Displaying all 18 publications

Abstract:
Sort:
  1. Nyamweya B, Rukshala D, Fernando N, de Silva R, Premawansa S, Handunnetti S
    J Evid Based Integr Med, 2023;28:2515690X231176622.
    PMID: 37279951 DOI: 10.1177/2515690X231176622
    There has been accumulating interest in the application of medicinal plants as alternative medicine to treat various diseases and/or to develop modern medicines. Vitex negundo is one of such medicinal plants that has been of interest to many researchers and has been of use in traditional medicine. V. negundo is found in Sri Lanka, Madagascar, Malaysia, India, China, The Philippines and East Africa. Therapeutic properties of V. negundo have previously been reviewed. Different parts, preparations and bioactive components of V. negundo possess potential protective and therapeutic effects against cardiovascular disease and related conditions as demonstrated in previous studies. We review the present state of scientific knowledge on the potential use of V. negundo and some of its bioactive components in protecting against cardiovascular diseases and related pathologies. Previous studies in animal and non-animal experimental models, although limited in number and vary in design, seem to support the cardioprotective effect of V. negundo and some of its active components. However, there is need for further preclinical and clinical studies to validate the use of V. negundo and its active constituents in protection and treatment of cardiovascular diseases. Additionally, since only a few V. negundo compounds have been evaluated, specific cardioprotective effects or mechanisms and possible side effects of other V. negundo compounds need to be extensively evaluated.
    Matched MeSH terms: Vitex*
  2. Francis AO, Kevin OS, Ahmad Zaini MA
    Int J Phytoremediation, 2023;25(12):1625-1635.
    PMID: 36823750 DOI: 10.1080/15226514.2023.2179013
    This study evaluated the characteristics of zinc chloride modified vitex doniana seed activated carbon (VDZnCl2) for the removal of methylene blue. VDZnCl2 was characterized for textural properties, surface morphology and surface chemistry. Batch adsorption of methylene blue by VDZnCl2 was evaluated for the effects of concentration, contact time, adsorbent dosage, and solution pH. The surface area increased from 14 to 933 m2/g with porous texture to facilitate adsorption. The SEM micrograph showed varieties of pores with widened cavities. The FTIR spectra showed the characteristics of O-H and C=C groups commonly found in carbonaceous materials. The maximum methylene blue adsorption was recorded as 238 mg/g at concentration range of 1-800 mg/L and VDZnCl2 dosage of 50 mg. Sips isotherm fitted well with the equilibrium data, suggesting that the adsorption by VDZnCl2 was a physical process onto its heterogeneous surface, while the applicability of pseudo-first-order kinetics implies that external diffusion was the rate controlling mechanism. The performance put up by VDZnCl2 suggested that it is a potential adsorbent substitute for dye wastewater treatment.
    Matched MeSH terms: Vitex*
  3. Rabeta, M. S., Vithyia, M.
    MyJurnal
    This study was done to determine the effects of different thermal drying methods (sun drying, microwave drying and hot air oven drying) on the total phenolic content (TPC), total anthocyanin content and the antioxidant properties of Vitex negundo (VN) tea. Significant decline (P < 0.05) in antioxidant properties of hot air oven drying shows that this method is not the best method to preserve antioxidant compounds in VN tea. As a conclusion, microwave drying has been found to be a good method for maintain the TPC, anthocyanin content and AEAC in dried sample of VN tea.
    Matched MeSH terms: Vitex
  4. Heskes AM, Sundram TCM, Boughton BA, Jensen NB, Hansen NL, Crocoll C, et al.
