Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Cheong MW, Zhu D, Sng J, Liu SQ, Zhou W, Curran P, et al.
    Food Chem, 2012 Sep 15;134(2):696-703.
    PMID: 23107680 DOI: 10.1016/j.foodchem.2012.02.139
    Calamansi juices from three countries (Malaysia, the Philippines and Vietnam) were characterised through measuring volatiles, physicochemical properties and non-volatiles (sugars, organic acids and phenolic acids). The volatile components of manually squeezed calamansi juices were extracted using dichloromethane and headspace solid-phase microextraction, and then analysed using gas chromatography-mass spectrometry/flame ionisation detector, respectively. A total of 60 volatile compounds were identified. The results indicated that the Vietnam calamansi juice contained the highest amount of volatiles. Two principal components obtained from principal component analysis (PCA) represented 89.65% of the cumulative total variations of the volatiles. Among the non-volatile components, these three calamansi juices could be, to some extent, differentiated according to fructose and glucose concentrations. Hence, this study of calamansi juices could lead to a better understanding of calamansi fruits.
    Matched MeSH terms: Solid Phase Microextraction
  2. Ng NT, Sanagi MM, Wan Ibrahim WN, Wan Ibrahim WA
    Food Chem, 2017 May 01;222:28-34.
    PMID: 28041555 DOI: 10.1016/j.foodchem.2016.11.147
    Agarose-chitosan-immobilized octadecylsilyl-silica (C18) film micro-solid phase extraction (μSPE) was developed and applied for the determination of phenanthrene (PHE) and pyrene (PYR) in chrysanthemum tea samples using high performance liquid chromatography-ultraviolet detection (HPLC-UV). The film of blended agarose and chitosan allows good dispersion of C18, prevents the leaching of C18 during application and enhances the film mechanical stability. Important μSPE parameters were optimized including amount of sorbent loading, extraction time, desorption solvent and desorption time. The matrix match calibration curves showed good linearity (r⩾0.994) over a concentration range of 1-500ppb. Under the optimized conditions, the proposed method showed good limits of detection (0.549-0.673ppb), good analyte recoveries (100.8-105.99%) and good reproducibilities (RSDs⩽13.53%, n=3) with preconcentration factors of 4 and 72 for PHE and PYR, respectively.
    Matched MeSH terms: Solid Phase Microextraction/methods*
  3. Khor SW, Lee YK, Tay KS
    Analyst, 2019 Mar 21;144(6):1968-1974.
    PMID: 30694266 DOI: 10.1039/c8an02362j
    Preparation of selective magnetic adsorbents for dispersive micro-solid phase extraction often involves multi-step reactions which are time consuming. This study demonstrates a simplified method for the synthesis of a magnetic adsorbent, which is selective towards the adsorption of mercury(ii) ions (Hg2+). In this method, the incorporation of a metal capturing ligand (3-oxo-1,3-diphenylpropyl-2-(naphthalen-2-ylamino) ethylcarbamodithioate) and the coating of magnetic particles with silica gel was performed in a single step. This adsorbent was then used in solid-phase microextraction for the preconcentration of Hg2+ in water. In this study, a mercury analyzer was used to quantify the Hg2+. Under optimized conditions, the developed analytical method achieved a low detection limit (4.0 ng L-1), satisfactory enrichment factor (96.4) and wide linearity range (50.0-5000 ng L-1) with a good coefficient of determination (0.9985) and good repeatability (<7%). The preconcentration factor of this method was 100. This proposed method was also successfully utilized for the determination of Hg2+ in drinking water, tap water and surface water with good recovery (>91%) and high intra-day and inter-day precision.
    Matched MeSH terms: Solid Phase Microextraction
  4. Abdulra'uf LB, Tan GH
    Food Chem, 2015 Jun 15;177:267-73.
