Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Zakaria SNF, Aziz HA, Alazaiza MYD
    Water Environ Res, 2022 Jan;94(1):e1672.
    PMID: 34860438 DOI: 10.1002/wer.1672
    Landfill leachate can threaten the environment and human life. Therefore, this study aims to investigate the efficiency of ozone (O3 ), O3 with zirconium tetrachloride (O3 /ZrCl4 ), and O3 with tin tetrachloride (O3 /SnCl4 ) in remediating the stabilized anaerobic landfill leachate (SAL) from Alor Pongsu, Perak. Hydroxyl radical (OH•) is an important oxidizing agent in the ozonation process. Its presence was tested using tert-butyl alcohol. Results showed that using ZrCl4 and SnCl4 in ozonation boosted the generation of hydroxyl radical, thereby enhancing the oxidation process and pollutant removal inside the sample. The O3 /ZrCl4 mix at chemical oxygen demand (COD) to ZrCl4 ratio of 1:1.5, pH 8-9, and 90-min reaction time resulted in the highest reduction rates of COD and color at 91.9% and 99.6%, respectively. All results demonstrated that the optimum performance occurred at alkaline conditions (pH > 8), proving that OH radicals primarily oxidized the pollutants through an indirect reaction pathway. The biodegradability (biochemical oxygen demand/COD) ratio was also considerably improved from 0.02 (raw) to 0.37 using O3 /ZrCl4 , compared with using O3 alone and using O3 /SnCl4 , which only recorded 0.23 and 0.28, respectively, after the treatment. The study demonstrated that O3 /ZrCl4 was the most efficient combination. PRACTITIONER POINTS: The O3 /ZrCl4 recorded the highest COD and color removals. The O3 /ZrCl4 combination also recorded higher OH• concentrations. The biodegradability of leachate (BOD5 /COD ratio) improved from 0.02 to 0.37.
    Matched MeSH terms: Zirconium
  2. Yasin SM, Ibrahim S, Johan MR
    ScientificWorldJournal, 2014;2014:547076.
    PMID: 25133244 DOI: 10.1155/2014/547076
    New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10(-4) Scm(-1)). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.
    Matched MeSH terms: Zirconium/chemistry*
  3. Baig MR, Tan KB, Nicholls JI
    J Prosthet Dent, 2010 Oct;104(4):216-27.
    PMID: 20875526 DOI: 10.1016/S0022-3913(10)60128-X
    The marginal fit of crowns is a concern for clinicians, and there is no conclusive evidence of any one margin configuration yielding better results than others in terms of marginal fit.
    Matched MeSH terms: Zirconium
  4. Vohra F, Al-Kheraif AA, Ab Ghani SM, Abu Hassan MI, Alnassar T, Javed F
    J Prosthet Dent, 2015 Sep;114(3):351-7.
    PMID: 26047803 DOI: 10.1016/j.prosdent.2015.03.016
    STATEMENT OF PROBLEM: Zirconia implants have been used for oral rehabilitation; however, evidence of their ability to maintain crestal bone and periimplant soft tissue health is not clear.

    PURPOSE: The purpose of this systematic review was to evaluate crestal bone loss (CBL) around zirconia dental implants and clinical periimplant inflammatory parameters.

    MATERIAL AND METHODS: The focus question addressed was, "Do zirconia implants maintain crestal bone levels and periimplant soft tissue health?" Databases were searched for articles from 1977 through September 2014 with different combinations of the following MeSH terms: "dental implants," "zirconium," "alveolar bone loss," "periodontal attachment loss," "periodontal pocket," "periodontal index." Letters to the editor, case reports, commentaries, review articles, and articles published in languages other than English were excluded.

    RESULTS: Thirteen clinical studies were included. In 8 of the studies, the CBL around zirconia implants was comparable between baseline and follow-up. In the other 5 studies, the CBL around zirconia implants was significantly higher at follow-up. Among the studies that used titanium implants as controls, 2 studies showed significantly higher CBL around zirconia implants, and in 1 study, the CBL around zirconia and titanium implants was comparable. The reported implant survival rates for zirconia implants ranged between 67.6% and 100%. Eleven studies selectively reported the periimplant inflammatory parameters.

