Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Tiang N, Ahad MA, Murugaiyah V, Hassan Z
    J Pharm Pharmacol, 2020 Nov;72(11):1629-1644.
    PMID: 32743849 DOI: 10.1111/jphp.13345
    OBJECTIVES: Xanthones isolated from the pericarp of Garcinia mangostana has been reported to exhibit neuroprotective effect.

    METHODS: In this study, the effect of xanthone-enriched fraction of Garcinia mangostana (XEFGM) and α-mangostin (α-MG) were investigated on cognitive functions of the chronic cerebral hypoperfusion (CCH) rats.

    KEY FINDINGS: HPLC analysis revealed that XEFGM contained 55.84% of α-MG. Acute oral administration of XEFGM (25, 50 and 100 mg/kg) and α-MG (25 and 50 mg/kg) before locomotor activity and Morris water maze (MWM) tests showed no significant difference between the groups for locomotor activity.

    CONCLUSIONS: However, α-MG (50 mg/kg) and XEFGM (100 mg/kg) reversed the cognitive impairment induced by CCH in MWM test. α-MG (50 mg/kg) was further tested upon sub-acute 14-day treatment in CCH rats. Cognitive improvement was shown in MWM test but not in long-term potentiation (LTP). BDNF but not CaMKII was found to be down-regulated in CCH rats; however, both parameters were not affected by α-MG. In conclusion, α-MG ameliorated learning and memory deficits in both acute and sub-acute treatments in CCH rats by improving the spatial learning but not hippocampal LTP. Hence, α-MG may be a promising lead compound for CCH-associated neurodegenerative diseases, including vascular dementia and Alzheimer's disease.

    Matched MeSH terms: Xanthones/isolation & purification
  2. Eukun Sage E, Jailani N, Md Taib AZ, Mohd Noor N, Mohd Said MI, Abu Bakar M, et al.
    PLoS One, 2018;13(10):e0205753.
    PMID: 30321238 DOI: 10.1371/journal.pone.0205753
    The pulp and pericarp of mangosteen (Garcinia mangostana) fruit are popular food, beverage and health products whereby 60% of the fruit consist of the pericarp. The major metabolite in the previously neglected or less economically significant part of the fruit, the pericarp, is the prenylated xanthone α-mangostin. This highly bioactive secondary metabolite is typically isolated using solvent extraction methods that involve large volumes of halogenated solvents either via direct or indirect extraction. In this study, we compared the quantities of α-mangostin extracted using three different extraction methods based on the environmentally friendly solvents methanol and ethyl acetate. The three solvent extractions methods used were direct extractions from methanol (DM) and ethyl acetate (DEA) as well as indirect extraction of ethyl acetate obtained via solvent partitioning from an initial methanol extract (IEA). Our results showed that direct extraction afforded similar and higher quantities of α-mangostin than indirect extraction (DM: 318 mg; DEA: 305 mg; IEA: 209 mg per 5 g total dried pericarp). Therefore, we suggest that the commonly used method of indirect solvent extraction using halogenated solvents for the isolation of α-mangostin is replaced by single solvent direct extraction using the environmentally friendly solvents methanol or ethyl acetate.
    Matched MeSH terms: Xanthones/isolation & purification*
  3. Sidahmed HM, Hashim NM, Amir J, Abdulla MA, Hadi AH, Abdelwahab SI, et al.
    Phytomedicine, 2013 Jul 15;20(10):834-43.
    PMID: 23570997 DOI: 10.1016/j.phymed.2013.03.002
    Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (p<0.05) restored the depleted GSH, NP-SH and NO levels in the gastric homogenate. Moreover, PA significantly (p<0.05) reduced the elevated MDA level due to ethanol administration. The gastroprotective effect of PA was associated with an over expression of HSP70 and suppression of Bax proteins in the ulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori.
    Matched MeSH terms: Xanthones/isolation & purification
  4. Mohan S, Abdelwahab SI, Kamalidehghan B, Syam S, May KS, Harmal NS, et al.
    Phytomedicine, 2012 Aug 15;19(11):1007-15.
