Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Bayat AE, Junin R, Shamshirband S, Chong WT
    Sci Rep, 2015;5:14264.
    PMID: 26373598 DOI: 10.1038/srep14264
    Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness.
    Matched MeSH terms: Suspensions
  2. Saallah S, Naim MN, Mokhtar MN, Abu Bakar NF, Gen M, Lenggoro IW
    Enzyme Microb Technol, 2014 Oct;64-65:52-9.
    PMID: 25152417 DOI: 10.1016/j.enzmictec.2014.06.002
    In this study, the potential of electrohydrodynamic atomization or electrospraying to produce nanometer-order CGTase particles from aqueous suspension was demonstrated. CGTase enzyme was prepared in acetate buffer solution (1% v/v), followed by electrospraying in stable Taylor cone-jet mode. The deposits were collected on aluminium foil (collector) at variable distances from the tip of spraying needle, ranging from 10 to 25 cm. The Coulomb fission that occurs during electrospraying process successfully transformed the enzyme to the solid state without any functional group deterioration. The functional group verification was conducted by FTIR analysis. Comparison between the deposit and the as-received enzyme in dry state indicates almost identical spectra. By increasing the distance of the collector from the needle tip, the average particle size of the solidified enzyme was reduced from 200±117 nm to 75±34 nm. The average particle sizes produced from the droplet fission were in agreement with the scaling law models. Enzyme activity analysis showed that the enzyme retained its initial activity after the electrospraying process. The enzyme particles collected at the longest distance (25 cm) demonstrated the highest enzyme activity, which indicates that the activity was controlled by the enzyme particle size.
    Matched MeSH terms: Suspensions
  3. Mad' Atari MFB, Folta KM
    BMC Res Notes, 2019 Mar 15;12(1):144.
    PMID: 30876440 DOI: 10.1186/s13104-019-4117-3
    OBJECTIVE: The treatment of plant tissue with Agrobacterium tumefaciens is often a critical first step to both stable and transient plant transformation. In both applications bacterial suspensions are oftentimes physically introduced into plant tissues using hand-driven pressure from a needleless syringe. While effective, this approach has several drawbacks that limit reproducibility. Pressure must be provided with the syringe perfectly perpendicular to the tissue surface. The researcher must also attempt to provide even and consistent pressure, both within and between experimental replicates. These factors mean that the procedures do not always translate well between research groups or biological replicates.

    RESULTS: We have devised a method to introduce Agrobacterium suspensions into plant leaves with greater reproducibility. Using a decommissioned dissecting microscope as an armature, a syringe body with the bacterial suspension is mounted to the nosepiece. Gentle, even pressure is applied by rotating the focus knob. The treatment force is measured using a basic kitchen scale. The development of the Standardized Pressure Agrobacterium Infiltration Device (SPAID) provides a means to deliver consistent amounts of bacterial suspensions into plant tissues with the goal of increasing reproducibility between replicates and laboratories.

    Matched MeSH terms: Suspensions
  4. Esfandyari Bayat A, Junin R, Derahman MN, Samad AA
    Chemosphere, 2015 Sep;134:7-15.
    PMID: 25889359 DOI: 10.1016/j.chemosphere.2015.03.052
    The impact of ionic strength (from 0.003 to 500mM) and salt type (NaCl vs MgCl2) on transport and retention of titanium dioxide (TiO2) nanoparticles (NPs) in saturated limestone porous media was systematically studied. Vertical columns were packed with limestone grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolent-visible spectrometry. Presence of NaCl and MgCl2 in the suspensions were found to have a significant influence on the electrokinetic properties of the NP aggregates and limestone grains. In NaCl and MgCl2 solutions, the deposition rates of the TiO2-NP aggregates were enhanced with the increase in ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Furthermore, the NP aggregates retention increased in the porous media with ionic strength. The presence of salts also caused a considerable delay in the NPs breakthrough time. MgCl2 as compared to NaCl was found to be more effective agent for the deposition and retention of TiO2-NPs. The experimental results followed closely the general trends predicted by the filtration and DLVO calculations. Overall, it was found that TiO2-NP mobility in the limestone porous media depends on ionic strength and salt type.
