Displaying all 10 publications

Abstract:
Sort:
  1. Sukumaran K
    Med J Malaysia, 1988 Jun;43(2):155-8.
    PMID: 3237131
    Matched MeSH terms: Tranexamic Acid/therapeutic use*
  2. Flaherty K, Bath PM, Dineen R, Law Z, Scutt P, Pocock S, et al.
    Trials, 2017 Dec 20;18(1):607.
    PMID: 29262841 DOI: 10.1186/s13063-017-2341-5
    RATIONALE: Aside from blood pressure lowering, treatment options for intracerebral haemorrhage remain limited and a proportion of patients will undergo early haematoma expansion with resultant significant morbidity and mortality. Tranexamic acid (TXA), an anti-fibrinolytic drug, has been shown to significantly reduce mortality in patients, who are bleeding following trauma, when given rapidly. TICH-2 is testing whether TXA is effective at improving outcome in spontaneous intracerebral haemorrhage (SICH).

    METHODS AND DESIGN: TICH-2 is a pragmatic, phase III, prospective, double-blind, randomised placebo-controlled trial. Two thousand adult (aged ≥ 18 years) patients with an acute SICH, within 8 h of stroke onset, will be randomised to receive TXA or the placebo control. The primary outcome is ordinal shift of modified Rankin Scale score at day 90. Analyses will be performed using intention-to-treat.

    RESULTS: This paper and its attached appendices describe the statistical analysis plan (SAP) for the trial and were developed and published prior to database lock and unblinding to treatment allocation. The SAP includes details of analyses to be undertaken and unpopulated tables which will be reported in the primary and key secondary publications. The database will be locked in early 2018, ready for publication of the results later in the same year.

    DISCUSSION: The SAP details the analyses that will be done to avoid bias arising from prior knowledge of the study findings. The trial will determine whether TXA can improve outcome after SICH, which currently has no definitive therapy.

    TRIAL REGISTRATION: ISRCTN registry, ID: ISRCTN93732214 . Registered on 17 January 2013.

    Matched MeSH terms: Tranexamic Acid/therapeutic use*
  3. Sprigg N, Flaherty K, Appleton JP, Al-Shahi Salman R, Bereczki D, Beridze M, et al.
    Health Technol Assess, 2019 07;23(35):1-48.
    PMID: 31322116 DOI: 10.3310/hta23350
    BACKGROUND: Tranexamic acid reduces death due to bleeding after trauma and postpartum haemorrhage.

    OBJECTIVE: The aim of the study was to assess if tranexamic acid is safe, reduces haematoma expansion and improves outcomes in adults with spontaneous intracerebral haemorrhage (ICH).

    DESIGN: The TICH-2 (Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage) study was a pragmatic, Phase III, prospective, double-blind, randomised placebo-controlled trial.

    SETTING: Acute stroke services at 124 hospitals in 12 countries (Denmark, Georgia, Hungary, Ireland, Italy, Malaysia, Poland, Spain, Sweden, Switzerland, Turkey and the UK).

    PARTICIPANTS: Adult patients (aged ≥ 18 years) with ICH within 8 hours of onset.

    EXCLUSION CRITERIA: Exclusion criteria were ICH secondary to anticoagulation, thrombolysis, trauma or a known underlying structural abnormality; patients for whom tranexamic acid was thought to be contraindicated; prestroke dependence (i.e. patients with a modified Rankin Scale [mRS] score > 4); life expectancy acid bolus followed by an 8-hour 1-g infusion or matching placebo (i.e. 0.9% saline).

    MAIN OUTCOME MEASURE: The primary outcome was functional status (death or dependency) at day 90, which was measured by the shift in the mRS score, using ordinal logistic regression, with adjustment for stratification and minimisation criteria.

    RESULTS: A total of 2325 participants (tranexamic acid, n = 1161; placebo, n = 1164) were recruited from 124 hospitals in 12 countries between 2013 and 2017. Treatment groups were well balanced at baseline. The primary outcome was determined for 2307 participants (tranexamic acid, n = 1152; placebo, n = 1155). There was no statistically significant difference between the treatment groups for the primary outcome of functional status at day 90 [adjusted odds ratio (aOR) 0.88, 95% confidence interval (CI) 0.76 to 1.03; p = 0.11]. Although there were fewer deaths by day 7 in the tranexamic acid group (aOR 0.73, 95% CI 0.53 to 0.99; p = 0.041), there was no difference in case fatality at 90 days (adjusted hazard ratio 0.92, 95% CI 0.77 to 1.10; p = 0.37). Fewer patients experienced serious adverse events (SAEs) after treatment with tranexamic acid than with placebo by days 2 (p = 0.027), 7 (p = 0.020) and 90 (p = 0.039). There was no increase in thromboembolic events or seizures.