    PMID: 22739412 DOI: 10.1016/j.phymed.2012.05.012
    The plant Artocarpus obtusus is a tropical plant that belongs to the family Moraceae. In the present study a xanthone compound Pyranocycloartobiloxanthone A (PA) was isolated from this plant and the apoptosis mechanism was investigated. PA induced cytotoxicity was observed using MTT assay. High content screening (HCS) was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential (MMP) and cytochrome c release. Reactive oxygen species formation was investigated on treated cells by using fluorescent analysis. Human apoptosis proteome profiler assays were performed to investigate the mechanism of cell death. In addition mRNA levels of Bax and Bcl2 were also checked using RT-PCR. Caspase 3/7, 8 and 9 were measured for their induction while treatment. The involvement of NF-κB was analyzed using HCS assay. The results showed that PA possesses the characteristics of selectively inducing cell death of tumor cells as no inhibition was observed in non-tumorigenic cells even at 30 μg/ml. Treatment of MCF7 cells with PA induced apoptosis with cell death-transducing signals, that regulate the MMP by down-regulation of Bcl2 and up-regulation of Bax, triggering the cytochrome c release from mitochondria to cytosol. The release of cytochrome c triggered the activation of caspases-9, then activates downstream executioner caspase-3/7 and consequently cleaved specific substrates leading to apoptotic changes. This form of apoptosis was found closely associated with the extrinsic pathway caspase (caspase-8) and inhibition of translocation of NF-κB from cytoplasm to nucleus. The results demonstrated that PA induced apoptosis of MCF7 cells through NF-κB and Bcl2/Bax signaling pathways with the involvement of caspases.
    Matched MeSH terms: Xanthones/isolation & purification
  5. Jantan I, Saputri FC
    Phytochemistry, 2012 Aug;80:58-63.
    PMID: 22640928 DOI: 10.1016/j.phytochem.2012.05.003
    Three benzophenones, 2,6,3',5'-tetrahydroxybenzophenone (1), 3,4,5,3',5'-pentahydroxybenzophenone (3) and 3,5,3',5'-tetrahydroxy-4-methoxybenzophenone (4), as well as a xanthone, 1,3,6-trihydroxy-5-methoxy-7-(3'-methyl-2'-oxo-but-3'-enyl)xanthone (9), were isolated from the twigs of Garcinia cantleyana var. cantleyana. Eight known compounds, 3,4,5,3'-tetrahydroxy benzophenone (2), 1,3,5-trihydroxyxanthone (5), 1,3,8-trihydroxyxanthone (6), 2,4,7-trihydroxyxanthone (7), 1,3,5,7-tetrahydroxyxanthone (8), quercetin, glutin-5-en-3β-ol and friedelin were also isolated. The structures of the compounds were elucidated by spectroscopic methods. The compounds were investigated for their ability to inhibit low-density lipoprotein (LDL) oxidation and platelet aggregation in human whole blood in vitro. Most of the compounds showed strong antioxidant activity with compound 8 showing the highest inhibition with an IC₅₀ value of 0.5 μM, comparable to that of probucol. Among the compounds tested, only compound 4 exhibited strong inhibitory activity against platelet aggregation induced by arachidonic acid (AA), adenosine diphosphate (ADP) and collagen. Compounds 3, 5 and 8 showed selective inhibitory activity on platelet aggregation induced by ADP.
    Matched MeSH terms: Xanthones/isolation & purification
  6. Taher M, Idris MS, Ahmad F, Arbain D
    Phytochemistry, 2005 Mar;66(6):723-6.
    PMID: 15771897
    A polyisoprenylated ketone named enervosanone has been isolated from the stem bark of Calophyllum enervosum together with three known compounds, cambogin, osajaxanthone and epicatechin. Their structures were determined by spectroscopic analysis. The antimicrobial evaluations of the isolated compounds were also reported.
    Matched MeSH terms: Xanthones/isolation & purification*
  7. Mah SH, Ee GC, Teh SS, Sukari MA
    Nat Prod Res, 2015;29(1):98-101.
    PMID: 25229947 DOI: 10.1080/14786419.2014.959949
    Extensive chromatographic isolation and purification of the extracts of the stem bark of Calophyllum inophyllum and Calophyllum soulattri have resulted in 11 xanthones. C. inophyllum gave inophinnin (1), inophinone (2), pyranojacareubin (5), rheediaxanthone A (6), macluraxanthone (7) and 4-hydroxyxanthone (8), while C. soulattri afforded soulattrin (3), phylattrin (4), caloxanthone C (9), brasixanthone B (10) and trapezifolixanthone (11). The structures of these compounds were determined on the basis of spectroscopic analyses such as 1D and 2D NMR, GC-MS, IR and UV. Cytotoxicity screening (MTT assay) carried out in vitro on all the xanthones using five human cancer cell lines indicated good activities for some of these xanthones. The structure-activity relationship study revealed that the inhibitory activities exhibited by these xanthone derivatives to be closely related to the existence and nature of the pyrano and the prenyl substituent groups on their skeleton.