    PMID: 25660885 DOI: 10.1016/j.foodchem.2015.01.031
    An HS-SPME method was developed using multivariate experimental designs, which was conducted in two stages. The significance of each factor was estimated using the Plackett-Burman (P-B) design, for the identification of significant factors, followed by the optimization of the significant factors using central composite design (CCD). The multivariate experiment involved the use of Minitab® statistical software for the generation of a 2(7-4) P-B design and CCD matrices. The method performance evaluated with internal standard calibration method produced good analytical figures of merit with linearity ranging from 1 to 500 μg/kg with correlation coefficient greater than 0.99, LOD and LOQ were found between 0.35 and 8.33 μg/kg and 1.15 and 27.76 μg/kg respectively. The average recovery was between 73% and 118% with relative standard deviation (RSD=1.5-14%) for all the investigated pesticides. The multivariate method helps to reduce optimization time and improve analytical throughput.
    Matched MeSH terms: Solid Phase Microextraction/methods*
  5. Abdulra'uf LB, Tan GH
    Food Chem, 2013 Dec 15;141(4):4344-8.
    PMID: 23993624 DOI: 10.1016/j.foodchem.2013.07.022
    Solid-phase microextraction (SPME) is a solvent-less sample preparation method which combines sample preparation, isolation, concentration and enrichment into one step. In this study, multivariate strategy was used to determine the significance of the factors affecting the solid phase microextraction of pesticide residues (fenobucarb, diazinon, chlorothalonil and chlorpyrifos) using a randomised factorial design. The interactions and effects of temperature, time and salt addition on the efficiency of the extraction of the pesticide residues were evaluated using 2(3) factorial designs. The analytes were extracted with 100 μm PDMS fibres according to the factorial design matrix and desorbed into a gas chromatography-mass spectrometry detector. The developed method was applied for the analysis of apple samples and the limits of detection were between 0.01 and 0.2 μg kg(-)(1), which were lower than the MRLs for apples. The relative standard deviations (RSD) were between 0.1% and 13.37% with average recovery of 80-105%. The linearity ranges from 0.5-50 μg kg(-)(1) with correlation coefficient greater than 0.99.
    Matched MeSH terms: Solid Phase Microextraction/methods*
  6. Abdulra'uf LB, Chai MK, Tan GH
    J AOAC Int, 2012 11 28;95(5):1272-90.
    PMID: 23175958
    This paper reviews the application of various modes of solid-phase microextraction (SPME) for the analysis of pesticide residues in fruits and vegetables. SPME is a simple extraction technique that eliminates the use of solvent, and it is applied for the analysis of both volatile and nonvolatile pesticides. SPME has been successfully coupled to both GC and LC. The coupling with GC has been straightforward and requires little modification of existing equipment, but interfacing with LC has proved challenging. The external standard calibration technique is widely used for quantification, while standard addition and internal or surrogate standards are mainly used to account for matrix effects. All parameters that affect the extraction of pesticide residues from fruits and vegetables, and therefore need to be optimized, are also reviewed. Details of the characteristics of analytical procedures and new trends in fiber production using sol-gel technology and molecularly imprinted polymers are discussed.
    Matched MeSH terms: Solid Phase Microextraction/methods*
  7. Shukor MY, Dahalan FA, Jusoh AZ, Muse R, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):145-50.
    PMID: 20112877
    A diesel-degrading bacterium has been isolated from a diesel-polluted site. The isolate was tentatively identified as Staphylococcus aureus strain DRY11 based on partial 16S rDNA molecular phylogeny and Biolog GP microplate panels and Microlog database. Isolate 11 showed an almost linear increase in cellular growth with respect to diesel concentrations with optimum growth occurring at 4% (v/v) diesel concentration. Optimization studies using different nitrogen sources showed that the best nitrogen source was potassium nitrite. Sodium nitrite was optimum at 1.2 g l(-1) and higher concentrations were strongly inhibitory to cellular growth. The optimal pH that supported growth of the bacterium was between 7.5 to 8.0 and the isolate exhibited optimal broad temperature supporting growth on diesel from 27 to 37 degrees C. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 5 days of incubation. The characteristics of this bacterium suggest that it is suitable for bioremediation of diesel spills and pollutions in the tropics.
