Displaying publications 1 - 20 of 154 in total

Abstract:
Sort:
  1. Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, et al.
    Molecules, 2012 Jul 16;17(7):8506-17.
    PMID: 22801364 DOI: 10.3390/molecules17078506
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  2. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, et al.
    Int J Nanomedicine, 2012;7:5603-10.
    PMID: 23341739 DOI: 10.2147/IJN.S36786
    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  3. Ghazali MS, Zakaria A, Rizwan Z, Kamari HM, Hashim M, Zaid MH, et al.
    Int J Mol Sci, 2011;12(3):1496-504.
    PMID: 21673903 DOI: 10.3390/ijms12031496
    The optical band-gap energy (E(g)) is an important feature of semiconductors which determines their applications in optoelectronics. Therefore, it is necessary to investigate the electronic states of ceramic ZnO and the effect of doped impurities under different processing conditions. E(g) of the ceramic ZnO + xBi(2)O(3) + xTiO(2), where x = 0.5 mol%, was determined using a UV-Vis spectrophotometer attached to a Reflectance Spectroscopy Accessory for powdered samples. The samples was prepared using the solid-state route and sintered at temperatures from 1140 to 1260 °C for 45 and 90 minutes. E(g) was observed to decrease with an increase of sintering temperature. XRD analysis indicated hexagonal ZnO and few small peaks of intergranular layers of secondary phases. The relative density of the sintered ceramics decreased and the average grain size increased with the increase of sintering temperature.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  4. Sam MS, Lintang HO, Sanagi MM, Lee SL, Yuliati L
    PMID: 24503155 DOI: 10.1016/j.saa.2013.12.113
    A metal-free mesoporous carbon nitride (MCN) was investigated for the first time as an adsorbent for N-nitrosopyrrolidine (NPYR), which is one of the nitrosamine pollutants. Under the same condition, the adsorption capability of the MCN was found to be higher than that of the MCM-41. Since the adsorption isotherm was consistent with Langmuir and Freundlich model equations, it was suggested that the adsorption of NPYR molecules on the MCN occurred in the form of mono-molecular layer on the heterogeneous surface sites. It was proposed that MCN with suitable adsorption sites was beneficial for the adsorption of NPYR. The evidence on the interaction between the NPYR molecules and the MCN was supported by fluorescence spectroscopy. Two excitation wavelengths owing to the terminal N-C and N=C groups were used to monitor the interactions between the emission sites of the MCN and the NPYR molecules. It was confirmed that the intensity of the emission sites was quenched almost linearly with the concentration of NPYR. This result obviously suggested that the MCN would be applicable as a fluorescence sensor for detection of the NPYR molecules. From the Stern-Volmer plot, the quenching rate constant of terminal N-C groups was determined to be ca. two times higher than that of the N=C groups on MCN, suggesting that the terminal N-C groups on MCN would be the favoured sites interacted with the NPYR. Since initial concentration can be easily recovered, the interactions of NPYR on MCN were weak and might only involve electrostatic interactions.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  5. Yap SP, Julianto T, Wong JW, Yuen KH
    J Chromatogr B Biomed Sci Appl, 1999 Dec 10;735(2):279-83.
