Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Monir MS, Yusoff SBM, Zulperi ZBM, Hassim HBA, Mohamad A, Ngoo MSBMH, et al.
    BMC Vet Res, 2020 Jul 02;16(1):226.
    PMID: 32615969 DOI: 10.1186/s12917-020-02443-y
    BACKGROUND: Streptococcosis and Motile Aeromonad Septicemia (MAS) are important diseases of tilapia, Oreochromis spp. and causes huge economic losses in aquaculture globally. The feed-based vaccination may be an alternative to minimize major infectious diseases in tilapia. Thus, this study aims to evaluate the haemato-immunological responses and effectiveness of a newly developed feed-based killed bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila in hybrid red tilapia. A total of 495 hybrid red tilapia of 61.23 ± 4.95 g were distributed into 5 groups (each with triplicate). The fish were immunized orally through bivalent (combined S. iniae and A. hydrophila) spray vaccine (BS group), bivalent formulate vaccine (BF group), monovalent S. iniae vaccine (MS group), monovalent A. hydrophila vaccine (MA group) and unvaccinated as a control group. The vaccine was orally administered on days 0, 14 and 42 applied feed-based bacterin at 5% body weight. The blood and spleen samples were collected from all groups on 7, 21 and 49 days post-vaccination, and also 96 h post-infection to assess their haemato-immune responses.

    RESULTS: Compared with the unvaccinated group, leukocyte, lymphocytes, monocytes, granulocytes counts in vaccinated groups were significantly (P 

    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/immunology*; Bacterial Vaccines/standards*
  2. Mohamed S, May Amelia TS, Abdullah Amirul AA, Abdul Wahid ME, Bhubalan K
    Biologicals, 2021 Jun;71:51-54.
    PMID: 33858743 DOI: 10.1016/j.biologicals.2021.03.002
    A natural biodegradable polymer, polyhydroxyalkanoate (PHA), was adjuvanted with a vaccine seed to observe the biomaterial's ability in enhancing an immune response in rats. The adjuvant potential of PHA was tested using the whole-killed Pasteurella multocida B:2 (PMB2) vaccine in Sprague Dawley (SD) rats to detect changes in serum immunoglobulin G (IgG) and immunoglobulin M (IgM) responses. A common PHA, poly(3-hydroxybutyrate) [P(3HB)], from Bacillus megaterium UMTKB-1 was constructed into microparticles using the solvent evaporation method. Twelve SD rats were divided into four treatment groups: 1) non-treatment as negative control, 2) P(3HB) adjuvant, 3) PMB2 vaccine, and 4) adjuvanted-P(3HB)/PMB2 vaccine groups, which were intramuscularly vaccinated twice. Immunoglobulins IgG and IgM levels were used as markers of the immune response induced by the adjuvanted-P(3HB)/PMB2 vaccine and analysed over an eight-week study period. The group vaccinated specifically with adjuvanted-P(3HB)/PMB2 vaccine had higher concentrations of immunoglobulins compared to other treatment groups, hence demonstrating the potential of the adjuvant to enhance immune response. Findings showed a need to delay the delivery of the second booster dose to determine the appropriate regime for the adjuvanted-P(3HB)/PMB2 vaccine.
    Matched MeSH terms: Bacterial Vaccines/immunology*
  3. Oslan SNH, Tan JS, Saad MZ, Halim M, Mohamed MS, Ariff AB
    Bioprocess Biosyst Eng, 2019 Mar;42(3):355-365.