    Plant J, 2018 03;93(5):943-958.
    PMID: 29315936 DOI: 10.1111/tpj.13822
    Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus-castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus-castus. With the assistance of matrix-assisted laser desorption ionisation-mass spectrometry imaging (MALDI-MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome-specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus-castus. The identified CYP, VacCYP76BK1, was found to catalyse 16-hydroxylation of the diol-diterpene, peregrinol, to labd-13Z-ene-9,15,16-triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan- and lactone-containing diterpenoids that are present in this species.
    Matched MeSH terms: Vitex/genetics; Vitex/metabolism*
  5. Rabeta, M.S., An Nabil, Z.
    MyJurnal
    This study was done to assess the total phenolic compounds (TPC) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity in the flowers and leaves of Clitoria ternateaand Vitex negundo Linn. by using methanol and water extraction. TPC were evaluated using Folin-Ciocalteau method. Methanol was more efficient in extracting phenolic compounds compared with water in measuring TPC. Vitex negundo Linn. contained higher amount of TPC compared to Clitoria ternatea. Besides that, leaves for both plants showed higher amount of TPC compared to the flowers. Methanol extracted Vitex negundo Linn. showed higher DPPH scavenging activity compared with Clitoria ternatea. In contrast, DPPH scavenging activity for water extracted Clitoria ternatea showed higher value in compare with water extracted Vitex negundo Linn. The type of solvent used to extract the plant material and concentration of extracts used showed significance difference (P < 0.05) on the amount of DPPH scavenged by the plant extract. The presence of antioxidant activity in both leaves and flowers showed that Clitoria ternatea and Vitex negundo Linn. have the potential to be an alternative source of natural antioxidants. In vivo study is needed for successful commercialization and to benefit both the food and pharmaceutical industries.
    Matched MeSH terms: Vitex
  6. Tan, L.S., Leila, M., Rabeta, M.S.
    Food Research, 2018;2(1):68-75.
    MyJurnal
    Formulation 2 (1 g w/w) was the most favourable and was chosen for further analyses to
    compare its composition with that of a control (0 g w/w). Total phenolic content (TPC) of
    the fresh noodles remained higher than that of the control even after cooking. However,
    after cooking, the carbohydrate and protein contents showed significant increases. The
    results showed that the lemuni-supplemented noodles have a longer shelf life compared to
    the control. The colour parameters L* and a* also showed significant differences as the
    lightness decreased, and the redness increased after the substitution. The L*, a* and b*
    values decreased significantly after the noodles of both formulations were cooked. The
    tensile strength, adhesiveness, and hardness of the lemuni noodles were significantly
    higher than those of the control. Thus, the Vitex negundo Linn. leaf has the potential to
    increase the health benefits of food products.
    Matched MeSH terms: Vitex
  7. Dwivedi MK, Shukla R, Sharma NK, Manhas A, Srivastava K, Kumar N, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114076.
    PMID: 33789139 DOI: 10.1016/j.jep.2021.114076
    ETHANOPHARMACOLOGICAL RELEVANCE: Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L. is medicinal plant possessing a variety of pharmaceutically important compounds. The plant is used traditionally worldwide for the treatment of malaria including India and Malaysia by the indigenous tribes. In vitro studies have reported the anti-malarial use of the plant in traditional medicinal systems.