    PMID: 10670741
    A simple high-performance liquid chromatographic method using fluorescence detection was developed for the determination of vitamin E especially delta-, gamma- and alpha-tocotrienols in human plasma. The method entailed direct injection of plasma sample after deproteinization using a 3:2 mixture of acetonitrile-tetrahydrofuran. The mobile phase comprised 0.5% (v/v) of distilled water in methanol. Analyses were run at a flow-rate of 1.5 ml/min with the detector operating at an excitation wavelength of 296 nm and emission wavelength of 330 nm. This method is specific and sensitive, with a quantification limit of approximately 40, 34 and 16 ng/ml for alpha-, gamma- and delta-tocotrienol, respectively. The mean absolute recovery values were about 98% while the within-day and between-day relative standard deviation and percent error values of the assay method were all less than 12.0% for alpha-, gamma- and delta-tocotrienol. The calibration curve was linear over a concentration range of 40-2500, 30-4000 and 16-1000 ng/ml for alpha-, gamma- and delta-tocotrienol, respectively. Application of the method in a bioavailability study for determination of the above compounds was also demonstrated.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  6. Loon YH, Wong JW, Yap SP, Yuen KH
    PMID: 15664346
    A simple liquid chromatographic method was developed for the simultaneous determination of flavonoids from Orthosiphon stamineus Benth, namely sinensitin, eupatorin and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone, in plasma. Prior to analysis, the flavonoids and the internal standard (naproxen) were extracted from plasma samples using a 1:1 mixture of ethyl acetate and chloroform. The detection and quantification limits for the three flavonoids were similar being 3 and 5 ng/ml, respectively. The within-day and between-day accuracy values, expressed as percentage of true values, for the three flavonoids were between 95 and 107%, while the corresponding precision, expressed as coefficients of variation, for the three flavonoids were less than 14%. In addition, the mean recovery values of the extraction procedure for all the flavonoids were between 92 and 114%. The calibration curves were linear over a concentration range of 5-4000 ng/ml. The present method was applied to analyse plasma samples obtained from a pilot study using rats in which the mean absolute oral bioavailability values for sinensitin, eupatorin and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone was 9.4, 1.0 and 1.5%, respectively.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  7. Ng BH, Yuen KH
    PMID: 12906917
    A simple and sensitive high-performance liquid chromatographic (HPLC) method using ultraviolet detection was developed for the determination of testosterone in human plasma. Testosterone and the internal standard, griseofulvin, were extracted from 0.50 ml plasma sample using a mixture of dichloromethane-2,2,4-trimethylpentane (3:2, v/v). The mobile phase, consisted of 0.02 M sodium dihydrogenphosphate-acetonitrile-methanol (51:47:2, v/v) adjusted to pH 3.1 and delivered to a C(18) analytical column (150 x 4.6 mm I.D., 4 microm particles) at a flow-rate of 1 ml/min while the detection wavelength was set at 240 nm with a sensitivity range of 0.005 a.u.f.s. The method has a quantification limit of 1.6 ng/ml. Recoveries of testosterone were all greater than 92% over the linear concentration range of 1.6-400 ng/ml while that of griseofulvin was approximately 95%. The within- and between-day RSD values were all less than 8% while the accuracy values ranged from 96.0 to 106.0% over the concentration range studied. The method was applied to the analysis of early morning plasma testosterone levels of 12 healthy human male volunteers. The levels were found to range from 3.1 to 8.4 ng/ml, within the normal range reported in the literature.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  8. Baig U, Gondal MA, Alam MF, Wani WA, Younus H
    J. Photochem. Photobiol. B, Biol., 2016 Nov;164:244-255.
    PMID: 27710872 DOI: 10.1016/j.jphotobiol.2016.09.034
    Cancer and pathogenic microbial diseases have terribly affected human health over a longer period of time. In response to the increasing casualties due to cancer and microbial diseases, unique poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were prepared via in-situ oxidative chemical polymerization in this work. The poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were well characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. DNA binding studies by UV-Visible and fluorescence spectroscopic investigations indicated strong binding affinities of poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite; leading to structural damage of DNA. Poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed stronger interactions with DNA as compared to poly(3-methylthiophene) and from dye displacement assay it was confirmed that mode of binding of both the formulations was intercalative. The antimicrobial screening revealed that polymer and its composite displayed stronger antibacterial effects than ampicillin against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhimurium. Besides, the poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed dose dependent effects towards estrogen receptor positive breast cancer (MCF-7) and estrogen receptor negative breast cancer (MDA-MB-231) cell lines; with poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showing better activities against both cell lines. In all in-vitro biological investigations, poly(3-methylthiophene)-titanium(IV)phosphate composite showed superior properties to that of the pure poly(3-methylthiophene), which encouraged us to suggest its potential as future therapeutic gear in drug delivery and other allied fields.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  9. Jung C, Phal N, Oh J, Chu KH, Jang M, Yoon Y
    J Hazard Mater, 2015 Dec 30;300:808-814.
