Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Ghafourian S, Raftari M, Sadeghifard N, Sekawi Z
    Curr Issues Mol Biol, 2014;16:9-14.
    PMID: 23652423
    The toxin-antitoxin (TA) systems are systems in which an unstable antitoxin inhibits a stable toxin. This review aims to introduce the TA system and its biological application in bacteria. For this purpose, first we introduce a new classification for the TA systems based on how the antitoxin can neutralize the toxin, we then describe the functions of TA systems and finally review the application of these systems in biotechnology.
    Matched MeSH terms: Bacterial Toxins/genetics*
  2. Soheili S, Ghafourian S, Sekawi Z, Neela VK, Sadeghifard N, Taherikalani M, et al.
    Drug Des Devel Ther, 2015;9:2553-61.
    PMID: 26005332 DOI: 10.2147/DDDT.S77263
    The toxin-antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.
    Matched MeSH terms: Bacterial Toxins/genetics*
  3. Ghafourian S, Good L, Sekawi Z, Hamat RA, Soheili S, Sadeghifard N, et al.
    Mem Inst Oswaldo Cruz, 2014 Jul;109(4):502-5.
    PMID: 25004148
    Although analysis of toxin-antitoxin (TA) systems can be instructive, to date, there is no information on the prevalence and identity of TA systems based on a large panel of Acinetobacter baumannii clinical isolates. The aim of the current study was to screen for functional TA systems among clinical isolates of A. baumannii and to identify the systems' locations. For this purpose, we screened 85 A. baumannii isolates collected from different clinical sources for the presence of the mazEF, relBE and higBA TA genes. The results revealed that the genes coding for the mazEF TA system were commonly present in all clinical isolates of A. baumannii. Reverse transcriptase-polymerase chain reaction analysis showed that transcripts were produced in the clinical isolates. Our findings showed that TA genes are prevalent, harboured by chromosomes and transcribed within A. baumannii. Hence, activation of the toxin proteins in the mazEF TA system should be investigated further as an effective antibacterial strategy against this bacterium.
    Matched MeSH terms: Bacterial Toxins/genetics
  4. Qureshi N, Chawla S, Likitvivatanavong S, Lee HL, Gill SS
    Appl Environ Microbiol, 2014 Sep;80(18):5689-97.
    PMID: 25002432 DOI: 10.1128/AEM.01139-14
    The management and control of mosquito vectors of human disease currently rely primarily on chemical insecticides. However, larvicidal treatments can be effective, and if based on biological insecticides, they can also ameliorate the risk posed to human health by chemical insecticides. The aerobic bacteria Bacillus thuringiensis and Lysinibacillus sphaericus have been used for vector control for a number of decades. But a more cost-effective use would be an anaerobic bacterium because of the ease with which these can be cultured. More recently, the anaerobic bacterium Clostridium bifermentans subsp. malaysia has been reported to have high mosquitocidal activity, and a number of proteins were identified as potentially mosquitocidal. However, the cloned proteins showed no mosquitocidal activity. We show here that four toxins encoded by the Cry operon, Cry16A, Cry17A, Cbm17.1, and Cbm17.2, are all required for toxicity, and these toxins collectively show remarkable selectivity for Aedes rather than Anopheles mosquitoes, even though C. bifermentans subsp. malaysia is more toxic to Anopheles. Hence, toxins that target Anopheles are different from those expressed by the Cry operon.
    Matched MeSH terms: Bacterial Toxins/genetics*
  5. Chan WT, Domenech M, Moreno-Córdoba I, Navarro-Martínez V, Nieto C, Moscoso M, et al.
    Toxins (Basel), 2018 09 18;10(9).
    PMID: 30231554 DOI: 10.3390/toxins10090378
    Type II (proteic) toxin-antitoxin systems (TAs) are widely distributed among bacteria and archaea. They are generally organized as operons integrated by two genes, the first encoding the antitoxin that binds to its cognate toxin to generate a harmless protein⁻protein complex. Under stress conditions, the unstable antitoxin is degraded by host proteases, releasing the toxin to achieve its toxic effect. In the Gram-positive pathogen Streptococcus pneumoniae we have characterized four TAs: pezAT, relBE, yefM-yoeB, and phD-doc, although the latter is missing in strain R6. We have assessed the role of the two yefM-yoeB and relBE systems encoded by S. pneumoniae R6 by construction of isogenic strains lacking one or two of the operons, and by complementation assays. We have analyzed the phenotypes of the wild type and mutants in terms of cell growth, response to environmental stress, and ability to generate biofilms. Compared to the wild-type, the mutants exhibited lower resistance to oxidative stress. Further, strains deleted in yefM-yoeB and the double mutant lacking yefM-yoeB and relBE exhibited a significant reduction in their ability for biofilm formation. Complementation assays showed that defective phenotypes were restored to wild type levels. We conclude that these two loci may play a relevant role in these aspects of the S. pneumoniae lifestyle and contribute to the bacterial colonization of new niches.