    Matched MeSH terms: Suspensions
  5. Sathasivam K, Ramanathan S, Mansor SM, Haris MR, Wernsdorfer WH
    Wien Klin Wochenschr, 2009 Oct;121 Suppl 3:19-22.
    PMID: 19915811 DOI: 10.1007/s00508-009-1229-0
    Following up a popular use of crude leaf preparations from Carica papaya for the treatment of dengue infections, a suspension of powdered Carica papaya leaves in palm oil has been investigated for its effect on thrombocyte counts in mice, administering by gavage 15 mg of powdered leaves per kg body weight to 5 mice. Equal numbers of animals received corresponding volumes of either palm oil alone or physiological saline solution. Thrombocyte counts before and at 1, 2, 4, 8, 10, 12, 24, 48 and 72 hours after dosing revealed significantly higher mean counts at 1, 2, 4, 8, 10 and 12 after dosing with the C. papaya leaf formulation as compared to the mean count at hour 0. There was only a non-significant rise of thrombocyte counts in the group having received saline solution, possibly the expression of a normal circadian rhythm in mice. The group having received palm oil only showed a protracted increase of platelet counts that was significant at hours 8 and 48 and obviously the result of a hitherto unknown stimulation of thrombocyte release. The results call for a dose-response investigation and for extending the studies to the isolation and identification of the C. papaya substances responsible for the release and/or production of thrombocytes.
    Matched MeSH terms: Suspensions
  6. Smith CE, Turner LH
    Bull World Health Organ, 1961;24(1):35-43.
    PMID: 20604084
    One of the factors on which the incidence of leptospirosis is dependent is the survival time of shed leptospires in surface water or soil water, and this time is in turn affected by the acidity or alkalinity of the water. The authors have therefore studied the survival of four leptospiral serotypes in buffered distilled water at pH's ranging from 5.3 to 8.0. All survived longer in alkaline than in acid water, and significant differences between the serotypes were found in response to pH. Survival at pH's under 7.0 ranged from 10 to 117 days and at pH's over 7.0 from 21 to 152 days. Survival was also studied in aqueous extracts of soil samples from different areas in Malaya; no correlation was found between pH and survival time.It was also noted that in a group of Malayan ricefields a low incidence of leptospirosis in man was accompanied by a high infection rate among rodents, and when it was found that this phenomenon could not be explained by pH or salinity, attention was turned to the soil. Bentonite clay, similar to the montmorrillonite clay of the ricefields, was found to adsorb about half the leptospires in suspension. The authors recommend that field study of this laboratory observation be undertaken.
    Matched MeSH terms: Suspensions
  7. Nur Azam Badarulzaman, Lee, Chung Heung, Ahmad Azmin Mohamad, Zainal Arifin Ahmad, Purwadaria, Sunara
    MyJurnal
    Ni–SiC composite coatings were electrodeposited from a Watts-type bath containing 5 g/l SiC particles in suspension. The particles were dispersed with the aid of mechanical agitation at 75 rpm and 150 rpm. EDX analysis confirmed the existence of Ni and SiC in the coatings. The effects of agitation speed on hardness properties of the coatings were investigated. SEM results showed that lower agitation speed could improve the amount of co-deposited SiC particles and increase the hardness of the composite coatings. The bonding between the Ni metal matrix and the SiC ceramic particles was compact.
    Matched MeSH terms: Suspensions
  8. Sajab MS, Mohan D, Santanaraj J, Chia CH, Kaco H, Harun S, et al.
    Sci Rep, 2019 08 12;9(1):11703.