    Matched MeSH terms: Solid Phase Microextraction
  8. Lee TP, Saad B, Khayoon WS, Salleh B
    Talanta, 2012 Jan 15;88:129-35.
    PMID: 22265478 DOI: 10.1016/j.talanta.2011.10.021
    A simple, environmental friendly and selective sample preparation technique employing porous membrane protected micro-solid phase extraction (μ-SPE) loaded with molecularly imprinted polymer (MIP) for the determination of ochratoxin A (OTA) is described. After the extraction, the analyte was desorbed using ultrasonication and was analyzed using high performance liquid chromatography. Under the optimized conditions, the detection limits of OTA for coffee, grape juice and urine were 0.06 ng g(-1), 0.02 and 0.02 ng mL(-1), respectively while the quantification limits were 0.19 ng g(-1), 0.06 and 0.08 ng mL(-1), respectively. The recoveries of OTA from coffee spiked at 1, 25 and 50 ng g(-1), grape juice and urine samples at 1, 25 and 50 ng mL(-1) ranged from 90.6 to 101.5%. The proposed method was applied to thirty-eight samples of coffee, grape juice and urine and the presence of OTA was found in eighteen samples. The levels found, however, were all below the legal limits.
    Matched MeSH terms: Solid Phase Microextraction/methods*
  9. Syaidatul Faraha Zainuddin, Siti Raihan Zakaria, Norashikin Saim, Rossuriati Dol Hamid, Rozita Osman
    Science Letters, 2020;14(2):58-70.
    MyJurnal
    Headspace solid phase microextraction (HS-SPME) was employed for the extraction of volatile organic compounds (VOCs) in MD2 pineapple (Ananas comosus L. var. comosus cv. MD2). Optimisation of HS-SPME operating parameters was conducted using three-factor, three-level Box–Behnken response surface experimental design to evaluate the interactive effects of temperature (30 – 50 ºC), extraction time (10 – 30 min) and salting effect (1 – 3 g of salt addition) on the amount of selected VOCs. Determination of VOCs was done using gas chromatography with spectrometry detector (GC-MSD). Extraction temperature was found to be significant (p < 0.05) in increasing the amount of selected VOCs (ethyl acetate, methyl isobutyrate and butanoic acid methyl ester). Based on the maximum amount of these VOCs, the optimum operating extraction conditions for HS-SPME were set up at temperature of 30 °C, time of 29 min and salt addition of 1 g. The optimized HS-SPME conditions were employed for the extraction of VOCs from pineapple of different varieties.
    Matched MeSH terms: Solid Phase Microextraction
  10. Boon YH, Mohamad Zain NN, Mohamad S, Osman H, Raoov M
    Food Chem, 2019 Apr 25;278:322-332.
    PMID: 30583379 DOI: 10.1016/j.foodchem.2018.10.145
    Poly(β-cyclodextrin functionalized ionic liquid) immobilized magnetic nanoparticles (Fe3O4@βCD-Vinyl-TDI) as sorbent in magnetic µ-SPE was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in rice samples coupled with gas chromatographic-flame ionization detector (GC-FID). The nanocomposite was characterized by various tools and significant parameters that affected the extraction efficiency of PAHs were investigated. The calibration curves were linear for the concentration ranging between 0.1 and 500 μg kg-1 with correlation determinations (R2) from 0.9970 to 0.9982 for all analytes. Detection limits ranged at 0.01-0.18 μg kg-1 in real matrix. The RSD values ranged at 2.95%-5.34% (intra-day) and 4.37%-7.05% (inter-day) precision for six varied days. The sorbents showed satisfactory reproducibility in 2.9% to 9.9% range and acceptable recovery values at 80.4%-112.4% were obtained for the real sample analysis. The optimized method was successfully applied to access content safety of selected PAHs for 24 kinds of commercial rice available in Malaysia.