    PMID: 26340547 DOI: 10.1016/j.jhazmat.2015.08.025
    Despite recent interest in transforming biomass into bio-oil and syngas, there is inadequate information on the compatibility of byproducts (e.g., biochar) with agriculture and water purification infrastructures. A pyrolysis at 300°C yields efficient production of biochar, and its physicochemical properties can be improved by chemical activation, resulting in a suitable adsorbent for the removal of natural organic matter (NOM), including hydrophobic and hydrophilic substances, such as humic acids (HA) and tannic acids (TA), respectively. In this study, the adsorption affinities of different HA and TA combinations in NOM solutions were evaluated, and higher adsorption affinity of TA onto activated biochar (AB) produced in the laboratory was observed due to its superior chemisorption tendencies and size-exclusion effects compared with that of HA, whereas hydrophobic interactions between adsorbent and adsorbate were deficient. Assessment of the AB role in an adsorption-coagulation hybrid system as nuclei for coagulation in the presence of aluminum sulfate (alum) showed a synergistic effect in a HA-dominated NOM solution. An AB-alum hybrid system with a high proportion of HA in the NOM solution may be applicable as an end-of-pipe solution.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  10. Abosadiya HM, Anouar el H, Hasbullah SA, Yamin BM
    PMID: 25748989 DOI: 10.1016/j.saa.2015.01.092
    A new isomers of thiourea derivatives, namely N-(4-chlorobutanoyl)-N'-(2-methylphenyl)-thiourea (1a), N-(4-chlorobutanoyl)-N'-(3-methylphenyl)thiourea (1b) and N-(4-chlorobutanoyl)-N'-(4-methylphenyl)thiourea (1c) have been synthesized by refluxing mixture of equimolar amounts of 4-chlorobutanoylisothiocyanate with 2, 3 or 4-toluidine, respectively. The three isomers were characterized by spectroscopic (UV/vis, FT-IR and NMR) and X-ray crystallography techniques. To investigate the isomerization effect on spectroscopic data, DFT and TD-DFT calculations have been carried out using five hybrid functionals (B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0) to predict UV/vis absorption bands (n→π∗ and π→π∗), (1)H and (13)C NMR chemical shifts, FT-IR vibration modes and X-ray parameters (bonds, bond angles and torsion angles) for 1a, 1b and 1c isomers. The results showed that the isomerization effect is significant on λ(MAX) absorption bands, while for IR and NMR the effect is negligible. In accordance with previous studies, B3LYP, B3P86 and PBE0 gave the most reliable to predict the excitation energies of thiourea derivatives.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  11. Saad SM, Aling NA, Miskam M, Saaid M, Mohamad Zain NN, Kamaruzaman S, et al.
    R Soc Open Sci, 2020 Apr;7(4):200143.
    PMID: 32431904 DOI: 10.1098/rsos.200143
    This work describes the development of a new methodology based on magnetic nanoparticles assisted dispersive liquid-liquid microextraction (DLLME-MNPs) for preconcentration and extraction of chloramphenicol (CAP) antibiotic residues in water. The approach is based on the use of decanoic acid as the extraction solvent followed by the application of MNPs to magnetically retrieve the extraction solvent containing the extracted CAP. The coated MNPs were then desorbed with methanol, and the clean extract was analysed using ultraviolet-visible spectrophotometry. Several important parameters, such as the amount of decanoic acid, extraction time, stirring rate, amount of MNPs, type of desorption solvent, salt addition and sample pH, were evaluated and optimized. Optimum parameters were as follows: amount of decanoic acid: 200 mg; extraction time: 10 min; stirring rate: 800 rpm; amount of MNPs: 60 mg; desorption solvent: methanol; salt: 10%; and sample pH, 8. Under the optimum conditions, the method demonstrated acceptable linearity (R2 = 0.9933) over a concentration range of 50-1000 µg l-1. Limit of detection and limit of quantification were 16.5 and 50.0 µg l-1, respectively. Good analyte recovery (91-92.7%) and acceptable precision with good relative standard deviations (0.45-6.29%, n = 3) were obtained. The method was successfully applied to tap water and lake water samples. The proposed method is rapid, simple, reliable and environmentally friendly for the detection of CAP.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  12. Ong SA, Min OM, Ho LN, Wong YS
    Environ Sci Pollut Res Int, 2013 May;20(5):3405-13.
