Displaying publications 1 - 20 of 247 in total

Abstract:
Sort:
  1. M Yusoff NNF, Ahmad S, Wan Abdul Rahman WF, Mohamud R, C Boer J, Plebanski M, et al.
    Cytokine, 2024 Jun;178:156557.
    PMID: 38452440 DOI: 10.1016/j.cyto.2024.156557
    Chronic rhinosinusitis with nasal polyps (CRSwNP) is a subtype of chronic rhinosinusitis (CRS) characterized by the presence of nasal polyps (NP) in the paranasal mucosa. Despite the complex etiology, NP is believed to result from chronic inflammation. The long-term aftermath of the type 2 response is responsible for symptoms seen in NP patients, i.e. rhinorrhea, hyposmia, and nasal obstruction. Immune cellular tolerogenic mechanisms, particularly CD4 + Foxp3 + regulatory T cells (Tregs), are crucial to curtail inflammatory responses. Current evidence suggests impaired Treg activity is the main reason underlying the compromise of self-tolerance, contributing to the onset of CRSwNP. There is compelling evidence that tumor necrosis factor 2 (TNFR2) is preferentially expressed by Tregs, and TNFR2 is able to identify the most potent suppressive subset of Tregs. Tumor necrosis factor (TNF)-TNFR2 interaction plays a decisive role in the activation and expansion of Tregs. This review summarizes current understanding of Tregs biology, focusing on the discussion of the recent advances in the study of TNF-TNFR2 axis in the upregulation of Treg function as a negative feedback mechanism in the control of chronic inflammation. The role of dysregulation of Tregs in the immunopathogenesis of CRSwNP will be analyzed. The future perspective on the harnessing Tregs-mediated self-tolerant mechanism in the management of CRSwNP will be introduced.
    Matched MeSH terms: T-Lymphocytes, Regulatory
  2. Vimali J, Yong YK, Murugesan A, Tan HY, Zhang Y, Ashwin R, et al.
    Front Biosci (Landmark Ed), 2024 Mar 22;29(3):128.
    PMID: 38538288 DOI: 10.31083/j.fbl2903128
    BACKGROUND: Chronic viral infection results in impaired immune responses rendering viral persistence. Here, we compared the quality of T-cell responses among chronic hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency virus (HIV)-infected individuals by examining the levels of expression of selected immune activation and exhaustion molecules on circulating MAIT cells and Tfh cells.

    METHODS: Cytokines were measured using a commercial Bio-plex Pro Human Cytokine Grp I Panel 17-plex kit (BioRad, Hercules, CA, USA). Inflammation was assessed by measuring an array of plasma cytokines, and phenotypic alterations in CD4+ T cells including circulating Tfh cells, CD8+ T cells, and TCR iVα7.2+ MAIT cells in chronic HBV, HCV, and HIV-infected patients and healthy controls. The cells were characterized based on markers pertaining to immune activation (CD69, ICOS, and CD27) proliferation (Ki67), cytokine production (TNF-α, IFN-γ) and exhaustion (PD-1). The cytokine levels and T cell phenotypes together with cell markers were correlated with surrogate markers of disease progression.

    RESULTS: The activation marker CD69 was significantly increased in CD4+hi T cells, while CD8+ MAIT cells producing IFN-γ were significantly increased in chronic HBV, HCV and HIV infections. Six cell phenotypes, viz., TNF-α+CD4+lo T cells, CD69+CD8+ T cells, CD69+CD4+ MAIT cells, PD-1+CD4+hi T cells, PD-1+CD8+ T cells, and Ki67+CD4+ MAIT cells, were independently associated with decelerating the plasma viral load (PVL). TNF-α levels showed a positive correlation with increase in cytokine levels and decrease in PVL.

    CONCLUSION: Chronic viral infection negatively impacts the quality of peripheral MAIT cells and Tfh cells via differential expression of both activating and inhibitory receptors.