    CONCLUSIONS: Because of the variations in study design and methodology, it was difficult to reach a consensus regarding the efficacy of zirconia implants in maintaining crestal bone levels and periimplant soft tissue health.

    Matched MeSH terms: Zirconium*
  5. Rad MA, Tijjani AS, Ahmad MR, Auwal SM
    Sensors (Basel), 2016 Dec 23;17(1).
    PMID: 28025571 DOI: 10.3390/s17010014
    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m-1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N-1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m-1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.
    Matched MeSH terms: Zirconium/chemistry*
  6. Rahman NJA, Ramli A, Jumbri K, Uemura Y
    Sci Rep, 2019 11 07;9(1):16223.
    PMID: 31700157 DOI: 10.1038/s41598-019-52771-9
    Bifunctional heterogeneous catalysts have a great potential to overcome the shortcomings of homogeneous and enzymatic catalysts and simplify the biodiesel production processes using low-grade, high-free-fatty-acid feedstock. In this study, we developed ZrO2-based bifunctional heterogeneous catalysts for simultaneous esterification and transesterification of microalgae to biodiesel. To avoid the disadvantage of the low surface area of ZrO2, the catalysts were prepared via a surfactant-assisted sol-gel method, followed by hydrothermal treatments. The response surface methodology central composite design was employed to investigate various factors, like the surfactant/Zr molar ratio, pH, aging time, and temperature on the ZrO2 surface area. The data were statistically analyzed to predict the optimal combination of factors, and further experiments were conducted for verification. Bi2O3 was supported on ZrO2 via the incipient wetness impregnation method. The catalysts were characterized by a variety of techniques, which disclosed that the surfactant-assisted ZrO2 nanoparticles possess higher surface area, better acid-base properties, and well-formed pore structures than bare ZrO2. The highest yield of fatty acid methyl esters (73.21%) was achieved using Bi2O3/ZrO2(CTAB), and the catalytic activity of the developed catalysts was linearly correlated with the total densities of the acidic and basic sites. The mechanism of the simultaneous reactions was also discussed.
    Matched MeSH terms: Zirconium/metabolism*; Zirconium/chemistry*
  7. Chaudhuri T, Wan Y, Mazumder R, Ma M, Liu D
    Sci Rep, 2018 May 04;8(1):7069.
    PMID: 29728630 DOI: 10.1038/s41598-018-25494-6
    Sensitive High-Resolution Ion Microprobe (SHRIMP) U-Pb analyses of zircons from Paleoarchean (~3.4 Ga) tonalite-gneiss called the Older Metamorphic Tonalitic Gneiss (OMTG) from the Champua area of the Singhbhum Craton, India, reveal 4.24-4.03 Ga xenocrystic zircons, suggesting that the OMTG records the hitherto unknown oldest precursor of Hadean age reported in India. Hf isotopic analyses of the Hadean xenocrysts yield unradiogenic 176Hf/177Hfinitial compositions (0.27995 ± 0.0009 to 0.28001 ± 0.0007; ɛHf[t] = -2.5 to -5.2) indicating that an enriched reservoir existed during Hadean eon in the Singhbhum cratonic mantle. Time integrated ɛHf[t] compositional array of the Hadean xenocrysts indicates a mafic protolith with 176Lu/177Hf ratio of ∼0.019 that was reworked during ∼4.2-4.0 Ga. This also suggests that separation of such an enriched reservoir from chondritic mantle took place at 4.5 ± 0.19 Ga. However, more radiogenic yet subchondritic compositions of ∼3.67 Ga (average 176Hf/177Hfinitial 0.28024 ± 0.00007) and ~3.4 Ga zircons (average 176Hf/177Hfinitial = 0.28053 ± 0.00003) from the same OMTG samples and two other Paleoarchean TTGs dated at ~3.4 Ga and ~3.3 Ga (average 176Hf/177Hfinitial is 0.28057 ± 0.00008 and 0.28060 ± 0.00003), respectively, corroborate that the enriched Hadean reservoir subsequently underwent mixing with mantle-derived juvenile magma during the Eo-Paleoarchean.
    Matched MeSH terms: Zirconium
  8. Chuin HC, Che Husna Azhari, Mohamed Aboras, Masfueh Razali, Andanastuti Muchtar
    Sains Malaysiana, 2018;47:1591-1597.