    PMID: 31406228 DOI: 10.1038/s41598-019-48274-2
    The recognition of cellulose nanofibrils (CNF) in the past years as a high prospect material has been prominent, but the impractical cellulose extraction method from biomass remained as a technological barrier for industrial practice. In this study, the telescopic approach on the fractionation of lignin and cellulose was performed by organosolv extraction and catalytic oxidation from oil palm empty fruit bunch fibers. The integration of these techniques managed to synthesize CNF in a short time. Aside from the size, the zeta potential of CNF was measured at -41.9 mV, which allow higher stability of the cellulose in water suspension. The stability of CNF facilitated a better dispersion of Fe(0) nanoparticles with the average diameter size of 52.3-73.24 nm through the formulation of CNF/Fe(0). The total uptake capacity of CNF towards 5-fluorouracil was calculated at 0.123 mg/g. While the synergistic reactions of adsorption-oxidation were significantly improved the removal efficacy three to four times greater even at a high concentration of 5-fluorouracil. Alternatively, the sludge generation after the oxidation reaction was completely managed by the encapsulation of Fe(0) nanoparticles in regenerated cellulose.
    Matched MeSH terms: Suspensions
  9. Yu Z, Liu J, Tan CSY, Scherman OA, Abell C
    Angew Chem Int Ed Engl, 2018 03 12;57(12):3079-3083.
    PMID: 29377541 DOI: 10.1002/anie.201711522
    The ability to construct self-healing scaffolds that are injectable and capable of forming a designed morphology offers the possibility to engineer sustainable materials. Herein, we introduce supramolecular nested microbeads that can be used as building blocks to construct macroscopic self-healing scaffolds. The core-shell microbeads remain in an "inert" state owing to the isolation of a pair of complementary polymers in a form that can be stored as an aqueous suspension. An annealing process after injection effectively induces the re-construction of the microbead units, leading to supramolecular gelation in a preconfigured shape. The resulting macroscopic scaffold is dynamically stable, displaying self-recovery in a self-healing electronic conductor. This strategy of using the supramolecular assembled nested microbeads as building blocks represents an alternative to injectable hydrogel systems, and shows promise in the field of structural biomaterials and flexible electronics.
    Matched MeSH terms: Suspensions
  10. Sharmeen Nellisa Soffian, Nurul Alia Risma Rismayuddin, Munirah Mokhtar, Mohd Hafiz Arzmi
    MyJurnal
    Introduction:Candida spp. are most common opportunistic pathogenic yeast that inhabit human oral cavity, epider-mis, gastrointestinal tract, and vagina leading to candidiasis. The transition of this yeast from commensal to potent pathogen is facilitated by numbers of virulence factors including biofilm formation. While most reports on candidi-asis are associated with formation Candida albicans biofilms, however, non-albicans Candida species prevalence is of growing concern. Recently, the use of probiotics as antifungal and antibiofilm has gained an increasing attention. As such, we aim to evaluate the inhibitory effect of monomicrobial and polymicrobial of Streptococcus salivariuson six strains of NAC namely Candida dubliniensis, Candida glabrata, Candida krusei, Candida lusitanaei, Candida parapsilosis and Candida tropicalis. Methods: Antifungal activity of S. salivarius on NAC species was performed using well diffusion method on Mueller Hinton Agar (MHA) and the diameter of inhibition zone were assessed. For formation of monomicrobial biofilm, standardized cell suspensions of NAC species (1 x 105 cells/ml) and probiotic Streptococcus salivarius (1 x 106 cells/ml) were grown in RPMI or nutrient broth media at 37°C for 72 h. Meanwhile to study polymicrobial biofilm of both NAC and S. salivarius, similar protocol was employed by inoculating both microorganisms with a similar cell density as in monomicrobial. Finally, biofilm formation was assessed through quantification of total biomass by crystal violet (CV) assay and the absorbance of adherent biofilm was measured in triplicate at 620nm. Results: Antifungal susceptibility testing of S. salivarius on all six NAC species discerned no zone of inhibition. Furthermore, our results showed variability of monomicrobial and polymicrobial biofilm biomass between NAC species and growth medium. All six polymicrobial NB-grown and RPMI-grown exhibited decreased of the biofilm formation. C. parapsilosis co-cultured with S. salivarius in NB medium had shown lowest biofilm bio-mass by 75.51+_1.34% while in RPMI medium, C. lusitanaei demonstrated with most reduced biofilm biomass by 67.03+_5.19. Conclusion: Our study elucidated the antagonistic relationship between Streptococcus salivarius and non-albicans Candida by supressing the growth of polymicrobial biofilm and pseudohyphae/hyphae of NAC species.