    Matched MeSH terms: T-Lymphocytes, Helper-Inducer/metabolism
  3. Khalid K, Lim HX, Anwar A, Tan SH, Hwang JS, Ong SK, et al.
    AAPS PharmSciTech, 2024 Mar 12;25(3):60.
    PMID: 38472523 DOI: 10.1208/s12249-024-02778-x
    The protective efficacies of current licensed vaccines against COVID-19 have significantly reduced as a result of SARS-CoV-2 variants of concern (VOCs) which carried multiple mutations in the Spike (S) protein. Considering that these vaccines were developed based on the S protein of the original SARS-CoV-2 Wuhan strain, we designed a recombinant plasmid DNA vaccine based on highly conserved and immunogenic B and T cell epitopes against SARS-CoV-2 Wuhan strain and the Omicron VOC. Literature mining and bioinformatics were used to identify 6 immunogenic peptides from conserved regions of the SARS-CoV-2 S and membrane (M) proteins. Nucleotide sequences encoding these peptides representing highly conserved B and T cell epitopes were cloned into a pVAX1 vector to form the pVAX1/S2-6EHGFP recombinant DNA plasmid vaccine. The DNA vaccine was intranasally or intramuscularly administered to BALB/c mice and evaluations of humoral and cellular immune responses were performed. The intramuscular administration of pVAX1/S2-6EHGFP was associated with a significantly higher percentage of CD8+ T cells expressing IFN-γ when compared with the empty vector and PBS controls. Intramuscular or intranasal administrations of pVAX1/S2-6EHGFP resulted in robust IgG antibody responses. Sera from mice intramuscularly immunized with pVAX1/S2-6EHGFP were found to elicit neutralizing antibodies capable of SARS-CoV-2 Omicron variant with the ACE2 cell surface receptor. This study demonstrated that the DNA vaccine construct encoding highly conserved immunogenic B and T cell epitopes was capable of eliciting potent humoral and cellular immune responses in mice.
    Matched MeSH terms: CD8-Positive T-Lymphocytes
  4. Wojciech L, Png CW, Koh EY, Kioh DYQ, Deng L, Wang Z, et al.
    EMBO J, 2023 Nov 02;42(21):e112963.
    PMID: 37743772 DOI: 10.15252/embj.2022112963
    The large intestine harbors microorganisms playing unique roles in host physiology. The beneficial or detrimental outcome of host-microbiome coexistence depends largely on the balance between regulators and responder intestinal CD4+ T cells. We found that ulcerative colitis-like changes in the large intestine after infection with the protist Blastocystis ST7 in a mouse model are associated with reduction of anti-inflammatory Treg cells and simultaneous expansion of pro-inflammatory Th17 responders. These alterations in CD4+ T cells depended on the tryptophan metabolite indole-3-acetaldehyde (I3AA) produced by this single-cell eukaryote. I3AA reduced the Treg subset in vivo and iTreg development in vitro by modifying their sensing of TGFβ, concomitantly affecting recognition of self-flora antigens by conventional CD4+ T cells. Parasite-derived I3AA also induces over-exuberant TCR signaling, manifested by increased CD69 expression and downregulation of co-inhibitor PD-1. We have thus identified a new mechanism dictating CD4+ fate decisions. The findings thus shine a new light on the ability of the protist microbiome and tryptophan metabolites, derived from them or other sources, to modulate the adaptive immune compartment, particularly in the context of gut inflammatory disorders.
    Matched MeSH terms: T-Lymphocytes, Regulatory
  5. Balakrishnan P, Saravanan S, Vignesh R, Shankar EM
    Indian J Med Res, 2023 Nov 01;158(5&6):447-450.
    PMID: 38063301 DOI: 10.4103/ijmr.ijmr_1616_23
    Matched MeSH terms: CD4-Positive T-Lymphocytes
  6. Engku Abd Rahman ENS, Irekeola AA, Shueb RH, Mat Lazim N, Mohamud R, Chen X, et al.
    Cytokine, 2023 Oct;170:156341.
    PMID: 37657236 DOI: 10.1016/j.cyto.2023.156341