    Matched MeSH terms: Bacterial Toxins/genetics*
  6. Steinig EJ, Andersson P, Harris SR, Sarovich DS, Manoharan A, Coupland P, et al.
    BMC Genomics, 2015;16:388.
    PMID: 25981586 DOI: 10.1186/s12864-015-1599-9
    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-associated infection, but there is growing awareness of the emergence of multidrug-resistant lineages in community settings around the world. One such lineage is ST772-MRSA-V, which has disseminated globally and is increasingly prevalent in India. Here, we present the complete genome sequence of DAR4145, a strain of the ST772-MRSA-V lineage from India, and investigate its genomic characteristics in regards to antibiotic resistance and virulence factors.
    Matched MeSH terms: Bacterial Toxins/genetics
  7. Khalid MI, Tang JY, Baharuddin NH, Rahman NS, Rahimi NF, Radu S
    J Food Prot, 2015 Jan;78(1):65-71.
    PMID: 25581179 DOI: 10.4315/0362-028X.JFP-14-109
    The present study was conducted to investigate the prevalence and antibiotic resistance among Campylobacter jejuni in ulam at farms and retail outlets located in Kuala Terengganu, Malaysia. A total of 526 samples (ulam, soil, and fertilizer) were investigated for the presence of C. jejuni and the gene for cytolethal distending toxin (cdt) by using a multiplex PCR method. Antibiotic susceptibility to 10 types of antibiotics was determined using the disk diffusion method for 33 C. jejuni isolates. The average prevalence of contaminated samples from farms, wet markets, and supermarkets was 35.29, 52.66, and 69.88%, respectively. The cdt gene was not detected in 24 of the 33 C. jejuni isolates, but 9 isolates harbored cdtC. Antibiotic resistance in C. jejuni isolates was highest to penicillin G (96.97% of isolates) followed by vancomycin (87.88%), ampicillin (75.76%), erythromycin (60.61%), tetracycline (9.09%), amikacin (6.06%), and norfloxacin (3.03%); none of the isolates were resistant to ciprofloxacin, enrofloxacin, and gentamicin. In this study, C. jejuni was present in ulam, and some isolates were highly resistant to some antibiotics but not to quinolones. Thus, appropriate attention and measures are required to prevent C. jejuni contamination on farms and at retail outlets.
    Matched MeSH terms: Bacterial Toxins/genetics*
  8. Neela V, Ehsanollah GR, Zamberi S, Van Belkum A, Mariana NS
    Int J Infect Dis, 2009 May;13(3):e131-2.
    PMID: 18955004 DOI: 10.1016/j.ijid.2008.07.009
    Matched MeSH terms: Bacterial Toxins/genetics*
  9. Stegger M, Wirth T, Andersen PS, Skov RL, De Grassi A, Simões PM, et al.
    mBio, 2014 Aug 26;5(5):e01044-14.
    PMID: 25161186 DOI: 10.1128/mBio.01044-14
    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations.

    IMPORTANCE: With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined importance of these factors for the success of CA-MRSA.

    Matched MeSH terms: Bacterial Toxins/genetics
  10. Arushothy R, Ahmad N
    Trop Biomed, 2008 Dec;25(3):259-61.
    PMID: 19287368
    Legionella pneumophila are intracellular pathogens, associated with human disease, attributed to the presence and absence of certain virulent genes. In this study, virulent gene loci (lvh and rtxA regions) associated with human disease were determined. Thirty-three cooling tower water isolates, isolated between 2004 to 2006, were analyzed for the presence of these genes by PCR method. Results showed that 19 of 33 (57.5%) of the L. pneumophila serogroup 1 isolates have both the genes. Six (18.2%) of the isolates have only the lvh gene and 2 (6.1%) of the isolates have only the rtxA gene. However, both genes were absent in 6 (18.2%) of the L. pneumophila isolates. The result of our study provides some insight into the presence of the disease causing L. pneumophila serogroup 1 in the environment. Molecular epidemiological studies will provide better understanding of the prevalence of the disease in Malaysia.
    Matched MeSH terms: Bacterial Toxins/genetics*
  11. Abu Bakar F, Yeo CC, Harikrishna JA
    Int J Mol Sci, 2016 Apr 20;17(4).
    PMID: 27104531 DOI: 10.3390/ijms17040321
    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.
    Matched MeSH terms: Bacterial Toxins/genetics*
  12. Anuradha K, Foo HL, Mariana NS, Loh TC, Yusoff K, Hassan MD, et al.
    J Appl Microbiol, 2010 Nov;109(5):1632-42.