    Matched MeSH terms: Solid Phase Microextraction/instrumentation; Solid Phase Microextraction/methods*
  11. Muhammad Yunus F, Alias Y, Yahya N, Mohamad Zain NN, Raoov M
    PMID: 38466777 DOI: 10.1080/19440049.2024.2326426
    Poly(methyl methacrylate-vinyl imidazole bromide) (poly-MMA-IL)-grafted magnetic nanoparticles were successfully developed and applied in the micro-magnetic solid phase extraction (μ-MSPE) for 16 types of polycyclic aromatic hydrocarbons (PAHs) from tea, fried food, and grilled food samples via gas chromatography flame ionization detector (GC-FID). One variable at a time (OVAT) and response surface methodology (RSM) were used for efficient optimization. The validation method showed a good coefficient of determination (R2) ranging from 0.9901 to 0.9982 (n = 3) with linearity of 0.2 μg L-1-500 μg L-1. Detection and quantification limits were 0.06 µg L-1-0.32 µg L-1 and 0.18 µg L-1-0.97 µg L-1. Additionally, satisfactory reproducibility was attained with intra-day and inter-day precisions having RSD ranges of 3.6%-11.1%. The spiked recovery value of 16 PAHs in fried food, grilled food and tea samples obtained from the night market in Malaysia ranged from 80%-12%, respectively.
    Matched MeSH terms: Solid Phase Microextraction
  12. Badawy MEI, El-Nouby MAM, Kimani PK, Lim LW, Rabea EI
    Anal Sci, 2022 Dec;38(12):1457-1487.
    PMID: 36198988 DOI: 10.1007/s44211-022-00190-8
    Analytical processes involving sample preparation, separation, and quantifying analytes in complex mixtures are indispensable in modern-day analysis. Each step is crucial to enriching correct and informative results. Therefore, sample preparation is the critical factor that determines both the accuracy and the time consumption of a sample analysis process. Recently, several promising sample preparation approaches have been made available with environmentally friendly technologies with high performance. As a result of its many advantages, solid-phase extraction (SPE) is practiced in many different fields in addition to the traditional methods. The SPE is an alternative method to liquid-liquid extraction (LLE), which eliminates several disadvantages, including many organic solvents, a lengthy operation time and numerous steps, potential sources of error, and high costs. SPE advanced sorbent technology reorients with various functions depending on the structure of extraction sorbents, including reversed-phase, normal-phase, cation exchange, anion exchange, and mixed-mode. In addition, the commercial SPE systems are disposable. Still, with the continual developments, the restricted access materials (RAM) and molecular imprinted polymers (MIP) are fabricated to be active reusable extraction cartridges. This review will discuss all the theoretical and practical principles of the SPE techniques, focusing on packing materials, different forms, and performing factors in recent and future advances. The information about novel methodological and instrumental solutions in relation to different variants of SPE techniques, solid-phase microextraction (SPME), in-tube solid-phase microextraction (IT-SPME), and magnetic solid-phase extraction (MSPE) is presented. The integration of SPE with analytical chromatographic techniques such as LC and GC is also indicated. Furthermore, the applications of these techniques are discussed in detail along with their advantages in analyzing pharmaceuticals, biological samples, natural compounds, pesticides, and environmental pollutants, as well as foods and beverages.
    Matched MeSH terms: Solid Phase Microextraction/methods
  13. Thriumani R, Zakaria A, Hashim YZH, Jeffree AI, Helmy KM, Kamarudin LM, et al.
    BMC Cancer, 2018 04 02;18(1):362.