    TNFR2 is a surface marker of highly suppressive subset of CD4+ FoxP3+ regulatory T cells (Tregs) in humans and mice. This study examined the TNFR2 expression by Tregs of nasopharyngeal carcinoma (NPC) patients and healthy controls. The proliferation, migration, survival of TNFR2+ Tregs, and association with clinicopathological characteristics were assessed. The expression levels of selected cytokines were also determined. The results demonstrated that in both peripheral blood (PB) (10.45 ± 5.71%) and tumour microenvironment (TME) (54.38 ± 16.15%) of NPC patients, Tregs expressed TNFR2 at noticeably greater levels than conventional T cells (Tconvs) (3.91 ± 2.62%, p  0.05), the proportions of PB and TME TNFR2+ Tregs in NPC patients showed more proliferative, higher migration capacity, and better survival ability, as compared to those in healthy controls. Furthermore, TNFR2+ Tregs from NPC patients expressed significantly higher amounts of IL-6 (p = 0.0077), IL-10 (p = 0.0001), IFN-γ (p = 0.0105) and TNF-α (p 
    Matched MeSH terms: T-Lymphocytes, Regulatory*
  7. Xu X, Yi C, Feng T, Ge Y, Liu M, Wu C, et al.
    Clin Immunol, 2023 Aug;253:109685.
    PMID: 37406980 DOI: 10.1016/j.clim.2023.109685
    Inducing tumor-specific T cell responses and regulating suppressive tumor microenvironments have been a challenge for effective tumor therapy. CpG (ODN), the Toll-like receptor 9 agonist, has been widely used as adjuvants of cancer vaccines to induce T cell responses. We developed a novel adjuvant to improve the targeting of lymph nodes. CpG were modified with lipid and glycopolymers by the combination of photo-induced RAFT polymerization and click chemistry, and the novel adjuvant was termed as lipid-glycoadjuvant@AuNPs (LCpG). OVA protein was used as model antigen and melanoma model was established to test the immunotherapy effect of the adjuvant. In tumor model, the antitumor effect and mechanism of LCpG on the response of CTLs were examined by flow cytometry and cell cytotoxicity assay. The effects of LCpG on macrophage polarization and Tregs differentiation in tumor microenvironment were also studied by cell depletion assay and cytokine neutralization assay. We also tested the therapeutic effect of the combination of the adjuvant and anti-PD-1 treatment. LCpG could be rapidly transported to and retained longer in the lymphoid nodes than unmodified CpG. In melanoma model, LCpG controlled both primary tumor and its metastasis, and established long-term memory. In spleen and tumor draining lymphoid nodes, LCpG activated tumor-specific Tc1 responses, with increased CD8+ T-cell proliferation, antigen-specific Tc1 cytokine production and specific-tumor killing capacity. In tumor microenvironments, antigen-specific Tc1 induced by the LCpG promoted CTL infiltration, skewed tumor associated macrophages to M1 phenotype, regulated Treg and induced proinflammatory cytokines production in a CTL-derived IFN-γ-dependent manner. In vivo cell depletion and adoptive transfer experiments confirmed that antitumor activity of LCpG included vaccine was mainly dependent on CTL-derived IFN-γ. The anti-tumor efficacy of LCpG was dramatically enhanced when combined with anti-PD1 immunotherapy. LCpG was a promising adjuvant for vaccine formulation which could augment tumor-specific Tc1 activity, and regulate tumor microenvironments.
    Matched MeSH terms: CD8-Positive T-Lymphocytes
  8. Cowan AJ, Pont MJ, Sather BD, Turtle CJ, Till BG, Libby EN, et al.
    Lancet Oncol, 2023 Jul;24(7):811-822.
    PMID: 37414012 DOI: 10.1016/S1470-2045(23)00246-2
    BACKGROUND: γ-Secretase inhibitors (GSIs) increase B cell maturation antigen (BCMA) density on malignant plasma cells and enhance antitumour activity of BCMA chimeric antigen receptor (CAR) T cells in preclinical models. We aimed to evaluate the safety and identify the recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat (LY3039478) for individuals with relapsed or refractory multiple myeloma.