    PMID: 23114839 DOI: 10.1007/s11356-012-1286-1
    The objective of this study was to examine the effects of adsorbability and number of sulfonate group on solar photocatalytic degradation of mono azo methyl orange (MO) and diazo Reactive Green 19 (RG19) in single and binary dye solutions. The adsorption capacity of MO and RG19 onto the TiO₂ was 16.9 and 26.8 mg/g, respectively, in single dye solution, and reduced to 5.0 and 23.1 mg/g, respectively, in the binary dye solution. The data obtained for photocatalytic degradation of MO and RG19 in single and binary dye solution were well fitted with the Langmuir-Hinshelwood kinetic model. The pseudo-first-order rate constants of diazo RG19 were significant higher than the mono azo MO either in single or binary dye solutions. The higher number of sulfonate group in RG19 contributed to better adsorption capacity onto the surface of TiO₂ than MO indicating greater photocatalytic degradation rate.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  13. Yusefi M, Shameli K, Jahangirian H, Teow SY, Umakoshi H, Saleh B, et al.
    Int J Nanomedicine, 2020;15:5417-5432.
    PMID: 32801697 DOI: 10.2147/IJN.S250047
    INTRODUCTION: Green-based materials have been increasingly studied to circumvent off-target cytotoxicity and other side-effects from conventional chemotherapy.

    MATERIALS AND METHODS: Here, cellulose fibers (CF) were isolated from rice straw (RS) waste by using an eco-friendly alkali treatment. The CF network served as an anticancer drug carrier for 5-fluorouracil (5-FU). The physicochemical and thermal properties of CF, pure 5-FU drug, and the 5-FU-loaded CF (CF/5-FU) samples were evaluated. The samples were assessed for in vitro cytotoxicity assays using human colorectal cancer (HCT116) and normal (CCD112) cell lines, along with human nasopharyngeal cancer (HONE-1) and normal (NP 460) cell lines after 72-hours of treatment.

    RESULTS: XRD and FTIR revealed the successful alkali treatment of RS to isolate CF with high purity and crystallinity. Compared to RS, the alkali-treated CF showed an almost fourfold increase in surface area and zeta potential of up to -33.61 mV. SEM images illustrated the CF network with a rod-shaped structure and comprised of ordered aggregated cellulose. TGA results proved that the thermal stability of 5-FU increased within the drug carrier. Based on UV-spectroscopy measurements for 5-FU loading into CF, drug loading encapsulation efficiency was estimated to be 83 ±0.8%. The release media at pH 7.4 and pH 1.2 showed a maximum drug release of 79% and 46%, respectively, over 24 hours. In cytotoxicity assays, CF showed almost no damage, while pure 5-FU killed most of the both normal and cancer cells. Impressively, the drug-loaded sample of CF/5-FU at a 250 µg/mL concentration demonstrated a 58% inhibition against colorectal cancer cells, but only a 23% inhibition against normal colorectal cells. Further, a 62.50 µg/mL concentration of CF/5FU eliminated 71% and 39% of nasopharyngeal carcinoma and normal nasopharyngeal cells, respectively.

    DISCUSSION: This study, therefore, showed the strong potential anticancer activity of the novel CF/5-FU formulations, warranting their further investigation.

    Matched MeSH terms: Spectrophotometry, Ultraviolet
  14. Sultan S, Noor MZ, Anouar el H, Shah SA, Salim F, Rahim R, et al.
    Molecules, 2014 Sep 03;19(9):13775-87.