    LIMITATIONS: Despite attempts to enrol patients rapidly, the majority of participants were enrolled and treated > 4.5 hours after stroke onset. Pragmatic inclusion criteria led to a heterogeneous population of participants, some of whom had very large strokes. Although 12 countries enrolled participants, the majority (82.1%) were from the UK.

    CONCLUSIONS: Tranexamic acid did not affect a patient's functional status at 90 days after ICH, despite there being significant modest reductions in early death (by 7 days), haematoma expansion and SAEs, which is consistent with an antifibrinolytic effect. Tranexamic acid was safe, with no increase in thromboembolic events.

    FUTURE WORK: Future work should focus on enrolling and treating patients early after stroke and identify which participants are most likely to benefit from haemostatic therapy. Large randomised trials are needed.

    TRIAL REGISTRATION: Current Controlled Trials ISRCTN93732214.

    FUNDING: This project was funded by the National Institute for Health Research Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 23, No. 35. See the NIHR Journals Library website for further project information. The project was also funded by the Pragmatic Trials, UK, funding call and the Swiss Heart Foundation in Switzerland.

    Matched MeSH terms: Tranexamic Acid/therapeutic use*
  4. Ovesen C, Jakobsen JC, Gluud C, Steiner T, Law Z, Flaherty K, et al.
    Stroke, 2021 08;52(8):2629-2636.
    PMID: 34000834 DOI: 10.1161/STROKEAHA.120.032426
    BACKGROUND AND PURPOSE: The computed tomography angiography or contrast-enhanced computed tomography based spot sign has been proposed as a biomarker for identifying on-going hematoma expansion in patients with acute intracerebral hemorrhage. We investigated, if spot-sign positive participants benefit more from tranexamic acid versus placebo as compared to spot-sign negative participants.

    METHODS: TICH-2 trial (Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage) was a randomized, placebo-controlled clinical trial recruiting acutely hospitalized participants with intracerebral hemorrhage within 8 hours after symptom onset. Local investigators randomized participants to 2 grams of intravenous tranexamic acid or matching placebo (1:1). All participants underwent computed tomography scan on admission and on day 2 (24±12 hours) after randomization. In this sub group analysis, we included all participants from the main trial population with imaging allowing adjudication of spot sign status.

    RESULTS: Of the 2325 TICH-2 participants, 254 (10.9%) had imaging allowing for spot-sign adjudication. Of these participants, 64 (25.2%) were spot-sign positive. Median (interquartile range) time from symptom onset to administration of the intervention was 225.0 (169.0 to 310.0) minutes. The adjusted percent difference in absolute day-2 hematoma volume between participants allocated to tranexamic versus placebo was 3.7% (95% CI, -12.8% to 23.4%) for spot-sign positive and 1.7% (95% CI, -8.4% to 12.8%) for spot-sign negative participants (Pheterogenity=0.85). No difference was observed in significant hematoma progression (dichotomous composite outcome) between participants allocated to tranexamic versus placebo among spot-sign positive (odds ratio, 0.85 [95% CI, 0.29 to 2.46]) and negative (odds ratio, 0.77 [95% CI, 0.41 to 1.45]) participants (Pheterogenity=0.88).

    CONCLUSIONS: Data from the TICH-2 trial do not support that admission spot sign status modifies the treatment effect of tranexamic acid versus placebo in patients with acute intracerebral hemorrhage. The results might have been affected by low statistical power as well as treatment delay. Registration: URL: http://www.controlled-trials.com; Unique identifier: ISRCTN93732214.