    METHODS: We conducted a phase 1, first-in-human trial combining crenigacestat with BCMA CAR T-cells at a single cancer centre in Seattle, WA, USA. We included individuals aged 21 years or older with relapsed or refractory multiple myeloma, previous autologous stem-cell transplant or persistent disease after more than four cycles of induction therapy, and Eastern Cooperative Oncology Group performance status of 0-2, regardless of previous BCMA-targeted therapy. To assess the effect of the GSI on BCMA surface density on bone marrow plasma cells, participants received GSI during a pretreatment run-in, consisting of three doses administered 48 h apart. BCMA CAR T cells were infused at doses of 50 × 106 CAR T cells, 150 × 106 CAR T cells, 300 × 106 CAR T cells, and 450 × 106 CAR T cells (total cell dose), in combination with the 25 mg crenigacestat dosed three times a week for up to nine doses. The primary endpoints were the safety and recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat, an oral GSI. This study is registered with ClinicalTrials.gov, NCT03502577, and has met accrual goals.

    FINDINGS: 19 participants were enrolled between June 1, 2018, and March 1, 2021, and one participant did not proceed with BCMA CAR T-cell infusion. 18 participants (eight [44%] men and ten [56%] women) with multiple myeloma received treatment between July 11, 2018, and April 14, 2021, with a median follow up of 36 months (95% CI 26 to not reached). The most common non-haematological adverse events of grade 3 or higher were hypophosphataemia in 14 (78%) participants, fatigue in 11 (61%), hypocalcaemia in nine (50%), and hypertension in seven (39%). Two deaths reported outside of the 28-day adverse event collection window were related to treatment. Participants were treated at doses up to 450 × 106 CAR+ cells, and the recommended phase 2 dose was not reached.

    INTERPRETATIONS: Combining a GSI with BCMA CAR T cells appears to be well tolerated, and crenigacestat increases target antigen density. Deep responses were observed among heavily pretreated participants with multiple myeloma who had previously received BCMA-targeted therapy and those who were naive to previous BCMA-targeted therapy. Further study of GSIs given with BCMA-targeted therapeutics is warranted in clinical trials.

    FUNDING: Juno Therapeutics-a Bristol Myers Squibb company and the National Institutes of Health.

    Matched MeSH terms: T-Lymphocytes
  9. Chan AML, Cheah JM, Lokanathan Y, Ng MH, Law JX
    Int J Mol Sci, 2023 Feb 16;24(4).
    PMID: 36835438 DOI: 10.3390/ijms24044026
    Cancer is the second leading contributor to global deaths caused by non-communicable diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the tumor progression, metastasis and resistance. Currently, chemotherapy and radiotherapy are the standard treatments for cancers. However, these treatments cause a significant number of side effects, as they damage both the cancer cells and the actively dividing normal cells indiscriminately. Hence, a new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects. However, the progression of cell-based immunotherapy is hindered by the combined action of TME and TD-EVs, which render the cancer cells less immunogenic. Recently, there has been an increase in interest in using immune cell derivatives to treat cancers. One of the highly potential immune cell derivatives is the NK cell-derived EVs (NK-EVs). As an acellular product, NK-EVs are resistant to the influence of TME and TD-EVs, and can be designed for "off-the-shelf" use. In this systematic review, we examine the safety and efficacy of NK-EVs to treat various cancers in vitro and in vivo.
    Matched MeSH terms: T-Lymphocytes
  10. Han WM, Avihingsanon A, Rajasuriar R, Tanuma J, Mundhe S, Lee MP, et al.
    J Acquir Immune Defic Syndr, 2023 Feb 01;92(2):180-188.
    PMID: 36625858 DOI: 10.1097/QAI.0000000000003121
    BACKGROUND: We evaluated trends in CD4/CD8 ratio among people living with HIV (PLWH) starting antiretroviral therapy (ART) with first-line integrase strand transfer inhibitors (INSTI) compared with non-INSTI-based ART, and the incidence of CD4/CD8 ratio normalization.

    METHODS: All PLWH enrolled in adult HIV cohorts of IeDEA Asia-Pacific who started with triple-ART with at least 1 CD4, CD8 (3-month window), and HIV-1 RNA measurement post-ART were included. CD4/CD8 ratio normalization was defined as a ratio ≥1. Longitudinal changes in CD4/CD8 ratio were analyzed by linear mixed model, the incidence of the normalization by Cox regression, and the differences in ratio recovery by group-based trajectory modeling.