    PMID: 20602654 DOI: 10.1111/j.1365-2672.2010.04789.x
    To evaluate a live recombinant Lactococcus lactis vaccine expressing aerolysin genes D1 (Lac-D1ae) and/or D4 (Lac-D4ae) in protection against Aeromonas hydrophila in tilapia (Oreochromis niloticus).
    Matched MeSH terms: Bacterial Toxins/genetics*
  13. Lim KT, Hanifah YA, Mohd Yusof MY, Thong KL
    Trop Biomed, 2012 Jun;29(2):212-9.
    PMID: 22735842 MyJurnal
    Staphylococcus aureus is a persistent human pathogen responsible for a variety of infections ranging from soft-tissue infections to bacteremia. It produces a variety of virulence factors which are responsible for specific acute staphylococcal toxaemia syndromes. The objective of this study was to determine the prevalence of a repertoire of toxin genes among Malaysian MRSA strains and their genetic diversity by PCR-RFLP of coa gene. One hundred eighty-eight strains (2003, 2004, 2007 and 2008) of methicillin-resistant S. aureus (MRSA) were screened for 20 genes encoding for extracellular virulence determinant (sea, seb, sec, sed, see, seg, seh, sei, sej, tst, eta, etb, etd) and adhesins (cna, etb, fnbA, fnbB, hlg, ica, sdrE). The genetic relatedness of these strains was determined by PCR-RFLP of coa gene and agr grouping. Majority of the strains were tested positive for efb and fnbA (96% each), ica (78%) and hlg (59%) genes. A total of 101 strains were positive for at least one type of staphylococcal enterotoxin genes with sea being the predominant. Genes for seb, sed, see, seh, sej, eta and etb were not detected in any of the MRSA strains. The prevalence of sea, sec and ica among strains isolated in 2008 was increased significantly (p< 0.05) compared to 2003. Most of the strains were of agr type I (97.5%) followed by agr type II (1.2%) and agr type III (0.6%). All sea, sei and tst gene-positive strains were of agr type I. The only etd positive strain was agr type III. PCR-RFLP of coa produced 47 different patterns. The number of strains with virulence factors (sea, sec and ica) had increased over the years. No direct correlation between PCR-RFLP- coa profiles and virulotypes was observed.
    Matched MeSH terms: Bacterial Toxins/genetics*
  14. Riley TV, Collins DA, Karunakaran R, Kahar MA, Adnan A, Hassan SA, et al.
    J Clin Microbiol, 2018 Jun;56(6).
    PMID: 29563206 DOI: 10.1128/JCM.00170-18
    Accumulating evidence shows a high prevalence of Clostridium difficile in Southeast Asia associated with a range of clinical presentations. However, severe infections are rarely reported. We investigated C. difficile infection (CDI) across four hospitals in Kuala Lumpur and Kota Bharu, Malaysia. Enzyme immunoassays for glutamate dehydrogenase (GDH) and toxin A or B were performed on diarrheal stool specimens collected from patients in 2015 and 2016. Specimens were also cultured and isolates of C. difficile characterized by PCR ribotyping and detection of toxin genes. In total, 437 specimens were collected and fecal toxin was detected in 3.0%. A further 16.2% of specimens were GDH positive and toxin negative. After culture, toxigenic strains were isolated from 10.3% and nontoxigenic strains from 12.4% of specimens. The most prevalent PCR ribotypes (RTs) were RT 017 (20.0%) and RT 043 (10.0%). The high prevalence of RT 017 and nontoxigenic strains in Malaysia and in neighboring Thailand and Indonesia suggests that they localize to the region of Southeast Asia, with an implication that they may mediate the burden of CDI in the region.
    Matched MeSH terms: Bacterial Toxins/genetics*
  15. Yeo CC, Abu Bakar F, Chan WT, Espinosa M, Harikrishna JA
    Toxins (Basel), 2016 Feb 19;8(2):49.
    PMID: 26907343 DOI: 10.3390/toxins8020049
    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.
    Matched MeSH terms: Bacterial Toxins/genetics*
  16. Chan WT, Nieto C, Harikrishna JA, Khoo SK, Othman RY, Espinosa M, et al.
    J Bacteriol, 2011 Sep;193(18):4612-25.