    This study aimed to improve the colloidal stability of yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP)
    suspension through colloidal processing to obtain highly translucent Y-TZP. Agglomeration is often the main complication
    in the processing of nanosized Y-TZP as it deteriorates mechanical and optical properties. Thus, colloidal processing
    is necessary to mitigate the agglomeration in Y-TZP. The colloidal stability of Y-TZP suspension plays a key role for the
    success of colloidal processing. In this study, colloidal processing was conducted at several stages, namely, dispersant
    addition, pH adjustment and sedimentation. Changes in particle size and zeta potential at various stages were recorded.
    The suspensions were then slip-casted to form green bodies. Green bodies were sintered and characterized for density
    and translucency. The results showed that dispersant addition followed by pH adjustment effectively dispersed soft
    agglomerates by introducing electrosteric stabilization, whereas sedimentation successfully segregated hard agglomerates
    and contributed excellent colloidal stability. With high colloidal stability, the translucency of Y-TZP was improved by
    approximately 30%. This study demonstrated different colloidal processing stages and proved that high colloidal stability
    and fine particle size are vital to produce highly translucent Y-TZP.
    Matched MeSH terms: Zirconium
  9. Amran B. Ab. Majid, Mohd Zahari Abdullah, Zaharuddin Ahmad
    The determination technique for U (238U, 235U, 234U) and Th (232Th, 230Th, 228Th) isotopes using alpha spectrometry was developed. The developed technique involved digestion, dissolution, coprecipitation, solvent extraction and electrodeposition methods. The NBS River Sediment and Rocky Flats Soil Standard Reference Materials were analysed to determine the accuracy of the technique. A good accuracy and high percentage recovery of the carrier (70 - 90%) indicated that the developed technique was suitable for U and Th isotopes determination. The technique was used to determine the U and Th concentration in monazite, xenotime and zircon samples. The results showed that the U and Th total concentrations were in the range of 21.03 to 171.25 Bq/g and 27.48 to 242.87 Bq/g respectively.
    Kaedah penguraian, pemelarutan, pemendakan bersama, ekstraksi pelarut dan pemendapan elektrik telah dikaji dan digunakan untuk mendapatkan suatu teknik yang terbaik dalam penentuan isotop uranium 234U, 235U & 238U) dan torium 228Th, 230Th & 232Th) menggunakan sistem spektrometri alfa. Kepekatan isotop U dan Th dalam bahan rujukan piawai River Sediment dan Rocky Flats Soil (NBS) telah dianalisis untuk menentukan kejituan teknik yang dibangunkan. Kajian ini mendapati kepekatan isotop yang diperolehi adalah menghampiri nilai teraku (sijil) dan peratus perolehan semula pembawa yang besar (70-90%). Ini menunjukkan teknik yang dibangunkan sesuai digunakan untuk penentuan isotop uranium dan torium. Seterusnya teknik yang dibangunkan telah digunakan untuk menentukan kandungan uranium dan torium dalam sampel monazit, xenotim dan zirkon tempatan. Kepekatan jumlah isotop uranium yang diperolehi didapati berada dalam julat 21.03 - 171.25 Bq/g manakala kepekatan jumlah isotop torium pula terletak antara 27.48 - 242.87 Bq/g.
    Matched MeSH terms: Zirconium
  10. Hafizawati Zakaria, Norhamidi Muhamad, Abu Bakar Sulong, Mord Halim Irwan Ibrahim, Farhana Foudzi
    Sains Malaysiana, 2014;43:129-136.
    Micro powder injection molding (vim) is a promising process that may satisfy the demand on miniaturization parts to micro domain in mass production with low manufacturing cost. Three mol% yttria stabilized zirconia (Ysz) with nano-sized powder and binder system consists of polyethylene glycol (PEG), polymethyl methacrylate (PMMA) and stearic acid (sA) were used. Nano-size powders with higher surface area generally require more binder to form a feedstock. As such, determination of the optimum powder loading of the feedstock for 1UPIM process is important. The rheological characteristics of different YSZ feedstocks with powder loading of 52 53 and 54 vol.% were investigated in terms of flow behavior as a function of viscosity and shear rate. Fairly low values of flow behavior exponent ranging from 025 to 0.39 (n<1) resulted in pseudoplastic flow behavior of the examined Yszfeedstock. The 52 vol.% feedstock exhibited the lowest viscosity resulting in highest activation energy and lowest moldability index of 1.862x10-6, while the 54 vol.% feedstock regardless to its high viscosity, yielded a low activation energy of 4.14 kJImol and high moldability index of 4.59x10-6. Based on rheological properties obtained, a powder loading of 54 vol.% has desirable feedstock characteristics for iumm process and exhibited molding ability for micro detail filling. The relationship between the optimum rheological properties obtained and the actual injection process was also determined. The results showed that the green parts were able to be injected without defects such as short shot or flashing.