    RESULTS: A total of 5529 PLWH were included; 80% male, median age 35 years (interquartile range [IQR], 29-43). First-line regimens were comprised of 65% NNRTI, 19% PI, and 16% INSTI. The baseline CD4/CD8 ratio was 0.19 (IQR, 0.09-0.33). PLWH starting with NNRTI- (P = 0.005) or PI-based ART (P = 0.030) had lower CD4/CD8 recovery over 5 years compared with INSTI. During 24,304 person-years of follow-up, 32% had CD4/CD8 ratio normalization. After adjusting for age, sex, baseline CD4, HIV-1 RNA, HCV, and year of ART initiation, PLWH started with INSTI had higher odds of achieving CD4/CD8 ratio normalization than NNRTI- (P < 0.001) or PI-based ART (P = 0.015). In group-based trajectory modeling analysis, INSTI was associated with greater odds of being in the higher ratio trajectory.

    CONCLUSIONS: INSTI use was associated with higher rates of CD4/CD8 ratio recovery and normalization in our cohort. These results emphasize the relative benefits of INSTI-based ART for immune restoration.

    Matched MeSH terms: CD8-Positive T-Lymphocytes
  11. Reitsema RD, van der Geest KSM, Sandovici M, Jiemy WF, Graver JC, Abdulahad WH, et al.
    Rheumatology (Oxford), 2022 Dec 23;62(1):417-427.
    PMID: 35460236 DOI: 10.1093/rheumatology/keac250
    OBJECTIVES: Evidence from temporal artery tissue and blood suggests involvement of CD8+ T cells in the pathogenesis of GCA, but their exact role is poorly understood. Therefore, we performed a comprehensive analysis of circulating and lesional CD8+ T cells in GCA patients.

    METHODS: Circulating CD8+ T cells were analysed for differentiation status (CD45RO, CCR7), markers of activation (CD69 and CD25) and proliferation (Ki-67) in 14 newly diagnosed GCA patients and 18 healthy controls by flow cytometry. Proliferative capacity of CD8+ T cells upon anti-CD3 and anti-CD3/28 in vitro stimulation was assessed. Single-cell RNA sequencing of peripheral blood mononuclear cells of patients and controls (n = 3 each) was performed for mechanistic insight. Immunohistochemistry was used to detect CD3, CD8, Ki-67, TNF-α and IFN-γ in GCA-affected tissues.

    RESULTS: GCA patients had decreased numbers of circulating effector memory CD8+ T cells but the percentage of Ki-67-expressing effector memory CD8+ T cells was increased. Circulating CD8+ T cells from GCA patients demonstrated reduced T cell receptor activation thresholds and displayed a gene expression profile that is concurrent with increased proliferation. CD8+ T cells were detected in GCA temporal arteries and aorta. These vascular CD8+ T cells expressed IFN-γ but not Ki-67.

    CONCLUSION: In GCA, circulating effector memory CD8+ T cells demonstrate a proliferation-prone phenotype. The presence of CD8+ T cells in inflamed arteries seems to reflect recruitment of circulating cells rather than local expansion. CD8+ T cells in inflamed tissues produce IFN-γ, which is an important mediator of local inflammatory responses in GCA.