    Matched MeSH terms: Tranexamic Acid/therapeutic use*
  5. Law ZK, Desborough M, Roberts I, Al-Shahi Salman R, England TJ, Werring DJ, et al.
    J Am Heart Assoc, 2021 02;10(5):e019130.
    PMID: 33586453 DOI: 10.1161/JAHA.120.019130
    Background Antiplatelet therapy increases the risk of hematoma expansion in intracerebral hemorrhage (ICH) while the effect on functional outcome is uncertain. Methods and Results This is an exploratory analysis of the TICH-2 (Tranexamic Acid in Intracerebral Hemorrhage-2) double-blind, randomized, placebo-controlled trial, which studied the efficacy of tranexamic acid in patients with spontaneous ICH within 8 hours of onset. Multivariable logistic regression and ordinal regression were performed to explore the relationship between pre-ICH antiplatelet therapy, and 24-hour hematoma expansion and day 90 modified Rankin Scale score, as well as the effect of tranexamic acid. Of 2325 patients, 611 (26.3%) had pre-ICH antiplatelet therapy. They were older (mean age, 75.7 versus 66.5 years), more likely to have ischemic heart disease (25.4% versus 2.7%), ischemic stroke (36.2% versus 6.3%), intraventricular hemorrhage (40.2% versus 27.5%), and larger baseline hematoma volume (mean, 28.1 versus 22.6 mL) than the no-antiplatelet group. Pre-ICH antiplatelet therapy was associated with a significantly increased risk of hematoma expansion (adjusted odds ratio [OR], 1.28; 95% CI, 1.01-1.63), a shift toward unfavorable outcome in modified Rankin Scale (adjusted common OR, 1.58; 95% CI, 1.32-1.91) and a higher risk of death at day 90 (adjusted OR, 1.63; 95% CI, 1.25-2.11). Tranexamic acid reduced the risk of hematoma expansion in the overall patients with ICH (adjusted OR, 0.76; 95% CI, 0.62-0.93) and antiplatelet subgroup (adjusted OR, 0.61; 95% CI, 0.41-0.91) with no significant interaction between pre-ICH antiplatelet therapy and tranexamic acid (P interaction=0.248). Conclusions Antiplatelet therapy is independently associated with hematoma expansion and unfavorable functional outcome. Tranexamic acid reduced hematoma expansion regardless of prior antiplatelet therapy use. Registration URL: https://www.isrctn.com; Unique identifier: ISRCTN93732214.
    Matched MeSH terms: Tranexamic Acid/therapeutic use*
  6. Sprigg N, Flaherty K, Appleton JP, Al-Shahi Salman R, Bereczki D, Beridze M, et al.
    Lancet, 2018 May 26;391(10135):2107-2115.
    PMID: 29778325 DOI: 10.1016/S0140-6736(18)31033-X
    BACKGROUND: Tranexamic acid can prevent death due to bleeding after trauma and post-partum haemorrhage. We aimed to assess whether tranexamic acid reduces haematoma expansion and improves outcome in adults with stroke due to intracerebral haemorrhage.

    METHODS: We did an international, randomised placebo-controlled trial in adults with intracerebral haemorrhage from acute stroke units at 124 hospital sites in 12 countries. Participants were randomly assigned (1:1) to receive 1 g intravenous tranexamic acid bolus followed by an 8 h infusion of 1 g tranexamic acid or a matching placebo, within 8 h of symptom onset. Randomisation was done centrally in real time via a secure website, with stratification by country and minimisation on key prognostic factors. Treatment allocation was concealed from patients, outcome assessors, and all other health-care workers involved in the trial. The primary outcome was functional status at day 90, measured by shift in the modified Rankin Scale, using ordinal logistic regression with adjustment for stratification and minimisation criteria. All analyses were done on an intention-to-treat basis. This trial is registered with the ISRCTN registry, number ISRCTN93732214.

    FINDINGS: We recruited 2325 participants between March 1, 2013, and Sept 30, 2017. 1161 patients received tranexamic acid and 1164 received placebo; the treatment groups were well balanced at baseline. The primary outcome was assessed for 2307 (99%) participants. The primary outcome, functional status at day 90, did not differ significantly between the groups (adjusted odds ratio [aOR] 0·88, 95% CI 0·76-1·03, p=0·11). Although there were fewer deaths by day 7 in the tranexamic acid group (101 [9%] deaths in the tranexamic acid group vs 123 [11%] deaths in the placebo group; aOR 0·73, 0·53-0·99, p=0·0406), there was no difference in case fatality at 90 days (250 [22%] vs 249 [21%]; adjusted hazard ratio 0·92, 95% CI 0·77-1·10, p=0·37). Fewer patients had serious adverse events after tranexamic acid than after placebo by days 2 (379 [33%] patients vs 417 [36%] patients), 7 (456 [39%] vs 497 [43%]), and 90 (521 [45%] vs 556 [48%]).

    INTERPRETATION: Functional status 90 days after intracerebral haemorrhage did not differ significantly between patients who received tranexamic acid and those who received placebo, despite a reduction in early deaths and serious adverse events. Larger randomised trials are needed to confirm or refute a clinically significant treatment effect.

    FUNDING: National Institute of Health Research Health Technology Assessment Programme and Swiss Heart Foundation.