    Matched MeSH terms: Zirconium
  11. Salina Shaharun, Maizatul S. Shaharun, Mohamad F.M. Shah, Nurul A. Amer
    Sains Malaysiana, 2018;47:207-214.
    Catalytic hydrogenation of carbon dioxide (CO2) to methanol is an attractive way to recycle and utilize CO2. A series of Cu/ZnO/Al2O3/ZrO2 catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive x-ray analysis (FESEM-EDX) and X-ray diffraction (XRD). Higher surface area, SABET values (42.6-59.9 m2/g) were recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m2/g was found for a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 93.9 was achieved at Cu/Zn molar ratio of 0.33. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 6.4%.
    Matched MeSH terms: Zirconium
  12. Caglar I, Ates SM, Boztoprak Y, Aslan YU, Duymus ZY
    Niger J Clin Pract, 2018 Aug;21(8):1000-1007.
    PMID: 30074001 DOI: 10.4103/njcp.njcp_300_17
    Objective: The aim of this study was to investigate the different surface treatments on the bond strength of self-adhesive resin cement to high-strength ceramic.

    Materials and Methods: Ninety aluminum oxide ceramic (Turkom-Ceramic Sdn. Bhd., Kuala Lumpur, Malaysia) specimens were produced and divided into nine groups to receive the following surface treatments: control group, no treatment (Group C), sandblasting (Group B), silica coating (Group S), erbium: yttrium-aluminum-garnet (Er:YAG) laser irradiation at 150 mJ 10 Hz (Group L1), Er:YAG laser irradiation at 300 mJ 10 Hz (Group L2), sandblasting + L1 (Group BL1), sandblasting + L2 (Group BL2), silica coating + L1 (Group SL1), and silica coating + L2 (Group SL2). After surface treatments, surface roughness (SR) values were measured and surface topography was evaluated. Resin cement was applied on the specimen surface, and shear bond strength (SBS) tests were performed. Data were statistically analyzed using one-way ANOVA and Tukey's multiple comparisons at a significance level of P < 0.05.

    Results: Group S, SL1, and SL2 showed significantly increased SR values compared to the control group (P < 0.05); therefore, no significant differences were found among the SR values of Groups B, BL1, BL2, L1, and L2 and the control group (P > 0.05). Group S showed the highest SBS values, whereas the control group showed the lowest SBS values.

    Conclusion: Silica coating is the most effective method for resin bonding of high strength ceramic, but Er:YAG laser application decreased the effectiveness.

    Matched MeSH terms: Zirconium/chemistry*
  13. Khan MZU, Uddin E, Akbar B, Akram N, Naqvi AA, Sajid M, et al.
    Nanomaterials (Basel), 2020 Sep 09;10(9).
    PMID: 32916991 DOI: 10.3390/nano10091796
    A new micro heat exchanger was analyzed using numerical formulation of conjugate heat transfer for single-phase fluid flow across copper microchannels. The flow across bent channels harnesses asymmetric laminar flow and dean vortices phenomena for heat transfer enhancement. The single-channel analysis was performed to select the bent channel aspect ratio by varying width and height between 35-300 μm for Reynolds number and base temperature magnitude range of 100-1000 and 320-370 K, respectively. The bent channel results demonstrate dean vortices phenomenon at the bend for Reynolds number of 500 and above. Thermal performance factor analysis shows an increase of 18% in comparison to straight channels of 200 μm width and height. Alumina nanoparticles at 1% and 3% concentration enhance the Nusselt number by an average of 10.4% and 23.7%, respectively, whereas zirconia enhances Nusselt number by 16% and 33.9% for same concentrations. On the other hand, thermal performance factor analysis shows a significant increase in pressure drop at high Reynolds number with 3% particle concentration. Using zirconia for nanofluid, Nusselt number of the bent multi-channel model is improved by an average of 18% for a 3% particle concentration as compared to bent channel with deionized water.