    Matched MeSH terms: Suspensions
  11. Jeong W, Snell GI, Levvey BJ, Westall GP, Morrissey CO, Wolfe R, et al.
    J Antimicrob Chemother, 2018 Mar 01;73(3):748-756.
    PMID: 29211913 DOI: 10.1093/jac/dkx440
    Objectives: This study describes therapeutic drug monitoring (TDM) of posaconazole suspension and modified release (MR) tablets in lung transplant (LTx) recipients and evaluates factors that may affect posaconazole trough plasma concentration (Cmin).

    Methods: A single-centre, retrospective study evaluating posaconazole Cmin in LTx recipients receiving posaconazole suspension or MR tablets between January 2014 and December 2016.

    Results: Forty-seven LTx patients received posaconazole suspension, and 78 received the MR tablet formulation; a total of 421 and 617 Cmin measurements were made, respectively. Posaconazole was concurrently administered with proton pump inhibitor in ≥ 90% of patients. The median (IQR) of initial posaconazole Cmin following 300 mg daily of posaconazole tablet was significantly higher than that of 800 mg daily of posaconazole suspension [1.65 (0.97-2.13) mg/L versus 0.81 (0.48-1.15) mg/L, P 

    Matched MeSH terms: Suspensions
  12. Noradilah, S. A., Mohamed Kamel, A. G., Anisah, N., Noraina, A. R., Yusof, S.
    MyJurnal
    Introduction: Acanthamoeba is an ubiquitous free-living protozoa which causes serious ocular problems. Acanthamoeba keratitis is becoming more prevalent amongst contact lens wearers. The disease can cause loss of vision and blindness if not treated properly. The objective of this research is to study the sensitivity of six Acanthamoeba spp. isolates, of which three were from the clinical isolates (HKL 95, HTH 40 and HS 6) and the remaining three from environmental isolates (TTT 9, TL 3 and SMAL 8) to antimicrobial agents. Methods: The antimicrobial agents chosen for this purpose were polyhexamethylene biguanide (PHMB) and chlorhexidine. Serial dilutions were perfomed for polyhexamethylene biguanide and chlorhexidine. Cyst suspensions from the chosen isolates were exposed to PHMB and chlorhexidine respectively. After 48 hours incubation time at 30°C, each mixture was filtered and filtration membrane was put onto non-nutrient agar laid with Escherichia coli. The agar plates were incubated for three days at 30°C and examined daily until day 14 to detect the presence of Acanthamoeba trophozoites under the inverted microscope. The presence of trophozoites indicated the ineffectiveness of the antimicrobial agents. Results: Both of the antimicrobial agents tested were found to be effective against Acanthamoeba cysts from all the test strains. Polyhexamethylene biguanide gave a minimum cysticidal concentration (MCC) mean value of 2.848 μg/mL while chlorhexidine showed
    MCC mean value at a concentration of 3.988 μg/mL. Conlusion: It can be concluded that the Acanthamoeba cysts were sensitive to polyhexamethylene biguanide and chlorhexidine.
