amounted to 67.81% of the overall cost rate of the products, while this value was 32.19% for both liquid and dewatered digestates. According to the results obtained, efforts should mainly focus on enhancing the efficiency of the genset in order to boost the overall performance of the system exergoeconomically. In addition, minimizing the investment-related cost of the digester could also substantially enhance the exergoeconomic performance of the plant.
    Matched MeSH terms: Sewage
  12. Ahmad A, Ghufran R, Abd Wahid Z
    J Hazard Mater, 2011 Dec 30;198:40-8.
    PMID: 22047724 DOI: 10.1016/j.jhazmat.2011.10.008
    The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35°C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-CODg/l at an OLR of 4.5-12.5 kg-COD/m(3)d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration.
    Matched MeSH terms: Sewage*
  13. Ahmad A, Ghufran R
    Crit Rev Biotechnol, 2023 Dec;43(8):1236-1256.
    PMID: 36130802 DOI: 10.1080/07388551.2022.2103641
    This critical review for anaerobic degradation of complex organic compounds like butyrate using reactors has been enormously applied for biogas production. Biogas production rate has a great impact on: reactor granulation methanogenesis, nutrient content, shear velocity, organic loading and loss of nutrients taking place in the reactor continuously. Various technologies have been applied to closed anaerobic reactors to improve biogas production and treatment efficiency. Recent reviews showed that the application of closed anaerobic reactors can accelerate the degradation of organics like volatile fatty acid-butyrate and affect microbial biofilm formation by increasing the number of methanogens and increase methane production 16.5 L-1 CH4 L-1 POME-1. The closed anaerobic reactors with stable microbial biofilm and established organic load were responsible for the improvement of the reactor and methane production. The technology mentioned in this review can be used to monitor biogas concentration, which directly correlates to organic concentrations. This review attempts to evaluate interactions among the: degradation of organics, closed anaerobic reactors system, and microbial granules. This article provides a useful picture for the improvement of the degradation of organic butyrate for COD removal, biogas and methane production in an anaerobic closed reactor.
    Matched MeSH terms: Sewage*
  14. Ahmad AL, Chong MF, Bhatia S
    J Hazard Mater, 2009 Nov 15;171(1-3):166-74.
    PMID: 19573986 DOI: 10.1016/j.jhazmat.2009.05.114
    The discharge of palm oil mill effluent (POME) causes serious pollution problems and the membrane based POME treatment is suggested as a solution. Three different designs, namely Design A, B and C distinguished by their different types and orientations of membrane system are proposed. The results at optimum condition proved that the quality of the recovered water for all the designs met the effluent discharge standards imposed by the Department of Environment (DOE). The economic analysis at the optimum condition shows that the total treatment cost for Design A was the highest (RM 115.11/m(3)), followed by Design B (RM 23.64/m(3)) and Design C (RM 7.03/m(3)). In this study, the membrane system operated at high operating pressure with low membrane unit cost is preferable. Design C is chosen as the optimal design for the membrane based POME treatment system based on the lowest total treatment cost.
    Matched MeSH terms: Sewage
  15. Ahmad I, Abdullah N, Koji I, Yuzir A, Ahmad MD, Rachmadona N, et al.
    Chemosphere, 2023 Jun;325:138236.
    PMID: 36868419 DOI: 10.1016/j.chemosphere.2023.138236
    The number of restaurants is increasing day by day in almost all the developing countries, causing the increase in the generation of restaurant wastewater. Various activities (i.e., cleaning, washing, and cooking) going on in the restaurant kitchen lead to restaurant wastewater (RWW). RWW has high concentrations of chemical oxygen demand (COD), biochemical oxygen demand (BOD), nutrients such as potassium, phosphorus, and nitrogen, and solids. RWW also contains fats, oil, and grease (FOG) in alarmingly high concentration, which after congealing can constrict the sewer lines, leading to blockages, backups, and sanitatry sewer overflows (SSOs). The paper provides an insight to the details of RWW containing FOG collected from a gravity grease interceptor at a specific site in Malaysia, and its expected consequences and the sustainable management plan as prevention, control, and mitigation (PCM) approach. The results showed that the concentrations of pollutants are very high as compared to the discharge standards given by Department of Environment, Malaysia. Maximum values for COD, BOD and FOG in the restaurant wastewater samples were found to be 9948, 3170, and 1640 mg/l, respectively. FAME and FESEM analysis are done on the RWW containing FOG. In the FOG, palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n9c), linoleic acid (C18:2n6c) are the dominant lipid acids with a maximum of 41, 8.4, 43.2, and 11.5%, respectively. FESEM analysis showed formation of whitish layers fprmed due to the deposition of calcium salts. Furthermore, a novel design of indoor hydromechanical grease interceptor (HGI) was proposed in the study based on the Malaysian conditions of restaurant. The HGI was designed for a maximum flow rate of 132 L per minute and a maximum FOG capacity of 60 kg.