    PMID: 25255760 DOI: 10.3390/molecules190913775
    The anti-inflammatory drug predinisolone (1) was reduced to 20β-hydroxyprednisolone (2) by the marine endophytic fungus Penicilium lapidosum isolated from an alga. The structural elucidation of 2 was achieved by 1D- and 2D-NMR, MS, IR data. Although, 2 is a known compound previously obtained through microbial transformation, the data provided failed to prove the C20 stereochemistry. To solve this issue, DFT and TD-DFT calculations have been carried out at the B3LYP/6-31+G (d,p) level of theory in gas and solvent phase. The absolute configuration of C20 was eventually assigned by combining experimental and calculated electronic circular dichroism spectra and 3JHH chemical coupling constants.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  15. Anouar el H, Weber JF
    PMID: 23880409 DOI: 10.1016/j.saa.2013.06.114
    Natural styrylpyrones isolated from fungi are known for various biological activities including antioxidant activity by scavenging free radicals. UV/vis spectra play an important role in elucidating chemical structures of these compounds via identification of chromophore units. With the aim of predicting the UV/vis spectra of a series of natural styrylpyrones, we tested TD-DFT, CIS and ZINDO methods in gas and in PCM solvent. The results showed that the individual or combined B3P86 and B3LYP hybrid functionals are suitable to predict the maximum wavelength absorption bands (λmax) for styrylpyrones. The structure property relationship (SPR) study emphasized the role of (i) structural parameters (e.g., hydrogen bond and the length of conjugated double bonds) and (ii) electronic descriptors (e.g., ionization potential, electronic affinity, hardness and electrophilicity) in bathochromic and hypsochromic shifts of maximum wavelength absorption bands (λmax) of styrylpyrone derivatives.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  16. Gan SH, Ismail R, Wan Adnan WA, Wan Z
    PMID: 12016023
    An HPLC system using a simple liquid-liquid extraction and HPLC with UV detection has been validated to determine tramadol concentration in human plasma. The method developed was selective and linear for concentrations ranging from 10 to 2000 ng/ml with average recovery of 98.63%. The limit of quantitation (LOQ) was 10 ng/ml and the percentage recovery of the internal standard phenacetin was 76.51%. The intra-day accuracy ranged from 87.55 to 105.99% and the inter-day accuracy, 93.44 to 98.43% for tramadol. Good precision (5.32 and 6.67% for intra- and inter-day, respectively) was obtained at LOQ. The method has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  17. Saiman MZ, Mustafa NR, Verpoorte R
    Methods Mol Biol, 2018;1815:437-455.
    PMID: 29981141 DOI: 10.1007/978-1-4939-8594-4_31
    The plant Catharanthus roseus is a rich source of terpenoid indole alkaloids (TIA). Some of the TIA are important as antihypertensive (ajmalicine) and anticancer (vinblastine and vincristine) drugs. However, production of the latter is very low in the plant. Therefore, in vitro plant cell cultures have been considered as a potential supply of these chemicals or their precursors. Some monomeric alkaloids can be produced by plant cell cultures, but not on a level feasible for commercialization, despite extensive studies on this plant that deepened the understanding of the TIA biosynthesis and its regulation. In order to analyze the metabolites in C. roseus cell cultures, this chapter presents the method of TIA, carotenoids, and phytosterols analyses. Furthermore, an NMR-based metabolomics approach to study C. roseus cell culture is described.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  18. Duman B, Erkmen C, Zahirul Kabir M, Ching Yi L, Mohamad SB, Uslu B
    PMID: 37257323 DOI: 10.1016/j.saa.2023.122907