    Matched MeSH terms: CD8-Positive T-Lymphocytes/metabolism
  12. Gazi U, Baykam N, Karasartova D, Tosun O, Akdogan O, Yapar D, et al.
    Trop Biomed, 2022 Dec 01;39(4):587-591.
    PMID: 36602220 DOI: 10.47665/tb.39.4.016
    Crimean-Congo haemorrhagic fever (CCHF) is a severe human infection which can lead to fatal consequences. Acute CCHF patients were previously shown to exhibit frequencies of regulatory T-cell (Treg) but lower Treg-mediated suppressive activities than the healthy counterparts. This study aims is to investigate the phosphorylation levels of Foxp3 protein (master regulator of Treg cells) in CCHF patients. Blood samples collected from 18 CCHF patients and nine healthy volunteers were used to isolate peripheral blood mononuclear cells (PBMCs). Total and phosphorylated Foxp3 expression levels in the isolated PBMC samples were monitored by western blot and quantified using ImageJ software. Total Foxp3 expression levels in CCHF patients displayed decreasing trend, but not significantly. In contrast, significantly lower expression levels of phosphorylated Foxp3 were reported in CCHF patients. Our results suggest a possible association between Foxp3 dephosphorylation and CCHF pathogenesis. Nevertheless, more studies are required to evaluate the effect of Foxp3 dephosphorylation on Treg function, which would not only help to enlighten the CCHF pathogenesis but also contribute to the development of effective treatment strategies.
    Matched MeSH terms: T-Lymphocytes, Regulatory
  13. Chong YP, Peter EP, Lee FJM, Chan CM, Chai S, Ling LPC, et al.
    Sci Rep, 2022 Jul 19;12(1):12315.
    PMID: 35853996 DOI: 10.1038/s41598-022-16671-9
    As pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) are the two major cell types that comprise the immunosuppressive tumor microenvironment of pancreatic cancer, we aimed to investigate the role of conditioned medium derived from PCCs and PSCs co-culture on the viability of lymphocytes. The conditioned medium (CM) collected from PCCs and/or PSCs was used to treat peripheral blood mononuclear cells (PBMCs) to determine CM ability in reducing lymphocytes population. A proteomic analysis has been done on the CM to investigate the differentially expressed protein (DEP) expressed by two PCC lines established from different stages of tumor. Subsequently, we investigated if the reduction of lymphocytes was directly caused by CM or indirectly via CM-induced MDSCs. This was achieved by isolating lymphocyte subtypes and treating them with CM and CM-induced MDSCs. Both PCCs and PSCs were important in suppressing lymphocytes, and the PCCs derived from a metastatic tumor appeared to have a stronger suppressive effect than the PCCs derived from a primary tumor. According to the proteomic profiles of CM, 416 secreted proteins were detected, and 13 DEPs were identified between PANC10.05 and SW1990. However, CM was found unable to reduce lymphocytes viability through a direct pathway. In contrast, CM that contains proteins secreted by PCC and/or PSC appear immunogenic as they increase the viability of lymphocytes subtypes. Lymphocyte subtype treated with CM-induced MDSCs showed reduced viability in T helper 1 (Th1), T helper 2 (Th2), and T regulatory (Treg) cells, but not in CD8+ T cells, and B cells. As a conclusion, the interplay between PCCs and PSCs is important as their co-culture displays a different trend in lymphocytes suppression, hence, their co-culture should be included in future studies to better mimic the tumor microenvironment.
    Matched MeSH terms: CD8-Positive T-Lymphocytes/metabolism
  14. Andrišić M, Žarković I, Šandor K, Vujnović A, Perak Junaković E, Bendelja K, et al.
    Vet Immunol Immunopathol, 2022 Jan;243:110365.
    PMID: 34920287 DOI: 10.1016/j.vetimm.2021.110365
    Aujeszky's disease (AD) is a viral infectious disease caused by Suid herpesvirus 1 (SuHV-1). Vaccination and eradication of AD in domestic pigs is possible using marker vaccines with attenuated or inactivated SuHV-1, or subunit vaccines. However, vaccines with attenuated SuHV-1 have shown to be more potent in inducing strong cell-mediated immune response. The studies have shown that Parapoxvirus ovis, as well as Propionibacterium granulosum with lipopolysacharides (LPS) of Escherichia coli have pronounced immunomodulatory effects and that in combination with the vaccines can induce stronger humoral and cellular immune responses than use of vaccines alone. In our study distribution of peripheral blood T cell subpopulations was analysed after administration of vaccine alone (attenuated SuHV-1), immunostimulators (inactivated Parapoxvirus ovis or combination of an inactivated P. granulosum and detoxified LPS of E. coli) and combinations of vaccine with each immunostimulator to the 12-week old piglets. Throughout the study no significant changes were found in the proportions of γδ and most αβ T cell subpopulations analysed. However, on the seventh day of the study combination of an inactivated P. granulosum and LPS of E. coli with vaccine induced transient but significant increase of the proportions of CD4+CD8α+ and CD4-CD8α+ αβ T cells, that have been strongly associated with early protection of SuHV-1 infected pigs. Our findings indicate that combination of inactivated P. granulosum and detoxified E. coli LPS could be used for enhancement of a cellular immune response induced by vaccines against AD.
    Matched MeSH terms: T-Lymphocytes/drug effects*
  15. Hasenan N, Mohd Isa SA, Hussain FA
    Asian Pac J Cancer Prev, 2021 Dec 01;22(12):4011-4016.
    PMID: 34967583 DOI: 10.31557/APJCP.2021.22.12.4011
    BACKGROUND: c-Myc has become significantly involved in aggressive B-cell non Hodgkin lymphoma (NHL), but little is known about its importance in T and NK cell NHL (TNKcNHLs) in association with prognostic factors. The study is to investigate the significance of c-Myc expression with clinicopathological features of TNKcNHLs patients.