    Matched MeSH terms: Zirconium
  14. Abdullah AM, Mohamad D, Rahim TNAT, Akil HM, Rajion ZA
    Mater Sci Eng C Mater Biol Appl, 2019 Jun;99:719-725.
    PMID: 30889745 DOI: 10.1016/j.msec.2019.02.007
    This study reports the influence of ZrO2/β-TCP hybridization on the thermal, mechanical, and physical properties of polyamide 12 composites to be suited for bone replacement. Amount of 15 wt% of nano-ZrO2 along with 5,10,15,20 and 25 wt% of micro-β-TCP was compounded with polyamide 12 via a twin-screw extruder. The hybrid ZrO2/β-TCP filled polyamide 12 exhibited higher thermal, mechanical and physical properties in comparison to unfilled polyamide 12 at certain filler loading; which is attributed to the homogenous dispersion of ZrO2/β-TCP fillers particle in polyamide 12 matrix. The hybrid ZrO2/β-TCP filled PA 12 demonstrated an increment of tensile strength by up to 1%, tensile modulus of 38%, flexural strength of 15%, flexural modulus of 45%, and surface roughness value of 93%, as compared to unfilled PA 12. With enhanced thermal, mechanical and physical properties, the newly developed hybrid ZrO2/β-TCP filled PA 12 could be potentially utilized for bone replacement.
    Matched MeSH terms: Zirconium/chemistry
  15. Arab A, Sktani ZDI, Zhou Q, Ahmad ZA, Chen P
    Materials (Basel), 2019 Jul 31;12(15).
    PMID: 31370216 DOI: 10.3390/ma12152440
    Zirconia toughened alumina (ZTA) is a promising advanced ceramic material for a wide range of applications that are subjected to dynamic loading. Therefore, the investigation of dynamic compressive strength, fracture toughness and hardness is essential for ZTA ceramics. However, the relationship between these mechanical properties in ZTA has not yet been established. An example of this relationship is demonstrated using ZTA samples added with MgO prepared through conventional sintering. The microstructure and mechanical properties of ZTA composites were characterized. The hardness of ZTA composites increased for ≤0.7 wt.% MgO due to the pinning effect of MgO and decrease of the porosity in the microstructure. Oppositely, the fracture toughness of ZTA composites continuously decreased due to the size reduction of Al2O3 grains. This is the main reason of deteriorate of dynamic compressive strength more than 0.2 wt.% of MgO addition. Therefore, the SHPB test shows the improvement of the dynamic compressive strength only up to a tiny amount (0.2 wt.% of MgO addition) into ZTA ceramics.
    Matched MeSH terms: Zirconium
  16. Soo SY, Silikas N, Satterthwaite J
    Materials (Basel), 2019 Jun 23;12(12).
    PMID: 31234580 DOI: 10.3390/ma12122009
    A single paragraph of about 200 words maximum. For research articles, abstracts should give a pertinent overview of the work. We strongly encourage authors to use the following style of structured abstracts, but without headings: (1) Background: Place the question addressed in a broad context and highlight the purpose of the study; (2) Methods: Describe briefly the main methods or treatments applied; (3) Results: Summarize the article's main findings; and (4) Conclusions: Indicate the main conclusions or interpretations. The abstract should be an objective representation of the article, it must not contain results which are not presented and substantiated in the main text and should not exaggerate the main conclusions. Please add in this section. The aim of the study was to investigate the fracture behaviour of four different groups of zirconia abutments with internal and external connections: (A) Astra Tech ZirDesign™ abutment on Astra Tech Implants, (B) Procera® Esthetic abutment on Nobel Biocare MK III Groovy Implants, (C) IPS e.max® on Straumann Implants, and (D) ZiReal® Posts on Biomet 3I implants. The load was applied on the assemblies using a Zwick universal testing machine: the initial and final failure loads and amplitude were recorded using acoustic emission technique. Mean initial and final failure force was found to be significantly different in each group (P < 0.001). IPS e.max® Straumann abutments exhibited the highest resistance to final fracture force compared to other abutment types. Acoustic emission can be used as one of the methods to detect fracture behaviour of implant abutments. There were no significant differences in fracture loads between the internal and externally connected zirconia abutments studied. However, externally connected abutments demonstrated screw loosening and some deformations.