    Matched MeSH terms: Xanthones/isolation & purification*
  8. Daud SB, Ee GC, Malek EA, Teh SS, See I
    Nat Prod Res, 2014;28(19):1534-8.
    PMID: 24897077 DOI: 10.1080/14786419.2014.924001
    A new coumarin, hoseimarin (1), together with four other xanthones, trapezifolizanthone (2), osajaxanthone (3), β-mangostin (4) and caloxanthone A (5), were isolated from the stem bark of Calophyllum hosei. The structures of these compounds were established by using spectroscopic analysis which included (1)H NMR, (13)C NMR, COSY, DEPT, HMQC and HMBC experiments.
    Matched MeSH terms: Xanthones/isolation & purification
  9. Ee GC, Foo CH, Jong VY, Ismail NH, Sukari MA, Taufiq Yap YH, et al.
    Nat Prod Res, 2012;26(9):830-5.
    PMID: 22044165 DOI: 10.1080/14786419.2011.559640
    A detailed chemical study on the stem bark of Garcinia nitida has led to the isolation of five xanthones. They are 1,6-dihydroxy-5-methoxy-6,6-dimethylpyrano[2',3':2,3]-xanthone (1), inophyllin B (2), osajaxanthone (3), 3-isomangostin (4) and rubraxanthone (5). The structures of these compounds were established using mainly 1-D and 2-D NMR spectroscopy ((1)H, (13)C, DEPT, COSY, HMBC and HMQC) while molecular masses were determined via MS techniques; 1 is a new compound.
    Matched MeSH terms: Xanthones/isolation & purification*
  10. Ee GC, Teo SH, Rahmani M, Lim CK, Lim YM, Go R
    Nat Prod Res, 2011 Jun;25(10):995-1003.
    PMID: 21644180 DOI: 10.1080/14786419.2010.534471
    A new furanodihydrobenzoxanthone, artomandin (1), together with three other flavonoid derivatives, artoindonesianin C, artonol B, and artochamin A, as well as β-sitosterol were isolated from the stem bark of Artocarpus kemando. The structures of these compounds were determined on the basis of spectral evidence. All of these compounds displayed inhibition effects to a very susceptible degree in cancer cell line tests. Compound 1 also exhibited significant antioxidant capacity in the free radical 1,1-diphenyl-2-picrylhydrazyl tests.
    Matched MeSH terms: Xanthones/isolation & purification*
  11. Ee GC, Daud S, Taufiq-Yap YH, Ismail NH, Rahmani M
    Nat Prod Res, 2006 Oct;20(12):1067-73.
    PMID: 17127660
    Studies on the stem of Garcinia mangostana have led to the isolation of one new xanthone mangosharin (1) (2,6-dihydroxy-8-methoxy-5-(3-methylbut-2-enyl)-xanthone) and six other prenylated xanthones, alpha-mangostin (2), beta-mangostin (3), garcinone D (4), 1,6-dihydroxy-3,7-dimethoxy-2-(3-methylbut-2-enyl)-xanthone (5), mangostanol (6) and 5,9-dihydroxy-8- methoxy-2,2-dimethyl-7-(3-methylbut-2-enyl)-2H,6H-pyrano-[3,2-b]-xanthene-6-one (7). The structures of these compounds were determined by spectroscopic methods such as 1H NMR, 13C NMR, mass spectrometry (MS) and by comparison with previous studies. All the crude extracts when screened for their larvicidal activities indicated very good toxicity against the larvae of Aedes aegypti. This article reports the isolation and identification of the above compounds as well as bioassay data for the crude extracts. These bioassay data have not been reported before.
    Matched MeSH terms: Xanthones/isolation & purification
  12. Kar Wei L, Zamakshshari NH, Ee GCL, Mah SH, Mohd Nor SM
    Nat Prod Res, 2018 Sep;32(18):2147-2151.