    AIM OF THE STUDY: The aim of the current study is to evaluate the traditionally used medicinal plants for in vitro anti-malarial activity against human malaria parasite Plasmodium falciparum and profiling secondary metabolite using spectroscopic and chromatographic methods. Chemical profiling of active secondary metabolites in the extracts was undertaken using LC-MS.

    MATERIALS AND METHODS: Based on the ethno-botanical data V. negundo L. was selected for in vitro anti-malarial activity against P. falciparum chloroquine-sensitive (3D7) and multidrug resistant (K1) strains using SYBR Green-I based fluorescence assay. Cytotoxicity of extracts was evaluated in VERO cell line using the MTT assay. Haemolysis assay was performed using human red blood cells. Secondary metabolites profiling was undertaken using chromatographic and spectroscopic analysis. Liquid chromatography analysis was performed using a C18, 150 X 2.1, 2.6 μm column with gradient mobile phase Solvent A: 95% (H2O: ACN), Solvent B: Acetonitrile, Solvent C: Methanol, Solvent D: 5 mM NH4 in 95:5 (H2O: ACN) at a constant flow rate of 0.250 ml/min. The LC-MS spectra were acquired in both positive and negative ion modes with electrospray ionization (ESI) source.

    RESULTS: The anti-malarial active extract of V. negundo L. leaf exhibited potent anti-malarial activity with IC50 values of 7.21 μg/ml and 7.43 μg/ml against 3D7 and K1 strains, respectively with no evidence of significant cytotoxicity against mammalian cell line (VERO) and no toxicity as observed in haemolysis assay. The HPLC-LC-MS analysis of the extract led to identification of 73 compounds. We report for the first time the presence of Sabinene hydrate acetate, 5-Hydroxyoxindole, 2(3,4-dimethoxyphenyl)-6, 7-dimethoxychromen-4-one, Cyclotetracosa-1, 13-diene and 5, 7-Dimethoxyflavanone in the anti-malarial active extract of V. negundo L. leaf. Agnuside, Behenic acid and Globulol are some of the novel compounds with no reports of anti-malarial activity so far and require further evaluation in pure form for the development of potent anti-malarial compounds.

    CONCLUSIONS: The result report and scientifically validate the traditional use of V. negundo L. for the treatment of malaria providing new avenues for anti-malarial drug development. Several novel and unknown compounds were identified that need to be further characterized for anti-malarial potential.

    Matched MeSH terms: Vitex/metabolism*; Vitex/toxicity; Vitex/chemistry*
  8. Al-Akwaa AA, Asmawi MZ, Dewa A, Mahmud R
    Heliyon, 2020 Jul;6(7):e04588.
    PMID: 32775735 DOI: 10.1016/j.heliyon.2020.e04588
    Background: Vitex pubescens has been used traditionally in hypertension treatment but not yet scientifically assessed. The objective of the study is to investigate the antihypertensive and vasorelaxant activities of V. pubescens, study its underlying pharmacological mechanisms, and identify the relevant vasoactive compounds.

    Methods: Successive extractions of V. pubescens leaf were carried out to produce petroleum ether (VPPE), chloroform (VPCE), methanol (VPME), and water (VPWE) extracts. Spontaneously hypertensive rats (SHRs) received a daily oral administration of the extracts (500 mg/kg/day; n = 6) or verapamil (15 mg/kg/day; n = 6) for 2 weeks, while the systolic and diastolic blood pressures were measured using non-invasive tail-cuff method. Vasorelaxation assays of the extracts were later conducted using phenylephrine (PE, 1 μM) pre-contracted aortic ring preparation. Mechanisms of vasorelaxation by the most potent fraction were studied using vasorelaxation assays with selected blockers/inhibitors. GC-MS was conducted to determine the active compounds.

    Results: VPPE elicited the most significant diminution in systolic and diastolic blood pressure of treated SHRs and produced the most significant vasorelaxation in the aortic rings. Vasorelaxant effects of F2-VPPE were significantly reduced in endothelium-denuded aortic rings by glibenclamide (1 μM), whereas calcium chloride and PE-induced contractions were significantly suppressed. Endothelium removal of the aortic rings or incubation with indomethacin (10 μM), atropine (1 μM), methylene blue (10 μM), propranolol (1μM) and L-NAME (10 μM) did not significantly alter F2-VPPE-induced vasorelaxation. Seven compounds were identified using GC-MS, including spathulenol.

    Conclusion: F2-VPPE exerted its endothelium-independent vasorelaxation by inhibition of vascular smooth muscle contraction induced by extracellular Ca+2 influx through trans-membrane Ca+2 channels and/or Ca+2 release from intracellular stores, and by activation of KATP channels. The vasorelaxation effects of V. pubescens could be mediated by the compound, spathulenol.