    Matched MeSH terms: Tranexamic Acid/therapeutic use*
  7. Shah Jahan MY, Shamila MA, Nurul Azlean N, Mohd Amin M, Anandakumar K, Ahmad Ibrahim KB, et al.
    Med J Malaysia, 2019 08;74(4):300-306.
    PMID: 31424037
    INTRODUCTION: Trauma is a Global threat and the 5th highest cause of all-cause mortality in Malaysia caused predominantly due to road traffic accidents. Majority of trauma victims are young adults aged between 21-40 years old. In Malaysia, 24 out of 100,000 population die annually due to trauma, rating us amongst the highest in South East Asia. These alarming figures justify aggressive preventive and mitigation strategies. The aim of this paper is to promote the implementation of evidence-based interventions that will reduce the rate of preventable death because of trauma. Tranexamic acid is one of the few interventions in the early management of severe trauma with level-one evidence. Tranexamic acid has been proven to reduce all causes of mortality and mortality due to bleeding. Evidence proves that it is most effective when administered early, particularly within the 1st hour of trauma. This proposed guideline is formulated based upon quality evidence from multicentre studies, clinical practices in other countries and consideration of the local demographic factors with the intent of enabling an easy and simple pathway to administer tranexamic acid early in the care of the severely injured.

    CONCLUSION: The guideline highlights select pre-hospital criteria's and the methods for drug administration. The authors recognise that some variants may be present amongst certain institutions necessitating minor adaptations, nevertheless the core principles of advocating tranexamic acid early in the course of pre-hospital trauma should be adhered to.

    Matched MeSH terms: Tranexamic Acid/therapeutic use
  8. Brenner A, Belli A, Chaudhri R, Coats T, Frimley L, Jamaluddin SF, et al.
    Crit Care, 2020 11 11;24(1):560.
    PMID: 33172504 DOI: 10.1186/s13054-020-03243-4
    BACKGROUND: The CRASH-3 trial hypothesised that timely tranexamic acid (TXA) treatment might reduce deaths from intracranial bleeding after traumatic brain injury (TBI). To explore the mechanism of action of TXA in TBI, we examined the timing of its effect on death.

    METHODS: The CRASH-3 trial randomised 9202 patients within 3 h of injury with a GCS score ≤ 12 or intracranial bleeding on CT scan and no significant extracranial bleeding to receive TXA or placebo. We conducted an exploratory analysis of the effects of TXA on all-cause mortality within 24 h of injury and within 28 days, excluding patients with a GCS score of 3 or bilateral unreactive pupils, stratified by severity and country income. We pool data from the CRASH-2 and CRASH-3 trials in a one-step fixed effects individual patient data meta-analysis.

    RESULTS: There were 7637 patients for analysis after excluding patients with a GCS score of 3 or bilateral unreactive pupils. Of 1112 deaths, 23.3% were within 24 h of injury (early deaths). The risk of early death was reduced with TXA (112 (2.9%) TXA group vs 147 (3.9%) placebo group; risk ratio [RR] RR 0.74, 95% CI 0.58-0.94). There was no evidence of heterogeneity by severity (p = 0.64) or country income (p = 0.68). The risk of death beyond 24 h of injury was similar in the TXA and placebo groups (432 (11.5%) TXA group vs 421 (11.7%) placebo group; RR 0.98, 95% CI 0.69-1.12). The risk of death at 28 days was 14.0% in the TXA group versus 15.1% in the placebo group (544 vs 568 events; RR 0.93, 95% CI 0.83-1.03). When the CRASH-2 and CRASH-3 trial data were pooled, TXA reduced early death (RR 0.78, 95% CI 0.70-0.87) and death within 28 days (RR 0.88, 95% CI 0.82-0.94).

    CONCLUSIONS: Tranexamic acid reduces early deaths in non-moribund TBI patients regardless of TBI severity or country income. The effect of tranexamic acid in patients with isolated TBI is similar to that in polytrauma. Treatment is safe and even severely injured patients appear to benefit when treated soon after injury.

    TRIAL REGISTRATION: ISRCTN15088122 , registered on 19 July 2011; NCT01402882 , registered on 26 July 2011.