    PMID: 29609557 DOI: 10.1186/s12885-018-4235-7
    BACKGROUND: Volatile organic compounds (VOCs) emitted from exhaled breath from human bodies have been proven to be a useful source of information for early lung cancer diagnosis. To date, there are still arguable information on the production and origin of significant VOCs of cancer cells. Thus, this study aims to conduct in-vitro experiments involving related cell lines to verify the capability of VOCs in providing information of the cells.

    METHOD: The performances of e-nose technology with different statistical methods to determine the best classifier were conducted and discussed. The gas sensor study has been complemented using solid phase micro-extraction-gas chromatography mass spectrometry. For this purpose, the lung cancer cells (A549 and Calu-3) and control cell lines, breast cancer cell (MCF7) and non-cancerous lung cell (WI38VA13) were cultured in growth medium.

    RESULTS: This study successfully provided a list of possible volatile organic compounds that can be specific biomarkers for lung cancer, even at the 24th hour of cell growth. Also, the Linear Discriminant Analysis-based One versus All-Support Vector Machine classifier, is able to produce high performance in distinguishing lung cancer from breast cancer cells and normal lung cells.

    CONCLUSION: The findings in this work conclude that the specific VOC released from the cancer cells can act as the odour signature and potentially to be used as non-invasive screening of lung cancer using gas array sensor devices.

    Matched MeSH terms: Solid Phase Microextraction*
  14. Harun N, Anderson RA, Miller EI
    J Anal Toxicol, 2009 8 6;33(6):310-21.
    PMID: 19653934 DOI: 10.1093/jat/33.6.310
    An ELISA and a liquid chromatography-tandem mass spectrometry (LC-MS-MS) confirmation method were developed and validated for the identification and quantitation of ketamine and its major metabolite norketamine in urine samples. The Neogen ketamine microplate ELISA was optimized with respect to sample and enzyme conjugate volumes and the sample preincubation time before addition of the enzyme conjugate. The ELISA kit was validated to include an assessment of the dose-response curve, intra- and interday precision, limit of detection (LOD), and cross-reactivity. The sensitivity and specificity were calculated by comparison to the results from the validated LC-MS-MS confirmation method. An LC-MS-MS method was developed and validated with respect to LOD, lower limit of quantitation (LLOQ), linearity, recovery, intra- and interday precision, and matrix effects. The ELISA dose-response curve was a typical S-shaped binding curve, with a linear portion of the graph observed between 25 and 500 ng/mL for ketamine. The cross-reactivity of 200 ng/mL norketamine to ketamine was 2.1%, and no cross-reactivity was detected with 13 common drugs tested at 10,000 ng/mL. The ELISA LOD was calculated to be 5 ng/mL. Both intra- (n = 10) and interday (n = 50) precisions were below 5.0% at 25 ng/mL. The LOD for ketamine and norketamine was calculated statistically to be 0.6 ng/mL. The LLOQ values were also calculated statistically and were 1.9 ng/mL and 2.1 ng/mL for ketamine and norketamine, respectively. The test linearity was 0-1200 ng/mL with correlation coefficient (R(2)) > 0.99 for both analytes. Recoveries at 50, 500, and 1000 ng/mL range from 97.9% to 113.3%. Intra- (n = 5) and interday (n = 25) precisions between extracts for ketamine and norketamine were excellent (< 10%). Matrix effects analysis showed an average ion suppression of 5.7% for ketamine and an average ion enhancement of 13.0% for norketamine for urine samples collected from six individuals. A comparison of ELISA and LC-MS-MS results demonstrated a sensitivity, specificity, and efficiency of 100%. These results indicated that a cutoff value of 25 ng/mL ketamine in the ELISA screen is particularly suitable and reliable for urine testing in a forensic toxicology setting. Furthermore, both ketamine and norketamine were detected in all 34 urine samples collected from individuals socializing in pubs by the Royal Malaysian Police. Ketamine concentrations detected by LC-MS-MS ranged from 22 to 31,670 ng/mL, and norketamine concentrations ranged from 25 to 10,990 ng/mL. The concentrations of ketamine and norketamine detected in the samples are most ikely indicative of ketamine abuse.