    Matched MeSH terms: Sewage
  16. Ahmad UK, Ujang Z, Woon CH, Indran S, Mian MN
    Water Sci Technol, 2004;50(9):137-44.
    PMID: 15581005
    Land application of sludge as fertilizers is a way of disposal and recycling of sludge. However, public concern has arisen due to the fact that organic contaminants in sludge may ultimately enter the food chain. Hence the need arises to analyse the organic contaminants such as PAHs and OCPs in sludge. In this study, Soxhlet was utilised as the extraction method and the extracts subjected to extensive cleanup via either silica columns or solid phase extraction cartridges prior to analysis using gas chromatography or high performance liquid chromatography. Sludge samples were collected from the drying beds of oxidation ponds in three locations in South Johore. OCPs such as heptachlor, dieldrin and pp-DDT were detected in low amounts (52-159 mg/kg) whereas PAHs such as naphthalene, phenanthrene, fluoranthene and benzo(a)pyrene were detected in the range of 0.2-5.5 mg/kg dry mass. Subcritical water extraction (SWE) recovery studies of PAHs were also performed from spiked sludge samples. Although a recovery range of 41-68% was obtained using the SWE method, the results indicated the usefulness of the technique as an alternative to Soxhlet extraction for the analysis of PAHs in sludge samples.
    Matched MeSH terms: Sewage/chemistry*
  17. Ahmed R, Sinnathambi CM, Eldmerdash U, Subbarao D
    ScientificWorldJournal, 2014;2014:758137.
    PMID: 24672368 DOI: 10.1155/2014/758137
    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.
    Matched MeSH terms: Sewage*
  18. Aida AA, Hatamoto M, Yamamoto M, Ono S, Nakamura A, Takahashi M, et al.
    J Biosci Bioeng, 2014 Nov;118(5):540-5.
    PMID: 24930844 DOI: 10.1016/j.jbiosc.2014.04.011
    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors.
    Matched MeSH terms: Sewage/microbiology*; Sewage/chemistry*
  19. Akazawa, Noriaki, Eguchi, Mitsuru
    MyJurnal
    Microcosm experiments simulating the occurrence of early mortality syndrome/acute hepatopancreatic necrosis disease (EMS/AHPND) in white shrimp production ponds were performed in 30-L aquariums. Healthy white shrimp, Litopenaeus vannamei, were reared in aquariums containing EMS/AHPND-free hatchery or pond water. Raw pond sludge, collected from shrimp ponds where EMS/AHPND had occurred, was added to some test aquariums, while others were treated with sterilized pond sludge. In some aquariums, water pH was increased from 7.5 to 8.8. Microcosms with stable pH (around 7.5) and/or autoclaved sludge served as controls. The combination of raw sludge and increased pH induced EMS/AHPND and killed white shrimp, whereas raw sludge/stable pH and autoclaved sludge/increased pH combinations did not affect healthy shrimp. Thus, EMS/AHPND outbreaks are due not only to the causative agent but also to environmental stresses such as pH fluctuation. These findings contribute to improved management in shrimp production farms.
    Matched MeSH terms: Sewage
  20. Al-Amri A, Salim MR, Aris A
    Water Sci Technol, 2011;64(7):1398-405.
    PMID: 22179635 DOI: 10.2166/wst.2011.421
    A study has been carried out to define the effect of drastic temperature changes on the performance of lab-scale hollow-fibre MBR in treating municipal wastewater at a flux of 10 L m(-2) h(-1) (LMH). The objectives of the study were to estimate the activated sludge properties, the removal efficiencies of COD and NH(3)-N and the membrane fouling tendency under critical conditions of drastic temperature changes (23, 33, 42 & 33 °C) and MLSS concentration ranged between 6,382 and 8,680 mg/L. The study exhibited that the biomass reduction, the low sludge settleability and the supernatant turbidity were results of temperature increase. The temperature increase led to increase in SMP carbohydrate and protein, and to decrease in EPS carbohydrate and protein. The BRE of COD dropped from 80% at 23 °C to 47% at 42 °C, while the FRE was relatively constant at about 90%. Both removal efficiencies of NH(3)-N trended from about 100% at 33 °C to less than 50% at 42 °C. TMP and BWP ascended critically with temperature increase up to 336 and 304 mbar respectively by the end of the experiment. The values of suspended solids (SS) and the turbidity in the final effluent were negligible. The DO in the mixed liquor was varying with temperature change, while the pH was within the range of 6.7-8.3.
    Matched MeSH terms: Sewage/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links