    PMID: 21764929 DOI: 10.1128/JB.05187-11
    Type II (proteic) toxin-antitoxin systems (TAS) are ubiquitous among bacteria. In the chromosome of the pathogenic bacterium Streptococcus pneumoniae, there are at least eight putative TAS, one of them being the yefM-yoeB(Spn) operon studied here. Through footprinting analyses, we showed that purified YefM(Spn) antitoxin and the YefM-YoeB(Spn) TA protein complex bind to a palindrome sequence encompassing the -35 region of the main promoter (P(yefM2)) of the operon. Thus, the locus appeared to be negatively autoregulated with respect to P(yefM2), since YefM(Spn) behaved as a weak repressor with YoeB(Spn) as a corepressor. Interestingly, a BOX element, composed of a single copy (each) of the boxA and boxC subelements, was found upstream of promoter P(yefM2). BOX sequences are pneumococcal, perhaps mobile, genetic elements that have been associated with bacterial processes such as phase variation, virulence regulation, and genetic competence. In the yefM-yoeB(Spn) locus, the boxAC element provided an additional weak promoter, P(yefM1), upstream of P(yefM2) which was not regulated by the TA proteins. In addition, transcriptional fusions with a lacZ reporter gene showed that P(yefM1) was constitutive albeit weaker than P(yefM2). Intriguingly, the coupling of the boxAC element to P(yefM1) and yefM(Spn) in cis (but not in trans) led to transcriptional activation, indicating that the regulation of the yefM-yoeB(Spn) locus differs somewhat from that of other TA loci and may involve as yet unidentified elements. Conservation of the boxAC sequences in all available sequenced genomes of S. pneumoniae which contained the yefM-yoeB(Spn) locus suggested that its presence may provide a selective advantage to the bacterium.
    Matched MeSH terms: Bacterial Toxins/genetics
  17. Bakar FA, Yeo CC, Harikrishna JA
    BMC Biotechnol, 2015;15:26.
    PMID: 25887501 DOI: 10.1186/s12896-015-0138-8
    Bacterial toxin-antitoxin systems usually comprise of a pair of genes encoding a stable toxin and its cognate labile antitoxin and are located in the chromosome or in plasmids of several bacterial species. Chromosomally-encoded toxin-antitoxin systems are involved in bacterial stress responses and activation of the toxins usually leads to cell death or dormancy. Overexpression of the chromosomally-encoded YoeB toxin from the yefM-yoeB toxin-antitoxin locus of the Gram-positive bacterium Streptococcus pneumoniae has been shown to cause cell death in S. pneumoniae as well as E. coli.
    Matched MeSH terms: Bacterial Toxins/genetics
  18. Lai YM, Zaw MT, Shamsudin SB, Lin Z
    J Infect Dev Ctries, 2016 Oct 31;10(10):1053-1058.
    PMID: 27801366 DOI: 10.3855/jidc.6944
    INTRODUCTION: Uropathogenic virulence factors have been identified by comparing the prevalence of these among urinary tract isolates and environmental strains. The uropathogenic-specific protein (USP) gene is present on the pathogenicity island (PAI) of uropathogenic Escherichia coli (UPEC) and, depending on its two diverse gene types and the sequential patterns of three open reading frame units (orfUs) following it, there is a method to characterize UPEC epidemiologically called PAIusp subtyping.
    METHODOLOGY: A total of 162 UPEC isolates from Sabah, Malaysia, were tested for the presence of the usp gene and the sequential patterns of three orfUs following it using polymerase chain reaction (PCR). In addition, by means of triplex PCR, the prevalence of the usp gene was compared with other two VFs of UPEC, namely alpha hemolysin (α-hly) and cytotoxic necrotizing factor (cnf-1) genes encoding two toxins.
    RESULTS: The results showed that the usp gene was found in 78.40% of UPEC isolates, indicating that its prevalence was comparable to that found in a previous study in Japan. The two or three orfUs were also associated with the usp gene in this study. All the PAIusp subtypes observed in Japan were present in this study, while subtype IIa was the most common in both studies. The usp gene was observed in a higher percentage of isolates when compared with α-hly and cnf-1 genes.
    CONCLUSIONS: The findings in Japan and Sabah, East Malaysia, were similar, indicating that PAIusp subtyping is applicable to the characterization of UPEC strains epidemiologically elsewhere in the world.
    Matched MeSH terms: Bacterial Toxins/genetics
  19. Barloy F, Lecadet MM, Delécluse A
    Curr Microbiol, 1998 Apr;36(4):232-7.
    PMID: 9504991
    The presence of two cry-like genes first identified in Clostridium bifermentans subsp. malaysia CH18 was investigated in Clostridium species including 12 subspecies of Clostridium bifermentans, 13 strains of other members of Clostridia genus, and 13 different subspecies of Bacillus thuringiensis. Oligonucleotides designed to amplify the two toxin genes, cmb71 and cmb72, were used. We found that these genes are present in 80% of the Clostridium bifermentans strains tested and in 8% of the other Clostridium and Bacillus thuringiensis strains.
    Matched MeSH terms: Bacterial Toxins/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links