    PMID: 28826239 DOI: 10.1080/14786419.2017.1367781
    Two naturally occurring xanthones, ananixanthone (1) and β-mangostin (2), were isolated using column chromatographic method from the n-hexane and methanol extracts of Calophyllum teysmannii, respectively. The major constituent, ananixanthone (1), was subjected to structural modifications via acetylation, methylation and benzylation yielding four new xanthone derivatives, ananixanthone monoacetate (3), ananixanthone diacetate (4), 5-methoxyananixanthone (5) and 5-O-benzylananixanthone (6). Compound 1 together with its four new derivatives were subjected to MTT assay against three cancer cell lines; SNU-1, K562 and LS174T. The results indicated that the parent compound has greater cytotoxicity capabilities against SNU-1 and K562 cell lines with IC50 values of 8.97 ± 0.11 and 2.96 ± 0.06 μg/mL, respectively. Compound 5 on the other hand exhibited better cytotoxicity against LS174T cell line with an IC50 value of 5.76 ± 1.07 μg/mL.
    Matched MeSH terms: Xanthones/isolation & purification
  13. Hashim NM, Rahmani M, Ee GC, Sukari MA, Yahayu M, Amin MA, et al.
    Molecules, 2012;17(5):6071-82.
    PMID: 22614861 DOI: 10.3390/molecules17056071
    One of the most promising plants in biological screening test results of thirteen Artocarpus species was Artocarpus obtusus FM Jarrett and detailed phytochemical investigation of powdered dried bark of the plant has led to the isolation and identification of three xanthones; pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2) and pyranocycloartobiloxanthone B (3). These compounds were screened for antioxidant, antimicrobial and tyrosinase inhibitory activities. Pyranocycloartobiloxanthone A (1) exhibited a strong free radical scavenger towards DPPH free radicals with IC50 value of 2 µg/mL with prominent discoloration observed in comparison with standard ascorbic acid, α-tocopherol and quercetin, The compound also exhibited antibacterial activity against methicillin resistant Staphylococcus aureus (ATCC3359) and Bacillus subtilis (clinically isolated) with inhibition zone of 20 and 12 mm, respectively. However the other two xanthones were found to be inactive. For the tyrosinase inhibitory activity, again compound (1) displayed strong activity comparable with the standard kojic acid.
    Matched MeSH terms: Xanthones/isolation & purification
  14. Nasir NM, Rahmani M, Shaari K, Ee GC, Go R, Kassim NK, et al.
    Molecules, 2011 Oct 25;16(11):8973-80.
    PMID: 22027953 DOI: 10.3390/molecules16118973
    The air-dried powdered stem bark of Calophyllum nodusum (Guttiferea) collected from Sandakan (Sabah, Malaysia), was extracted sequentially with hexane, chloroform and methanol. The solvents were removed by rotary evaporator to give dark viscous extracts. Detailed and repeated chromatographic separation of the extracts lead to isolation of two new xanthones, identified as nodusuxanthone and trapezifolixanthone A. Other common terpenoids such as betulinic acid, lupeol, stigmasterol and friedelin were also isolated from the extracts and identified. The structures of the compounds were established by detailed spectral analysis and comparison with previously reported data.
    Matched MeSH terms: Xanthones/isolation & purification*
  15. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 Jul 25;23(8).
    PMID: 30044450 DOI: 10.3390/molecules23081852
    Since α-mangostin in mangosteen fruits was reported to be the main compound able to provide natural antioxidants, the microwave-assisted extraction process to obtain high-quality α-mangostin from mangosteen pericarp (Garcinia mangostana L.) was optimized using a central composite design and response surface methodology. The parameters examined included extraction time, microwave power, and solvent percentage. The antioxidant and antimicrobial activity of optimized and non-optimized extracts was evaluated. Ethyl acetate as a green solvent exhibited the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water. The highest α-mangostin concentration in mangosteen pericarp of 121.01 mg/g dry matter (DM) was predicted at 3.16 min, 189.20 W, and 72.40% (v/v). The verification of experimental results under these optimized conditions showed that the α-mangostin value for the mangosteen pericarp was 120.68 mg/g DM. The predicted models were successfully developed to extract α-mangostin from the mangosteen pericarp. No significant differences were observed between the predicted and the experimental α-mangostin values, indicating that the developed models are accurate. The analysis of the extracts for secondary metabolites showed that the total phenolic content (TPC) and total flavonoid content (TFC) increased significantly in the optimized extracts (OE) compared to the non-optimized extracts (NOE). Additionally, trans-ferulic acid and catechin were abundant among the compounds identified. In addition, the optimized extract of mangosteen pericarp with its higher α-mangostin and secondary metabolite concentrations exhibited higher antioxidant activities with half maximal inhibitory concentration (IC50) values of 20.64 µg/mL compared to those of the NOE (28.50 µg/mL). The OE exhibited the highest antibacterial activity, particularly against Gram-positive bacteria. In this study, the microwave-assisted extraction process of α-mangostin from mangosteen pericarp was successfully optimized, indicating the accuracy of the models developed, which will be usable in a larger-scale extraction process.