    METHODOLOGY: A cross-sectional study of 32 archived tissue blocks of TNKcNHLs were immunohistochemically stained with c-Myc. The results were microscopically evaluated and statistically analysed to examine the association between the clinicopathological data with the c-Myc expression.

    RESULTS: c-Myc protein expressions were detected in 25/32 (78.1%) cases. The median age was 38-years.  Malay ethnicity (92.0%) with 21 males and 11 females. c-Myc expressions were seen in T lymphoblastic lymphoma (20%), ALK-positive ALCL (16%) ,PTCL,NOS (16%), extra nodal NK/T-cell lymphoma, nasal type (12%), extra-nodal involvement (78.1%), elevated serum LDH (83.3%) and high ECOG performance status (82.4%). However, no statistical significant of c-Myc in association with the clinicopathological parameters (p > 0.05).

    CONCLUSION: There was no statistically significant association of clinicopathological parameters and histological subtypes of TNKcNHLs contributed by small samples tested. However, the attribution of c-Myc in this disease should be further explored.

    Matched MeSH terms: T-Lymphocytes/pathology
  16. Ahmad S, Hatmal MM, Lambuk L, Al-Hatamleh MAI, Alshaer W, Mohamud R
    Life Sci, 2021 Dec 01;286:120063.
    PMID: 34673116 DOI: 10.1016/j.lfs.2021.120063
    COVID-19 is a multi-faceted disease ranging from asymptomatic to severely ill condition that primarily affects the lungs and could advance to other organs as well. It's causing factor, SARS-CoV-2 is recognized to develop robust cell-mediated immunity that responsible to either control or exaggerate the infection. As an important cell subset that control immune responses and are significantly dysregulated in COVID-19, Tregs is proposed to be considered for COVID-19 management. Among its hallmark, TNFR2 is recently recognized to play important role in the function and survival of Tregs. This review gathers available TNFR2 agonists to directly target Tregs as a potential approach to overcome immune dysregulation that affect the severity in COVID-19. Furthermore, this review performs a rigid body docking of TNF-TNFR2 interaction and such interaction with TNFR2 agonist to predict the optimal targeting approach.
    Matched MeSH terms: T-Lymphocytes, Regulatory/immunology*
  17. Ukrainskaya V, Rubtsov Y, Pershin D, Podoplelova N, Terekhov S, Yaroshevich I, et al.
    Small, 2021 11;17(45):e2102643.
    PMID: 34605165 DOI: 10.1002/smll.202102643
    Development of CAR-T therapy led to immediate success in the treatment of B cell leukemia. Manufacturing of therapy-competent functional CAR-T cells needs robust protocols for ex vivo/in vitro expansion of modified T-cells. This step is challenging, especially if non-viral low-efficiency delivery protocols are used to generate CAR-T cells. Modern protocols for CAR-T cell expansion are imperfect since non-specific stimulation results in rapid outgrowth of CAR-negative T cells, and removal of feeder cells from mixed cultures necessitates additional purification steps. To develop a specific and improved protocol for CAR-T cell expansion, cell-derived membrane vesicles are taken advantage of, and the simple structural demands of the CAR-antigen interaction. This novel approach is to make antigenic microcytospheres from common cell lines stably expressing surface-bound CAR antigens, and then use them for stimulation and expansion of CAR-T cells. The data presented in this article clearly demonstrate that this protocol produced antigen-specific vesicles with the capacity to induce stronger stimulation, proliferation, and functional activity of CAR-T cells than is possible with existing protocols. It is predicted that this new methodology will significantly advance the ability to obtain improved populations of functional CAR-T cells for therapy.