    Matched MeSH terms: Suspensions
  13. Mohd Shakrie Palan Abdullah, Mohamed Ibrahim Noordin, Syed Ibrahim Mohd Ismail, Nur Murnisa Mustapha, Malina Jasamai, Ahmad Fuad Shamsuddin, et al.
    Sains Malaysiana, 2018;47:323-336.
    Gelatine is used as an excipient for various pharmaceutical dosage forms, such as capsule shells (both hard and soft),
    tablets, suspensions, emulsions and injections (e.g. plasma expanders). It is also broadly used in various industries
    such as food and cosmetics. Gelatine is a biopolymer obtained from discarded or unused materials of bovine, porcine,
    ovine, poultry and marine industrial farms. The discarded materials can be the skin, tendons, cartilages, bones and
    connective tissues. Gelatine sourced from animals is relatively easy and inexpensive to produce. The potential needs of
    gelatine cannot be overemphasised. Rising demands, health concerns and religious issues have heightened the need for
    alternative sources of gelatine. This review presents the various industrial uses of gelatine and the latest developments
    in producing gelatine from various sources.
    Matched MeSH terms: Suspensions
  14. Amin MC, Abadi AG, Katas H
    Carbohydr Polym, 2014 Jan;99:180-9.
    PMID: 24274495 DOI: 10.1016/j.carbpol.2013.08.041
    Bacterial cellulose (BC) is a biopolymer with significant potential for the development of novel materials. This work aimed to prepare and characterize BC powders from nata de coco, and assess the possible enhancement of the powder properties by spray drying. Therefore, BC powders prepared by acid treatment and mechanical processing were spray-dried, and characterized according to their morphology, flowability, thermal stability, water retention capacity, and compared with commercial microcrystalline cellulose (MCC). The powders redispersibility and suspensions rheology were also evaluated. SEM showed that spray-dried BC microparticles exhibited semispherical shape and had flow rate of 4.23 g s(-1) compared with 0.52 g s(-1) for MCC. Particle size analysis demonstrated that spray-dried BC microparticles could be redispersed. TGA showed that BC samples had higher thermal stability than MCC. Water retention capacities of BC samples were greater than MCC. These findings provide new insight on the potential applications of spray-dried BC as a promising pharmaceutical excipient.
    Matched MeSH terms: Suspensions
  15. Qian YS, Ramamurthy S, Candasamy M, Shadab M, Kumar RH, Meka VS
    Curr Pharm Biotechnol, 2016;17(6):549-55.
    PMID: 26813303
    CONTEXT: Kaempferol has a large particle size and poor water solubility, leading to poor oral bioavailability. The present work aimed to develop a kaempferol nanosuspension (KNS) to improve pharmacokinetics and absolute bioavailability.

    METHODS: A nanosuspension was prepared using high pressure homogenization (HPH) techniques. The physico-chemical properties of the kaempferol nanosuspension (KNS) were characterized using photon correlation spectroscopy (PCS), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and x-ray diffractometry (XRD). A reversephase high performance liquid chromatography (RP-HPLC) method for the analysis of the drug in rat plasma was developed and validated as per ICH guidelines. In vivo pharmacokinetic parameters of oral pure kaempferol solution, oral kaempferol nanosuspension and intravenous pure kaempferol were assessed in rats.

    RESULTS AND DISCUSSION: The kaempferol nanosuspension had a greatly reduced particle size (426.3 ± 5.8 nm), compared to that of pure kaempferol (1737 ± 129 nm). The nanosuspension was stable under refrigerated conditions. No changes in physico-chemical characteristics were observed. In comparison to pure kaempferol, kaempferol nanosuspension exhibited a significantly (P<0.05) increased in Cmax and AUC(0-∞) following oral administration and a significant improvement in absolute bioavailability (38.17%) compared with 13.03% for pure kaempferol.

    CONCLUSION: These results demonstrate enhanced oral bioavailability of kaempferol when formulated as a nanosuspension.