    Matched MeSH terms: Vitex
  9. Mohd Ali, A., Jahidin, A.H., Abdul Wahab, I., Mohsin, H.F., Mizaton, H.H.
    MyJurnal
    In this study, the unprecedented extraction of the Vitex pouch was performed. The compounds from
    methanolic and chloroform extracts were isolated by using thin layer chromatography (TLC). The
    compound of interest was investigated by using 1H-Nuclear Magnetic Resonance (NMR, 500 MHz)
    spectroscopy. From the NMR spectral examination, the compound from the methanolic extract was
    suggested as glucononitol. Indeed, there are some parameters that could enhance the attainment of this
    research, which include high performance liquid chromatographic supplies. Nevertheless, more
    information and understanding on the pharmaceutical and chemical analysis of the Vitex species were
    obtained. To sum up, it is anticipated that incoming research with advanced technology for this
    natural product could be explored in the future.
    Matched MeSH terms: Vitex
  10. Chan EWC, Wong SK, Chan HT
    J Integr Med, 2018 05;16(3):147-152.
    PMID: 29559215 DOI: 10.1016/j.joim.2018.03.001
    This short review provides an update of the anticancer and anti-inflammatory properties of casticin from Vitex species. Casticin is a polymethylflavone with three rings, an orthocatechol moiety, a double bond, two hydroxyl groups and four methoxyl groups. Casticin has been isolated from various tissues of plants in the Vitex genus: fruits and leaves of V. trifolia, aerial parts and seeds of V. agnus-castus and leaves of V. negundo. Studies have reported the antiproliferative and apoptotic activities of casticin from Vitex species. The compound is effective against many cancer cell lines via different molecular mechanisms. Studies have also affirmed the anti-inflammatory properties of casticin, with several molecular mechanisms identified. Other pharmacological properties include anti-asthmatic, tracheospasmolytic, analgesic, antihyperprolactinemia, immunomodulatory, opioidergic, oestrogenic, anti-angiogenic, antiglioma, lung injury protection, rheumatoid arthritis amelioration and liver fibrosis attenuation activities. Clinical trials and commercial use of the casticin-rich fruit extract of V. agnus-castus among women with premenstrual syndrome were briefly discussed.
    Matched MeSH terms: Vitex
  11. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, et al.
    Molecules, 2011 Aug 08;16(8):6667-76.
    PMID: 25134770 DOI: 10.3390/molecules16086667
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-Visible (UV-Vis) spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10-30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0).
    Matched MeSH terms: Vitex/chemistry*
  12. Corlay N, Lecsö-Bornet M, Leborgne E, Blanchard F, Cachet X, Bignon J, et al.
    J Nat Prod, 2015 Jun 26;78(6):1348-56.
    PMID: 26034885 DOI: 10.1021/acs.jnatprod.5b00206
    A large-scale in vitro screening of tropical plants using an antibacterial assay permitted the selection of several species with significant antibacterial activities. Bioassay-guided purification of the dichloromethane extract of the leaves of the Malaysian species Vitex vestita, led to the isolation of six new labdane-type diterpenoids, namely, 12-epivitexolide A (2), vitexolides B and C (3 and 4), vitexolide E (8), and vitexolins A and B (5 and 6), along with six known compounds, vitexolides A (1) and D (7), acuminolide (9), 3β-hydroxyanticopalic acid (10), 8α-hydroxyanticopalic acid (11), and 6α-hydroxyanticopalic acid (12). Their structures were elucidated on the basis of 1D and 2D