    Matched MeSH terms: Solid Phase Microextraction
  15. Siang GH, Makahleh A, Saad B, Lim BP
    J Chromatogr A, 2010 Dec 24;1217(52):8073-8.
    PMID: 21081239 DOI: 10.1016/j.chroma.2010.10.052
    The development of a two phase hollow fiber liquid-phase microextraction technique, followed by gas-chromatography-flame ionization detection (GC-FID) for the profiling of the fatty acids (FAs) (lauric, myristic, palmitic, stearic, palmitoleic, oleic, linoleic, linolenic and arachidic) in vegetable oils is described. Heptadecanoic acid methyl ester was used as the internal standard. The FAs were transesterified to their corresponding methyl esters prior to the extraction. Extraction parameters such as type of extracting solvent, temperature, extraction time, stirring speed and salt addition were studied and optimized. Recommended conditions were extraction solvent, n-tridecane; extraction time, 35 min; extraction temperature, ambient; without addition of salt. Enrichment factors varying from 37 to 115 were achieved. Calibration curves for the nine FAs were well correlated (r(2)>0.994) within the range of 10-5000 μg L(-1). The limit of detection (signal:noise, 3) was 4.73-13.21 ng L(-1). The method was successfully applied to the profiling of the FAs in palm oils (crude, olein, kernel, and carotino cooking oil) and other vegetable oils (soybean, olive, coconut, rice bran and pumpkin). The encouraging enrichments achieved offer an interesting option for the profiling of the minor and major FAs in palm and other vegetable oils.
    Matched MeSH terms: Solid Phase Microextraction/methods*
  16. Khayoon WS, Saad B, Salleh B, Manaf NH, Latiff AA
    Food Chem, 2014 Mar 15;147:287-94.
    PMID: 24206720 DOI: 10.1016/j.foodchem.2013.09.049
    A single step extraction-cleanup procedure using porous membrane-protected micro-solid phase extraction (μ-SPE) in conjunction with liquid chromatography-tandem mass spectrometry for the extraction and determination of aflatoxins (AFs) B1, B2, G1 and G2 from food was successfully developed. After the extraction, AFs were desorbed from the μ-SPE device by ultrasonication using acetonitrile. The optimum extraction conditions were: sorbent material, C8; sorbent mass, 20mg; extraction time, 90 min; stirring speed, 1,000 rpm; sample volume, 10 mL; desorption solvent, acetonitrile; solvent volume, 350 μL and ultrasonication period, 25 min without salt addition. Under the optimum conditions, enrichment factor of 11, 9, 9 and 10 for AFG2, AFG1, AFB2 and AFB1, respectively were achieved. Good linearity and correlation coefficient was obtained over the concentration range of 0.4-50 ng g(-1) (r(2) 0.9988-0.9999). Good recoveries for AFs ranging from 86.0-109% were obtained. The method was applied to 40 samples involving malt beverage (19) and canned coffee (21). No AFs were detected in the selected samples.
    Matched MeSH terms: Solid Phase Microextraction/methods*
  17. Manaf NA, Saad B, Mohamed MH, Wilson LD, Latiff AA
    J Chromatogr A, 2018 Mar 30;1543:23-33.