    Matched MeSH terms: Suspensions
  16. Mukhlis A Rahman, Mohd Kamal Ghazali, Juhana Jaafar, Ahmad Fauzi Ismail, Wan Muhammad Solehin Wan Abd Aziz, Mohd Hafiz Dzarfan Othman
    Sains Malaysiana, 2015;44:1195-1201.
    This article describes the preparation of titanium dioxide (TiO2) hollow fiber membrane using phase inversion and sintering technique. In this study, nano-sized TiO2 powders with different particle sizes were used to prepare ceramic hollow fiber membranes. In a series of preparation steps, a dispersant was dissolved in organic solvent before the addition of ceramic powders. These steps were followed by the addition of polymer binder. The membrane precursor was obtained by extruding the ceramic suspension into a coagulation bath, which enabled the precipitation of the precursor of ceramic hollow fiber membrane. The dried precursor was later sintered at temperatures ranging from 1200 to 1300oC to obtain TiO2 hollow fiber membrane. Scanning electron microscopy (SEM) was used to study the morphology of TiO2 hollow fiber membrane. The SEM images show the membrane can be shaped into asymmetric structure and symmetric structure based on the ceramic suspension compositions. The highest mechanical strength obtained was 223 MPa when the membrane prepared using 20 wt. % ceramic loading of single nano-sized powder and sintered at 1300oC. TiO2 hollow fiber membrane prepared using similar ceramic loading showed high permeation rate of inert gas. High pure water fluxes were obtained when permeability tests was carried out using TiO2 hollow fiber membrane, prepared using mixture of nano-sized particles, even though its cross-section have a sponge-like structure.
    Matched MeSH terms: Suspensions
  17. Gaya UI, Abdullah AH, Zainal Z, Hussein MZ
    J Hazard Mater, 2009 Aug 30;168(1):57-63.
    PMID: 19268454 DOI: 10.1016/j.jhazmat.2009.01.130
    The photocatalytically driven removal of eco-persistent 4-chlorophenol from water using ZnO is reported here. Kinetic dependence of transformation rate on operating variables such as initial 4-chlorophenol concentration and photocatalyst doses was investigated. A complete degradation of 4-chlorophenol at 50 mg L(-1) levels was realised in 3h. Analytical profiles on 4-chlorophenol transformation were consistent with the best-line fit of the pseudo zero-order kinetics. The addition of small amounts of inorganic anions as SO(4)(2-), HPO(4)(-), S(2)O(8)(2-) and Cl(-) revealed two anion types: active site blockers and rate enhancers. Fortunately, Cl(-) and SO(4)(2-) commonly encountered in contaminated waters enhanced the rate of 4-chlorophenol degradation. The reaction intermediates and route to 4-chlorophenol mineralisation were elucidated by combined RP-HPLC and GC-MS methods. In addition to previously reported pathway products of 4-chlorophenol photo-oxidation catechol was detected. A radical mechanism involving o-hydroxylation is proposed to account for the formation of catechol.
    Matched MeSH terms: Suspensions
  18. Dzinun H, Othman MHD, Ismail AF
    Chemosphere, 2019 Aug;228:241-248.
    PMID: 31035161 DOI: 10.1016/j.chemosphere.2019.04.118
    Comparison studies in suspension and hybrid photocatalytic membrane reactor (HPMR) system was investigated by using Reactive Black 5 (RB5) as target pollutant under UVA light irradiation. To achieve this aim, hybrid TiO2/clinoptilolite (TCP) photocatalyst powder was prepared by solid-state dispersion (SSD) methods and embedded at the outer layer of dual layer hollow fiber (DLHF) membranes fabricated via single step co-spinning process. TiO2 and CP photocatalyst were also used as control samples. The samples were characterized by Scanning Electron Microscopy (SEM), Energy Dispersion of X-ray (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses. The result shows that TCP was actively functioned as photocatalyst in suspension system and 86% of RB5 photocatalytic degradation achieved within 60 min; however the additional step is required to separate the catalyst with treated water. In the HPMR system, even though the RB5 photocatalytic degradation exhibits lower efficiency however the rejection of RB5 was achieved up to 95% under UV irradiation due to the properties of photocatalytic membranes. The well dispersed of TCP at the outer layer of DLHF membrane have improved the surface affinity of DL-TCP membrane towards water, exhibit the highest pure water flux of 41.72 L/m2.h compared to DL-TiO2 membrane. In general, CP can help on improving photocatalytic activity of TiO2 in suspension, increased the RB5 removal and the permeability of DLHF membrane in HPMR system as well.