    Matched MeSH terms: Xanthones/isolation & purification
  16. Mohamed GA, Al-Abd AM, El-Halawany AM, Abdallah HM, Ibrahim SRM
    J Ethnopharmacol, 2017 Feb 23;198:302-312.
    PMID: 28108382 DOI: 10.1016/j.jep.2017.01.030
    ETHNOPHARMACOLOGICAL RELEVANCE: Cancer has proceeded to surpass one of the most chronic illnesses to be the major cause of mortality in both the developing and developed world. Garcinia mangostana L. (mangosteen, family Guttiferae) known as the queen of fruits, is one of the most popular tropical fruits. It is cultivated in Southeast Asian countries: Malaysia, Indonesia, Sri Lanka, Burma, Thailand, and Philippines. Traditionally, numerous parts of G. mangostana have been utilized to treat various ailments such as abdominal pain, haemorrhoids, food allergies, arthritis, leucorrhoea, gonorrhea, diarrhea, dysentery, wound infection, suppuration, and chronic ulcer.

    AIM OF STUDY: Although anticancer activity has been reported for the plant, the goal of the study was designed to isolate and characterize the active metabolites from G. mangostana and measure their cytotoxic properties. In this research, the mechanism of antiproliferative/cytotoxic effects of the tested compounds was investigated.

    MATERIALS AND METHODS: The CHCl3 fraction of the air-dried fruit hulls was repeatedly chromatographed on SiO2, RP18, Diaion HP-20, and polyamide columns to furnish fourteen compounds. The structures of these metabolites were proven by UV, IR, 1D, and 2D NMR measurements and HRESIMS. Additionally, the cytotoxic potential of all compounds was assessed against MCF-7, HCT-116, and HepG2 cell lines using SRB-U assay. Antiproliferative and cell cycle interference effects of potentially potent compounds were tested using DNA content flow cytometry. The mechanism of cell death induction was also studied using annexin-V/PI differential staining coupled with flow cytometry.

    RESULTS: The CHCl3 soluble fraction afforded two new xanthones: mangostanaxanthones V (1) and VI (2), along with twelve known compounds: mangostanaxanthone IV (3), β-mangostin (4), garcinone E (5), α-mangostin (6), nor-mangostin (7), garcimangosone D (8), aromadendrin-8-C-β-D-glucopyranoside (9), 1,2,4,5-tetrahydroxybenzene (10), 2,4,3`-trihydroxybenzophenone-6-O-β-glucopyranoside (11), maclurin-6-O-β-D-glucopyranoside (rhodanthenone) (12), epicatechin (13), and 2,4,6,3`,5`-pentahydroxybenzophenone (14). Only compound 5 showed considerable antiproliferative/cytotoxic effects with IC50's ranging from 15.8 to 16.7µM. Compounds 3, 4, and 6 showed moderate to weak cytotoxic effects (IC50's ranged from 45.7 to 116.4µM). Using DNA content flow cytometry, it was found that only 5 induced significant cell cycle arrest at G0/G1-phase which is indicative of its antiproliferative properties. Additionally, by using annexin V-FITC/PI differential staining, 5 induced cells killing effect via the induction of apoptosis and necrosis in both HepG2 and HCT116 cells. Compound 3 produce necrosis and apoptosis only in HCT116 cells. On contrary, 6 induced apoptosis and necrosis in HepG2 cells and moderate necrosis in HCT116 cells.

    CONCLUSION: Fourteen compounds were isolated from chloroform fraction of G. mangostana fruit hulls. Cytotoxic properties exhibited by the isolated xanthones from G. mangostana reinforce the avail of it as a natural cytotoxic agent against various cancers. These evidences could provide relevant bases for the scientific rationale of using G. mangostana in anti-cancer treatment.

    Matched MeSH terms: Xanthones/isolation & purification
  17. Khaw KY, Chong CW, Murugaiyah V
    J Enzyme Inhib Med Chem, 2020 Dec;35(1):1433-1441.