    PMID: 29478831 DOI: 10.1016/j.chroma.2018.02.032
    Sorbents were prepared by cross-linking β-cyclodextrin (β-CD) using two different types of cross-linker units at variable reactant mole ratios. The resulting polymers containing β-CD were evaluated as sorbents in micro-solid phase extraction (μ-SPE) format for the extraction of the endogenous steroids testosterone (T), epitestosterone (E), androsterone (A), etiocholanolone (Etio), 5α-androstane-3α,17β-diol (5αAdiol) and 5β-androstane-3α,17β-diol (5βAdiol). The best sorbent (C1; cyclodextrin polymer) showed superior extraction characteristics compared with commercial sorbents (C18 and Bond Elut Plexa). Parameters influencing the extraction efficiency of the C1 sorbent such as extraction and desorption times, desorption solvent and volume of sample were investigated. The extracts were separated using a Hypersil Gold column (50 × 2.1 mm, 1.9 μm) under gradient elution coupled to a LC-MS/MS. The compounds were successfully separated within 8 min. The method offers good repeatability (RSD  0.995) were within the range of 1-200 ng mL-1 for T and E, 250-4000 ng mL-1 for A and Etio and 25-500 ng mL-1 for 5αAdiol and 5βAdiol, respectively. The method was applied for the determination of steroid profile of urine from volunteers.
    Matched MeSH terms: Solid Phase Microextraction*
  18. Lasekan O, Khatib A, Juhari H, Patiram P, Lasekan S
    Food Chem, 2013 Dec 1;141(3):2089-97.
    PMID: 23870932 DOI: 10.1016/j.foodchem.2013.05.081
    The volatile compounds in four selected African star apple fruit (Chrysophyllum albidum) varieties were isolated and identified using the headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). A total of 59 compounds were identified. Application of the aroma extract dilution analysis (AEDA) to the aroma distillates from the fruits revealed 45 odour-active compounds in the flavour dilution (FD) factor range of 4-128. Among them, the highest odour activities (FD factors) were determined for methylhexanoate, acetophenone and ethyl dodecanoate. Moreover, aroma lipophilicity appears to reflect molecular conformation. Further analysis of the similarities and differences between the fruit varieties in terms of the key odourants by the application of PLS-DA and PLS-regression coefficient showed strong positive correlation between the very sweet/sweet varieties and 10 key odourants. The odourants included ethyl acetate, acetyl methyl carbinol, methylhexanoate, sabinene, p-cymene, methylbenzoate, ethylbenzoate, geraniol, cis-α-bergomotene, acetophenone, and ethyl dodecanoate.
    Matched MeSH terms: Solid Phase Microextraction/instrumentation; Solid Phase Microextraction/methods*
  19. Ying S, Lasekan O, Naidu KR, Lasekan S
    Molecules, 2012 Nov 22;17(12):13795-812.
    PMID: 23174897 DOI: 10.3390/molecules171213795
    Sensorial analysis of pineapple breads (conventionally baked, Cpb; fully baked frozen, Fpb and partially baked, Ppb) showed no significant differences in terms of aroma and taste. On the contrary, the scores for the overall quality between the partially baked and conventionally baked breads showed significant (p < 0.05) differences. At the same time, headspace analysis using a solid-phase microextraction (SPME) method identified 59 volatile compounds. The results of the aroma extracts dilution analysis (AEDA) revealed 19 most odour-active compounds with FD factors in the range of 32-128 as the key odourants of the pineapple breads. Further analysis of the similarities and differences between the pineapple breads in terms of the key odourants were carried out by the application of PLS-DA and PLS-regression coefficients. Results showed that Ppb exhibited strong positive correlations with most of the volatile- and non-volatile compounds, while the Cpb showed significant positive correlations with hexanal and 4-hydroxy-2,5-dimethyl-3(2H)-furanone, and the Fpb had strong positive correlations with lactic acid, benzoic acid, benzaldehyde and ethyl propanoate.
    Matched MeSH terms: Solid Phase Microextraction/methods*
  20. Lasekan O
    J Sci Food Agric, 2013 Mar 30;93(5):1055-61.
    PMID: 22936608 DOI: 10.1002/jsfa.5846
    Volatile compounds play a key role in determining the sensory appreciation of vegetable oils. In this study a systematic evaluation of odorants responsible for the characteristic flavour of roasted tigernut oil was carried out.
    Matched MeSH terms: Solid Phase Microextraction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links