    Matched MeSH terms: Tranexamic Acid/therapeutic use
  9. Jackson N, Hashim ZA, Zainal NA, Jamaluddin N
    Singapore Med J, 1995 Apr;36(2):230-1.
    PMID: 7676276
    A 30-year-old Malay lady, with no previous or family history of bleeding, presented with severe gum bleeding 25 days post-partum. The factor VIII:c was 0.03 iu/ml with evidence of a slow-acting factor VIII inhibitor. Von Willebrand factor antigen (VWF:age) varied from less that 0.05 to 0.17 iu/ml, and there was absent ristocetin-induced platelet aggregation. Anti-nuclear and anti-DNA antibodies were present, but there were no other features of systemic lupus erythematosus. There was some clinical response to cryoprecipitate and tranexamic acid, and slight improvement with corticosteroid. Fifteen months later, the patient has no active bleeding problem, and her VWF-ag is increasing spontaneously. However, factor VIII:c is less than 0.01 iu/ml and her factor VIII inhibitor titre is still > 20 Bethesda units/ml.
    Matched MeSH terms: Tranexamic Acid/therapeutic use
  10. Mahmood A, Needham K, Shakur-Still H, Harris T, Jamaluddin SF, Davies D, et al.
    Emerg Med J, 2021 Apr;38(4):270-278.
    PMID: 33262252 DOI: 10.1136/emermed-2020-210424
    BACKGROUND: Early tranexamic acid (TXA) treatment reduces head injury deaths after traumatic brain injury (TBI). We used brain scans that were acquired as part of the routine clinical practice during the CRASH-3 trial (before unblinding) to examine the mechanism of action of TXA in TBI. Specifically, we explored the potential effects of TXA on intracranial haemorrhage and infarction.

    METHODS: This is a prospective substudy nested within the CRASH-3 trial, a randomised placebo-controlled trial of TXA (loading dose 1 g over 10 min, then 1 g infusion over 8 hours) in patients with isolated head injury. CRASH-3 trial patients were recruited between July 2012 and January 2019. Participants in the current substudy were a subset of trial patients enrolled at 10 hospitals in the UK and 4 in Malaysia, who had at least one CT head scan performed as part of the routine clinical practice within 28 days of randomisation. The primary outcome was the volume of intraparenchymal haemorrhage (ie, contusion) measured on a CT scan done after randomisation. Secondary outcomes were progressive intracranial haemorrhage (post-randomisation CT shows >25% of volume seen on pre-randomisation CT), new intracranial haemorrhage (any haemorrhage seen on post-randomisation CT but not on pre-randomisation CT), cerebral infarction (any infarction seen on any type of brain scan done post-randomisation, excluding infarction seen pre-randomisation) and intracranial haemorrhage volume (intraparenchymal + intraventricular + subdural + epidural) in those who underwent neurosurgical haemorrhage evacuation. We planned to conduct sensitivity analyses excluding patients who were severely injured at baseline. Dichotomous outcomes were analysed using relative risks (RR) or hazard ratios (HR), and continuous outcomes using a linear mixed model.

    RESULTS: 1767 patients were included in this substudy. One-third of the patients had a baseline GCS (Glasgow Coma Score) of 3 (n=579) and 24% had unilateral or bilateral unreactive pupils. 46% of patients were scanned pre-randomisation and post-randomisation (n=812/1767), 19% were scanned only pre-randomisation (n=341/1767) and 35% were scanned only post-randomisation (n=614/1767). In all patients, there was no evidence that TXA prevents intraparenchymal haemorrhage expansion (estimate=1.09, 95% CI 0.81 to 1.45) or intracranial haemorrhage expansion in patients who underwent neurosurgical haemorrhage evacuation (n=363) (estimate=0.79, 95% CI 0.57 to 1.11). In patients scanned pre-randomisation and post-randomisation (n=812), there was no evidence that TXA reduces progressive haemorrhage (adjusted RR=0.91, 95% CI 0.74 to 1.13) and new haemorrhage (adjusted RR=0.85, 95% CI 0.72 to 1.01). When patients with unreactive pupils at baseline were excluded, there was evidence that TXA prevents new haemorrhage (adjusted RR=0.80, 95% CI 0.66 to 0.98). In patients scanned post-randomisation (n=1431), there was no evidence of an increase in infarction with TXA (adjusted HR=1.28, 95% CI 0.93 to 1.76). A larger proportion of patients without (vs with) a post-randomisation scan died from head injury (38% vs 19%: RR=1.97, 95% CI 1.66 to 2.34, p<0.0001).

    CONCLUSION: TXA may prevent new haemorrhage in patients with reactive pupils at baseline. This is consistent with the results of the CRASH-3 trial which found that TXA reduced head injury death in patients with at least one reactive pupil at baseline. However, the large number of patients without post-randomisation scans and the possibility that the availability of scan data depends on whether a patient received TXA, challenges the validity of inferences made using routinely collected scan data. This study highlights the limitations of using routinely collected scan data to examine the effects of TBI treatments.

    TRIAL REGISTRATION NUMBER: ISRCTN15088122.

    Matched MeSH terms: Tranexamic Acid/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links