    PMID: 32608273 DOI: 10.1080/14756366.2020.1786819
    Mangosteen is one of the best tasting tropical fruit widely cultivated in Southeast Asia. This study aimed to quantify xanthone content in different parts of Garcinia mangostana by LC-QTOF-MS and determine its influence on their cholinesterase inhibitory activities. The total xanthone content in G. mangostana was in the following order: pericarp > calyx > bark > stalk > stem > leaves > aril. The total xanthone content of pericarp was 100 times higher than the aril. Methanol extracts of the pericarp and calyx demonstrated the most potent inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 0.90 and 0.37 µg/mL, respectively. Statistical analysis showed a strong correlation between xanthone content and cholinesterase inhibition. Nonmetric multidimensional scaling analysis revealed α-mangostin and γ-mangostin of pericarp as the key metabolites contributing to cholinesterase inhibition. Due to the increasing demand of mangosteen products, repurposing of fruit waste (pericarp) has great potential for enhancement of the cognitive health of human beings.
    Matched MeSH terms: Xanthones/isolation & purification
  18. Ng HS, Tan GYT, Lee KH, Zimmermann W, Yim HS, Lan JC
    J Biosci Bioeng, 2018 Oct;126(4):507-513.
    PMID: 29764763 DOI: 10.1016/j.jbiosc.2018.04.008
    The α- and γ-mangostins from Garcinia mangostana pericarps (GMP) exhibit antioxidant, anti-bacterial, anti-inflammatory and anti-tumor properties. The extraction yields α- and γ-mangostins are often limited by the presence of the GMP cell walls. Therefore, the extraction and recovery of mangostins from GMP with an Aspergillus niger cellulase-assisted aqueous micellar biphasic system (CA-AMBS) was developed for enhanced yield of mangostins. Effects of the concentration of cellulase, the incubation time and the temperature of the system on the recovery of mangostins were investigated. The optimum condition for the recovery of α- and γ-mangostins was obtained with the addition of 0.5% (w/w) cellulase incubated at 40°C for 2 h. High log partition coefficients of α-mangostins (log Kα 4.79 ± 0.02) and γ-mangostins (log Kγ 4.02 ± 0.02) were achieved. High yields of α-mangostins (73.4%) and γ-mangostins (14.0%) were obtained from the micelle-rich bottom phase with final concentrations of 3.67 mg/mL and 0.70 mg/mL, respectively. The back-extraction of mangostins was performed with the addition of 30% (w/w) of isopropanol and 0.05 M of KCl at pH 9 to the bottom phase of the CA-AMBS. The yields of the α- and γ-mangostins from GMP were considerably enhanced with the CA-AMBS and the direct recovery of mangostins was demonstrated without additional downstream processing steps.
    Matched MeSH terms: Xanthones/isolation & purification
  19. Hashim NM, Rahmani M, Ee GC, Sukari MA, Yahayu M, Oktima W, et al.
    J Biomed Biotechnol, 2012;2012:130627.
    PMID: 21960741 DOI: 10.1155/2012/130627
    An investigation of the chemical constituents in Artocarpus obtusus species led to the isolation of three new xanthones, pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2), and pyranocycloartobiloxanthone B (3). The compounds were subjected to antiproliferative assay against human promyelocytic leukemia (HL60), human chronic myeloid leukemia (K562), and human estrogen receptor (ER+) positive breast cancer (MCF7) cell lines. Pyranocycloartobiloxanthone A (1) consistently showed strong cytotoxic activity against the three cell lines compared to the other two with IC(50) values of 0.5, 2.0 and 5.0 μg/mL, respectively. Compound (1) was also observed to exert antiproliferative activity and apoptotic promoter towards HL60 and MCF7 cell lines at respective IC(50) values. The compound (1) was not toxic towards normal cell lines human nontumorigenic breast cell line (MCF10A) and human peripheral blood mononuclear cells (PBMCs) with IC(50) values of more than 30 μg/mL.
    Matched MeSH terms: Xanthones/isolation & purification
  20. Ee GC, See I, Teh SS, Daud S
    J Asian Nat Prod Res, 2014;16(7):790-4.
    PMID: 24670077 DOI: 10.1080/10286020.2014.901313
    Our phytochemical study on the stem bark of Garcinia mangostana has led to the discovery of a new furanoxanthone, mangaxanthone A (1), together with five known analogs. The five known analogs that were isolated are α-mangostin (2), β-mangostin (3), cowagarcinone B (4), and dulcisxanthone F (5). The structural elucidations of these compounds were carried out by interpreting their spectroscopic data, mainly 1D and 2D NMR spectra and MS.
    Matched MeSH terms: Xanthones/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links