    PMID: 30483888 DOI: 10.1007/s00449-018-2040-y
    Pasteurella multocida serotype B:2 is the causative agent of haemorrhagic septicaemia, a fatal disease in cattle and buffaloes. For use as a vaccine in the treatment of HS disease, an efficient cultivation of attenuated gdhA derivative P. multocida B:2 (mutant) for mass production of viable cells is required. In this study, the role of amino acids and vitamins on the growth of this particular bacterium was investigated. Initially, three basal media (Brain-heart infusion, Terrific broth, and defined medium YDB) were assessed in terms of growth performance of P. multocida B:2. YDB medium was selected and redesigned to take into account the effects of amino acids (glutamic acid, cysteine, glycine, methionine, lysine, tyrosine, and histidine) and vitamins (vitamin B1, nicotinic acid, riboflavin, pyridoxine, pantothenic acid, and biotin). High viable cell number was largely affected by the availability of micronutrient components and macronutrients. Histidine was essential for the growth whereby a traceable amount (20 mM) was found to greatly enhance the growth of gdhA derivative P. multocida B:2 mutant (6.6 × 109 cfu/mL) by about 19 times as compared to control culture (3.5 × 108 cfu/mL). In addition, amongst the vitamins added, riboflavin exhibited the highest impact on the viability of gdhA derivative P. multocida B:2 mutant (5.3 × 109 cfu/mL). Though the combined histidine and riboflavin in the culture eventually did not promote the stacking impact on cell growth and cell viability, nonetheless, they were still essential and important in either growth medium or production medium.
    Matched MeSH terms: Bacterial Vaccines/genetics*
  4. Muniandy N, Love DN, Mukkur TK
    Comp Immunol Microbiol Infect Dis, 1998 Oct;21(4):257-79.
    PMID: 9775357
    Purified lipopolysaccharide (LPS) of Pasteurella multocida type 6:B, while toxic at higher doses, was protective at lower dose levels against experimentally-induced pasteurellosis in mice. However, the observed protection was abrogated if such LPS was digested with proteinase K prior to use in immunisation. The O-antigen polysaccharide side-chain (OS) of LPS did not appear to contribute to the observed protection as judged by the fact that immunisation of mice with purified OS or OS-protein conjugates, all of which were nontoxic, failed to confer protection against challenge with homologous virulent organisms. This was despite generation of significant levels of OS-specific antibodies, predominantly either of the IgM or IgG isotypes, in immunised mice.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/immunology
  5. AlMatar M, Makky EA, AlMandeal H, Eker E, Kayar B, Var I, et al.
    Curr Mol Pharmacol, 2019;12(2):83-104.
    PMID: 30474542 DOI: 10.2174/1874467212666181126151948
    BACKGROUND: Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial.

    OBJECTIVE: The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.

    Matched MeSH terms: Bacterial Vaccines/immunology*
  6. Rohani MY, Raudzah A, Ng AJ, Ng PP, Zaidatul AA, Asmah I, et al.
    Epidemiol Infect, 1999 Feb;122(1):77-82.
    PMID: 10098788
    During a 1-year period from October 1995 to September 1996, 273 isolations of Streptococcus pneumoniae were made from various types of clinical specimens. The majority of the isolates (39.2%) were from sputum whilst 27.5% were from blood, CSF and other body fluids. The organism was isolated from patients of all age groups, 31.1% from children aged 10 years and below, 64.7% of which come from children aged 2 years or below. The majority of the isolates belong to serotypes 1, 6B, 19B, 19F and 23F. Serotypes 1 and 19B were the most common serotypes associated with invasive infection. About 71.9% of the invasive infections were due to serotypes included in the available 23 valent polysaccharide vaccine. The rates of resistance to penicillin and erythromycin were 7.0 and 1.1% respectively. Our findings show that the serotypes of S. pneumoniae causing most invasive infections in Malaysia are similar to those in other parts of the world and the available vaccine may have a useful role in this population.
    Matched MeSH terms: Bacterial Vaccines
  7. Barnard RT
    Expert Rev Vaccines, 2010 May;9(5):461-3.
    PMID: 20450319 DOI: 10.1586/erv.10.48
    The Recombinant Vaccines: Strategies for Candidate Discovery and Vaccine Delivery conference, organized by EuroSciCon, hosted a group of UK-based and international scientists from as far afield as Malaysia and Australia. Genomic analyses of pathogens and elucidation of mechanisms of pathogenesis has advanced candidate discovery and development of vaccines. Therefore, it was timely that this conference featured, in addition to detailed expositions of target selection and clinical trials, presentations on manufacturability, scale-up and delivery of vaccines. Ten talks were presented. This meeting report describes the key topics presented and the themes that emerged from this conference.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/genetics*; Bacterial Vaccines/immunology*
  8. Nur-Nazifah M, Sabri MY, Siti-Zahrah A
    Fish Shellfish Immunol, 2014 Mar;37(1):193-200.