    Binding mechanisms of two selected pesticides, propazine (PRO) and quinoxyfen (QUI) with bovine serum albumin (BSA) was examined using fluorescence, absorption and molecular docking methods. Intrinsic fluorescence of BSA was quenched in the presence of both PRO and QUI. The quenching was ascertained to be conversely linked to temperature, which suggested the contribution of static quenching process in the PRO-BSA and QUI-BSA complex formations. This results were validated by the enhancement in absorption spectrum of BSA upon binding with PRO and QUI. Binding constant values (Kf = 9.55-0.60 × 10-3 M-1 for PRO-BSA system; Kf = 7.08-5.01 × 102 M-1 for QUI-BSA system) and number of binding site (n) values for the PRO-BSA and QUI-BSA systems at different temperatures affirmed a weak binding strength with a set of equivalent binding sites on BSA. Thermodynamic data obtained for both the PRO-BSA and QUI-BSA interactions predicted that the association process was spontaneous and non-covalent contacts such as hydrophobic interactions, van der Waals forces and hydrogen bonds participated in the binding reactions. This result was further supported by the molecular docking assessments. Three-dimensional spectral results revealed the microenvironmental alterations near tryptophan (Trp) and tyrosine (Tyr) residues in BSA by the addition of PRO and QUI. The docking analysis demonstrated the binding pattern for the PRO-BSA and QUI-BSA systems and disclosed the preferred binding site of both PRO and QUI as site I (subdomain IIA) of BSA.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  19. Surugau N, Urban PL
    J Sep Sci, 2009 Jun;32(11):1889-906.
    PMID: 19479769 DOI: 10.1002/jssc.200900071
    This article reviews progress in the application of electrophoretic techniques for the separation of nanoparticles. Numerous types of nanoparticles have recently been synthesised and integrated into different products and procedures. Consequently, analytical methods for the efficient characterisation of nanoparticles are now required. Several studies have revealed that gel electrophoresis can readily be used for separating nanoparticles according to their size or shape. However, many other studies focused on separation of nanoparticles by CE. In some cases nanoparticles could be separated by CZE, simply using pure buffer as the BGE. In other studies, buffer additives (most often SDS) were used, enabling fast separations of metallic nanoparticles by size. Other CE methods also allowed for separation of nanoparticle conjugates with biomolecules. Dielectrophoresis is yet another electrophoretic technique useful in separation and characterisation of nanoparticles; particularly nanotubes. Detection methods often used after electrophoretic separation include UV/Vis absorption and fluorescence spectroscopy. Examples of recent and relevant older reports are presented here. The authors conclude that electrophoretic methods for nanoanalysis can provide inexpensive and efficient tools for quality assurance and safety control; and as a consequence, they can augment transfer of nanotechnologies from research to industry.
    Matched MeSH terms: Spectrophotometry, Ultraviolet
  20. Lee YZ, Ming-Tatt L, Lajis NH, Sulaiman MR, Israf DA, Tham CL
    Molecules, 2012 Dec 07;17(12):14555-64.
    PMID: 23222902 DOI: 10.3390/molecules171214555
    A sensitive and accurate high performance liquid chromatography with ultraviolet/visible light detection (HPLC-UV/VIS) method for the quantification of 2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) in rat plasma was developed and validated. BHMC and the internal standard, harmaline, were extracted from plasma samples by a simple liquid-liquid extraction using 95% ethyl acetate and 5% methanol. Plasma concentration of BHMC and internal standard were analyzed by reversed phase chromatography using a C₁₈ column (150 × 4.6 mm I.D., particle size 5 µm) and elution with a gradient mobile phase of water and methanol at a flow rate of 1.0 mL/min. Detection of BHMC and internal standard was done at a wavelength of 380 nm. The limit of quantification was 0.02 µg/mL. The calibration curves was linear (R² > 0.999) over the concentration range of 0.02-2.5 µg/mL. Intra- and inter-day precision were less than 2% coefficient of variation. The validated method was then applied to a pharmacokinetic study in rats by intravenous administration of BHMC at a single dose of 10 mg/kg. Pharmacokinetic parameters such as half-life, maximum plasma concentration, volume of distribution, clearance and elimination rate constant for BHMC were calculated.
    Matched MeSH terms: Spectrophotometry, Ultraviolet/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links