NMR analyses and HRMS experiments. Both variable-temperature NMR spectroscopic studies and chemical modifications were performed to investigate the dynamic epimerization of the γ-hydroxybutenolide moiety of compounds 1-4. Compounds were assayed against a panel of 46 Gram-positive strains. Vitexolide A (1) exhibited the most potent antibacterial activity with minimal inhibitory concentration values ranging from 6 to 96 μM, whereas compounds 2 and 6-9 showed moderate antibacterial activity. The presence of a β-hydroxyalkyl-γ-hydroxybutenolide subunit contributed significantly to antibacterial activity. Compounds 1-4 and 6-9 showed cytotoxic activities against the HCT-116 cancer cell line (1 < IC50s < 10 μM) and human fetal lung fibroblast MRC5 cell line (1 < IC50s < 10 μM for compounds 1, 2, 7, 8, and 9).
    Matched MeSH terms: Vitex/chemistry*
  13. Kadir FA, Kassim NM, Abdulla MA, Yehye WA
    PMID: 24305067 DOI: 10.1186/1472-6882-13-343
    Hepatocellular carcinoma is a common type of tumour worldwide with a high mortality rate and with low response to current cytotoxic and chemotherapeutic drugs. The prediction of activity spectra for the substances (PASS) software, which predicted that more than 300 pharmacological effects, biological and biochemical mechanisms based on the structural formula of the substance was efficiently used in this study to reveal new multitalented actions for Vitex negundo (VN) constituents.
    Matched MeSH terms: Vitex/chemistry*
  14. Medina MFE, Alaba PA, Estrada-Zuñiga ME, Velázquez-Ordoñez V, Barbabosa-Pliego A, Salem MZM, et al.
    Microb Pathog, 2017 Dec;113:286-294.
    PMID: 29101063 DOI: 10.1016/j.micpath.2017.10.053
    The aim of this study is to investigate the biopotency of methanolic extracts of Vitex mollis, Psidium guajava, Dalbergia retusa, and Crescential alata leaves against various staphylococcal strains isolated from cattle and rabbits. Methicillin-resistant S. aureus strains were isolated from cattle, while other strains were isolated from rabbits using standard methodology. The total phytochemical phenolic and saponins contents were obtained being the main groups of the antinutritional factors. The antimicrobial activity of the extracts against the standard culture of S. aureus (control) and S. aureus isolated from cattle and rabbits were investigated comparatively relative to that of oxacillin. It was found that both the control S. aureus and the isolated S. aureus are susceptible to all the four plant extracts, and sensitive to oxacillin. Of all the S. aureus including the control, MRSA2 is the most susceptible to all the extracts at 1000 μg/mL, except that of V. mollis where it is the least susceptible. Among all the plant extracts, P. guajava is the most active against MRSA2 and SOSA2. Therefore, the isolates from cattle (MRSA1 and MRSA2) are more susceptible to all the plant extracts than the isolates from rabbits. Among all the rabbit isolates, CoNS3 is the least susceptible to the extracts. Since all the plant extracts exhibit remarkable inhibitory activities against all the S. aureus strains, they are promising towards the production of therapeutic drugs.
    Matched MeSH terms: Vitex/chemistry
  15. Chaudhry GE, Jan R, Naveed Zafar M, Mohammad H, Muhammad TST
    Asian Pac J Cancer Prev, 2019 Dec 01;20(12):3555-3562.
    PMID: 31870094 DOI: 10.31557/APJCP.2019.20.12.3555
    OBJECTIVE: Breast cancer is the most frequently diagnosed cancer worldwide. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the extract and fractions of Vitex rotundifolia (leaves) in breast cancer cell line, T-47D.