    PMID: 24486904 DOI: 10.1016/j.fsi.2014.01.011
    This study was carried out to determine the antibody responses and protective capacity of an inactivated recombinant vaccine expressing the cell wall surface anchor family protein of Streptococcus agalactiae following oral vaccination against streptococcosis in tilapia. Tilapia were vaccinated orally with 10(6) CFU/mL of the recombinant vaccine incorporated in feed (feed-based recombinant vaccine) (vaccinated group or Group 1), 10(6) CFU/mL of pET-32 Ek/LIC vector without cell wall surface anchor family protein (control group or Group 2), 10(6) CFU/mL of formalin-killed cells of S. agalactiae vaccine incorporated in feed was also prepared (feed-based vaccine) (vaccinated group or Group 3), and unvaccinated control group or Group 4 (fed with commercial pellets). During the course of study, serum, mucus and gut lavage fluid were collected to evaluate the antibody levels via enzyme-linked immunosorbent assay (ELISA). The results showed that tilapia immunized with the feed-based recombinant vaccine developed a strong and significantly (P 
    Matched MeSH terms: Bacterial Vaccines*
  9. Monir MS, Yusoff MSM, Zulperi ZM, Hassim HA, Zamri-Saad M, Amal MNA, et al.
    Fish Shellfish Immunol, 2021 Jun;113:162-175.
    PMID: 33857622 DOI: 10.1016/j.fsi.2021.04.006
    Streptococcosis and motile aeromonad septicemia (MAS) are well-known diseases in tilapia culture, which cause mass mortality with significant economic losses. The development of feed-based bivalent vaccines in controlling these diseases has been initiated, however, the mechanisms of immunities and cross-protection in fish remain unclear. This study was conducted to assess the immuno-protective as well as the cross-protective efficacy of a newly developed feed-based bivalent vaccine against Streptococcus and Aeromonas infections in red hybrid tilapia. A total of five groups of fish were vaccinated orally through two different techniques; bivalent vaccine (inactivated Streptococcus iniae and Aeromonas hydrophila) sprayed on feed pellets (BS group); bivalent vaccine (inactivated S. iniae and A. hydrophila) incorporated in feed (BI group); monovalent inactivated S. iniae and A. hydrophila vaccine separately incorporated into feed as monovalent S. iniae (MS group) and monovalent A. hydrophila (MA group); and control group (without vaccine). The feed-based vaccine was delivered orally at 5% of body weight for five consecutive days. The booster doses were given in the same manner on weeks 2 and 6. Serum and skin mucus samples were collected to assess the IgM responses using indirect ELISA. The first administration of the feed-based vaccine stimulated the IgM levels that lasted until week 3, while the second booster ensured that the IgM levels remained high for a period of 16 weeks in the BI, MS and MA groups. The BI group developed a strong and significantly (P 
    Matched MeSH terms: Bacterial Vaccines/immunology*
  10. Chin CY, Tan SC, Nathan S
    PMID: 22919676 DOI: 10.3389/fcimb.2012.00085
    Burkholderia pseudomallei is resistant to a diverse group of antimicrobials including third generation cephalosporins whilst quinolones and aminoglycosides have no reliable effect. As therapeutic options are limited, development of more effective forms of immunotherapy is vital to avoid a fatal outcome. In an earlier study, we reported on the B. pseudomallei serine MprA protease, which is relatively stable over a wide pH and temperature range and digests physiological proteins. The present study was carried out to evaluate the immunogenicity and protective efficacy of the MprA as a potential vaccine candidate. In BALB/c mice immunized with recombinant MprA protease (smBpF4), a significantly high IgG titer was detectable. Isotyping studies revealed that the smBpF4-specific antibodies produced were predominantly IgG(1), proposing that immunization with smBpF4 triggered a Th2 immune response. Mice were immunized with smBpF4 and subsequently challenged with B. pseudomallei via the intraperitoneal route. Whilst control mice succumbed to the infection by day 9, smBpF4-immunized mice were protected against the lethal challenge and survived beyond 25 days post-infection. In conclusion, MprA is immunogenic in melioidosis patients whilst also eliciting a strong immune response upon bacterial challenge in mice and presents itself as a potential vaccine candidate for the treatment of melioidosis.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/genetics; Bacterial Vaccines/immunology*