    Matched MeSH terms: T-Lymphocytes*
  18. Ahmad S, Al-Hatamleh MAI, Mohamud R
    Cell Immunol, 2021 10;368:104412.
    PMID: 34340162 DOI: 10.1016/j.cellimm.2021.104412
    Autoimmunity is the assault of immune response towards self-antigens, resulting to inflammation and tissue injury. It is staged into three phases and caused by malfunction of immune tolerance. In our body, immune tolerance is synchronized by several immunosuppressor cells such as regulatory T cells and B cells as well as myeloid-derived suppressor cells, which are prominently dysregulated in autoimmunity. Hence, targeting these cell populations serve as a significant potential in the therapy of autoimmunity. Nanotechnology with its advantageous properties is shown to be a remarkable tool as drug delivery system in this field. This review focused on the development of therapeutics in autoimmune diseases utilizing various nanoparticles formulation based on two targeting approaches in autoimmunity, passive and active targeting. Lastly, this review outlined the approved present nanomedicines as well as in clinical evaluations and issues regarding the lack of translation of these nanomedicines into the market, despite the abundant of positive experimental observations.
    Matched MeSH terms: T-Lymphocytes, Regulatory/immunology*
  19. Singh Y, Fuloria NK, Fuloria S, Subramaniyan V, Meenakshi DU, Chakravarthi S, et al.
    J Med Virol, 2021 Oct;93(10):5726-5728.
    PMID: 34232521 DOI: 10.1002/jmv.27181
    Matched MeSH terms: T-Lymphocytes/immunology
  20. Poli A, Abdul-Hamid S, Zaurito AE, Campagnoli F, Bevilacqua V, Sheth B, et al.
    Proc Natl Acad Sci U S A, 2021 08 03;118(31).
    PMID: 34312224 DOI: 10.1073/pnas.2010053118
    Regulatory T cells (Tregs) play fundamental roles in maintaining peripheral tolerance to prevent autoimmunity and limit legitimate immune responses, a feature hijacked in tumor microenvironments in which the recruitment of Tregs often extinguishes immune surveillance through suppression of T-effector cell signaling and tumor cell killing. The pharmacological tuning of Treg activity without impacting on T conventional (Tconv) cell activity would likely be beneficial in the treatment of various human pathologies. PIP4K2A, 2B, and 2C constitute a family of lipid kinases that phosphorylate PtdIns5P to PtdIns(4,5)P 2 They are involved in stress signaling, act as synthetic lethal targets in p53-null tumors, and in mice, the loss of PIP4K2C leads to late onset hyperinflammation. Accordingly, a human single nucleotide polymorphism (SNP) near the PIP4K2C gene is linked with susceptibility to autoimmune diseases. How PIP4Ks impact on human T cell signaling is not known. Using ex vivo human primary T cells, we found that PIP4K activity is required for Treg cell signaling and immunosuppressive activity. Genetic and pharmacological inhibition of PIP4K in Tregs reduces signaling through the PI3K, mTORC1/S6, and MAPK pathways, impairs cell proliferation, and increases activation-induced cell death while sparing Tconv. PIP4K and PI3K signaling regulate the expression of the Treg master transcriptional activator FOXP3 and the epigenetic signaling protein Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). Our studies suggest that the pharmacological inhibition of PIP4K can reprogram human Treg identity while leaving Tconv cell signaling and T-helper differentiation to largely intact potentially enhancing overall immunological activity.
    Matched MeSH terms: T-Lymphocytes, Regulatory/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links