    Matched MeSH terms: Zirconium
  17. Shamiri A, Chakrabarti MH, Jahan S, Hussain MA, Kaminsky W, Aravind PV, et al.
    Materials (Basel), 2014 Jul 09;7(7):5069-5108.
    PMID: 28788120 DOI: 10.3390/ma7075069
    50 years ago, Karl Ziegler and Giulio Natta were awarded the Nobel Prize for their discovery of the catalytic polymerization of ethylene and propylene using titanium compounds and aluminum-alkyls as co-catalysts. Polyolefins have grown to become one of the biggest of all produced polymers. New metallocene/methylaluminoxane (MAO) catalysts open the possibility to synthesize polymers with highly defined microstructure, tacticity, and steroregularity, as well as long-chain branched, or blocky copolymers with excellent properties. This improvement in polymerization is possible due to the single active sites available on the metallocene catalysts in contrast to their traditional counterparts. Moreover, these catalysts, half titanocenes/MAO, zirconocenes, and other single site catalysts can control various important parameters, such as co-monomer distribution, molecular weight, molecular weight distribution, molecular architecture, stereo-specificity, degree of linearity, and branching of the polymer. However, in most cases research in this area has reduced academia as olefin polymerization has seen significant advancements in the industries. Therefore, this paper aims to further motivate interest in polyolefin research in academia by highlighting promising and open areas for the future.
    Matched MeSH terms: Zirconium
  18. Nazir MH, Khan ZA, Saeed A, Bakolas V, Braun W, Bajwa R, et al.
    Materials (Basel), 2017 Oct 25;10(11).
    PMID: 29068395 DOI: 10.3390/ma10111225
    A study has been presented on the effects of intrinsic mechanical parameters, such as surface stress, surface elastic modulus, surface porosity, permeability and grain size on the corrosion failure of nanocomposite coatings. A set of mechano-electrochemical equations was developed by combining the popular Butler-Volmer and Duhem expressions to analyze the direct influence of mechanical parameters on the electrochemical reactions in nanocomposite coatings. Nanocomposite coatings of Ni with Al₂O₃, SiC, ZrO₂ and Graphene nanoparticles were studied as examples. The predictions showed that the corrosion rate of the nanocoatings increased with increasing grain size due to increase in surface stress, surface porosity and permeability of nanocoatings. A detailed experimental study was performed in which the nanocomposite coatings were subjected to an accelerated corrosion testing. The experimental results helped to develop and validate the equations by qualitative comparison between the experimental and predicted results showing good agreement between the two.
    Matched MeSH terms: Zirconium
  19. Syahriza Ismail, Nurul Izza Soaid, Suriyati Mohamed Ansari, Nurulhuda Bashirom, Monna Rozana, Tan, Wai Kian, et al.
    MyJurnal
    In the formation of ZrO2 (zirconia) nanotubes (ZNTs) by anodisation of zirconium, a balance between chemical etching at the surface of the nanotubes and inward growth inside the nanotubes is required. This can be achieved by using fluorinated organic electrolyte like ethylene glycol with the addition of small volume of oxidant. In this work, carbonate was selected as the oxidant and NH4F as the source of fluoride for chemical etching process. Two sets of electrolytes were studied EG/fluoride/Na2CO3 and EG/fluoride/K2CO3. It appears that in the presence of carbonate evolution of gas at the anode during the anodisation process was rather severe. The gas which is likely to be CO2 was found to weaken the adherence between the oxide film with the underlying Zr foil. This induced the formation of free standing ZNTs. High Resolution Transmission Electron Microscope (HRTEM) was used to investigate the crystallinity of the nanotubes where the majority crystal phase of ZNTs was tetragonal/cubic. The ZNTs were used as photocatalysts to oxidize methyl orange dye.
    Matched MeSH terms: Zirconium
  20. Askari E, Mehrali M, Metselaar IH, Kadri NA, Rahman MM
    J Mech Behav Biomed Mater, 2012 Aug;12:144-50.
    PMID: 22732480 DOI: 10.1016/j.jmbbm.2012.02.029
    This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress.
    Matched MeSH terms: Zirconium/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links