    Matched MeSH terms: Suspensions
  19. Masood A, Maheen S, Khan HU, Shafqat SS, Irshad M, Aslam I, et al.
    ACS Omega, 2021 Mar 30;6(12):8210-8225.
    PMID: 33817480 DOI: 10.1021/acsomega.0c06242
    The current research aimed at designing mesoporous silica nanoparticles (MSNs) for a controlled coadministration of salicylic acid (SA) and ketoconazole (KCZ) to effectively treat highly resistant fungal infections. The sol-gel method was used to formulate MSNs, which were further optimized using central composite rotatable design (CCRD) by investigating mathematical impact of independent formulation variables such as pH, stirring time, and stirring speed on dependent variables entrapment efficiency (EE) and drug release. The selected optimized MSNs and pure drugs were subjected to comparative in vitro/in vivo antifungal studies, skin irritation, cytotoxicity, and histopathological evaluations. The obtained negatively charged (-23.1), free flowing spherical, highly porous structured MSNs having a size distribution of 300-500 nm were suggestive of high storage stability and improved cell proliferation due to enhanced oxygen supply to cells. The physico-chemical evaluation of SA/KCZ-loaded MSNs performed through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) indicates absolute lack of any interaction between formulation components and successful encapsulation of both drugs in MSNs. The EESA, EEKCZ, SA release, and KCZ release varied significantly from 34 to 89%, 36 to 85%, 39 to 88%, and 43 to 90%, respectively, indicating the quadratic impact of formulation variables on obtained MSNs. For MSNs, the skin tolerability and cell viability percentage rate were also having an extraordinary advantage over suspension of pure drugs. The optimized SA/KCZ-loaded MSNs demonstrated comparatively enhanced in vitro/in vivo antifungal activities and rapid wound healing efficacy in histopathological evaluation without any skin irritation impact, suggesting the MSNs potential for the simultaneous codelivery of antifungal and keratolyic agents in sustained release fashion.
    Matched MeSH terms: Suspensions
  20. Makmud MZH, Illias HA, Chee CY, Dabbak SZA
    Materials (Basel), 2019 Mar 11;12(5).
    PMID: 30861988 DOI: 10.3390/ma12050816
    This study provides a thorough investigation of partial discharge (PD) activities in nanofluid insulation material consisting of different types of nanoparticles, which are conductive and semiconductive when subjected to high voltage stress is presented. Nanofluids have become a topic of interest because they can be an alternative to liquid insulation in electrical apparatus due to their promising dielectric strength and cooling ability. However, during in-service operation, PDs can occur between conductors in the insulation system. Therefore, this study presents the behavior of PDs within nanofluid dielectric materials consisting of conductive and semiconductive nanoparticles. The results show that there is an improvement in the PD resistance and a reduction in the tan delta of nanofluids at power frequency after the incorporation of conductive or semiconductive nanoparticles in the nanofluid oil. However, the most suitable concentration of conductive and semiconductive nanoparticles in the base fluid was found to be, respectively, 0.01 g/L and 1.0 g/L at PD inception and PD steady-state conditions. The clustering of nanoparticles in a nanofluid suspension due to PD activities is also discussed in this study.
    Matched MeSH terms: Suspensions
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links