    METHODS: The cytotoxicity activity was measured using MTS assay. The mode of cell death was analysed by early (phosphatidylserine externalization) and late apoptosis (DNA fragmentation). The caspases 8, 9, 3/7 and apoptotic proteins bax, bcl-2 study were done by western blot and ELISA method.

    RESULTS: The methanol extract was found to inhibit 50% growth of T-47D cells at the concentration of 79.43µg/ml respectively after 72hr. From seven fractions, fraction F1, F2 and F3 produced cytotoxicity effects in T-47D cell line with IC50 (72hr) < 30µg/ml. The results obtained by Annexin V/PI apoptosis detection assay and TUNEL assay suggest that active fractions of  Vitex rotundifolia induced early and late apoptosis (DNA fragmentation) in T-47D cell line. Moreover, western blot analysis and Caspase GloTM luminescent assay demonstrated that fractions F2 and F3 triggered apoptotic cell death via activation of caspases -8, -9 and -3/7 and up-regulation of  Bax and down-regulation of Bcl-2 protein.  Furthermore, chemical profiling confirms the presence of potential metabolites (vitexicarpin) in fractions of Vitex rotundifolia.

    CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in fractions of Vitex rotundifolia as future cancer therapeutic agent for the treatment of breast cancer.
    .

    Matched MeSH terms: Vitex/chemistry*
  16. Kadir FA, Kassim NM, Abdulla MA, Yehye WA
    BMC Complement Altern Med, 2013 Oct 30;13:294.
    PMID: 24499255 DOI: 10.1186/1472-6882-13-294
    BACKGROUND: Oxidative stress due to abnormal induction of reactive oxygen species (ROS) molecules is believed to be involved in the etiology of many diseases. Evidences suggest that ROS is involved in nephrotoxicity through frequent exposure to industrial toxic agents such as thioacetamide (TAA). The current investigation was designed to explore the possible protective effects of the leaves of Vitex negundo(VN) extract against TAA-induced nephrotoxicity in rats.

    METHODS: Twenty four Sprague Dawleyrats were divided into four groups: (A) Normal control, (B) TAA (0.03% w/v in drinking water), (C) VN100 (VN 100 mg/kg + TAA) and (D) VN300 (VN 300 mg/kg + TAA). Blood urea and serum creatinine levels were measured,supraoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) levels of renal tissue were assayed. Histopathological analysis together with the oxidative stress nicotinamide adenine dinucleotide phosphate (NADPH) oxidase p22phox in kidney sections were examined in all experimental groups.

    RESULTS: Blood urea and serum creatinine levels were increased in TAA group as a result of the nephrotoxicity compared to the VN100 and VN300 groups where, the levels were significantly decreased (p 

    Matched MeSH terms: Vitex/chemistry*
  17. Hussin M, Abdul Hamid A, Abas F, Ramli NS, Jaafar AH, Roowi S, et al.
    Molecules, 2019 Sep 03;24(17).
    PMID: 31484470 DOI: 10.3390/molecules24173208
    Herbs that are usually recognized as medicinal plants are well known for their therapeutic effects and are traditionally used to treat numerous diseases, including aging. This study aimed to evaluate the metabolite variations among six selected herbs namely Curcurmalonga, Oenanthejavanica, Vitex negundo, Plucheaindica, Cosmoscaudatus and Persicariaminus using proton nuclear magnetic resonance (1H-NMR) coupled with multivariate data analysis (MVDA). The free radical scavenging activity of the extract was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) assay. The anti-aging property was characterized by anti-elastase and anti-collagenase inhibitory activities. The results revealed that P. minus showed the highest radical scavenging activities and anti-aging properties. The partial least squares (PLS) biplot indicated the presence of potent metabolites in P. minus such as quercetin, quercetin-3-O-rhamnoside (quercitrin), myricetin derivatives, catechin, isorhamnetin, astragalin and apigenin. It can be concluded that P. minus can be considered as a potential source for an anti-aging ingredient and also a good free radical eradicator. Therefore, P. minus could be used in future development in anti-aging researches and medicinal ingredient preparations.
    Matched MeSH terms: Vitex
  18. MyJurnal
    This study was conducted to evaluate antimicrobial properties of ethanolic extracts of the leaves of Nephelium lappaceum, Curcuma longa, Cinnamomun cassia, Durio zibethinus, Vitex trifolia, Amaranthus tricolor, Syzygium samarangense and Manihot esculenta. Antibacterial properties of the extracts were studied against fifteen strains of different gram positive and gram negative pathogenic bacteria, including Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Vibrio para, and Escherichia coli using the agar disk diffusion method. Among the tested extracts, only Amaranthus tricolor exhibited specific inhibition of one of the tested bacteria; Bacillus cereus. Using the microdilution method, its minimum inhibitory concentration (MIC) value was determined to be 20 mg/mL.
    Matched MeSH terms: Vitex
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links