  11. Mujawar S, Mishra R, Pawar S, Gatherer D, Lahiri C
    PMID: 31281799 DOI: 10.3389/fcimb.2019.00203
    Nosocomial infections have become alarming with the increase of multidrug-resistant bacterial strains of Acinetobacter baumannii. Being the causative agent in ~80% of the cases, these pathogenic gram-negative species could be deadly for hospitalized patients, especially in intensive care units utilizing ventilators, urinary catheters, and nasogastric tubes. Primarily infecting an immuno-compromised system, they are resistant to most antibiotics and are the root cause of various types of opportunistic infections including but not limited to septicemia, endocarditis, meningitis, pneumonia, skin, and wound sepsis and even urinary tract infections. Conventional experimental methods including typing, computational methods encompassing comparative genomics, and combined methods of reverse vaccinology and proteomics had been proposed to differentiate and develop vaccines and/or drugs for several outbreak strains. However, identifying proteins suitable enough to be posed as drug targets and/or molecular vaccines against the multidrug-resistant pathogenic bacterial strains has probably remained an open issue to address. In these cases of novel protein identification, the targets either are uncharacterized or have been unable to confer the most coveted protection either in the form of molecular vaccine candidates or as drug targets. Here, we report a strategic approach with the 3,766 proteins from the whole genome of A. baumannii ATCC19606 (AB) to rationally identify plausible candidates and propose them as future molecular vaccine candidates and/or drug targets. Essentially, we started with mapping the vaccine candidates (VaC) and virulence factors (ViF) of A. baumannii strain AYE onto strain ATCC19606 to identify them in the latter. We move on to build small networks of VaC and ViF to conceptualize their position in the network space of the whole genomic protein interactome (GPIN) and rationalize their candidature for drugs and/or molecular vaccines. To this end, we propose new sets of known proteins unearthed from interactome built using key factors, KeF, potent enough to compete with VaC and ViF. Our method is the first of its kind to propose, albeit theoretically, a rational approach to identify crucial proteins and pose them for candidates of vaccines and/or drugs effective enough to combat the deadly pathogenic threats of A. baumannii.
    Matched MeSH terms: Bacterial Vaccines/therapeutic use*
  12. Choh LC, Ong GH, Vellasamy KM, Kalaiselvam K, Kang WT, Al-Maleki AR, et al.
    PMID: 23386999 DOI: 10.3389/fcimb.2013.00005
    The genus Burkholderia consists of diverse species which includes both "friends" and "foes." Some of the "friendly" Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.
    Matched MeSH terms: Bacterial Vaccines/immunology*
  13. Kazi A, Hisyam Ismail CMK, Anthony AA, Chuah C, Leow CH, Lim BH, et al.
    Infect Genet Evol, 2020 06;80:104176.
    PMID: 31923724 DOI: 10.1016/j.meegid.2020.104176
    Shigellosis is one of the most common diseases found in the developing countries, especially those countries that are prone flood. The causative agent for this disease is the Shigella species. This organism is one of the third most common enteropathogens responsible for childhood diarrhea. Since Shigella can survive gastric acidity and is an intracellular pathogen, it becomes difficult to treat. Also, uncontrolled use of antibiotics has led to development of resistant strains which poses a threat to public health. Therefore, there is a need for long term control of Shigella infection which can be achieved by designing a proper and effective vaccine. In this study, emphasis was made on designing a candidate that could elicit both B-cell and T-cell immune response. Hence B- and T-cell epitopes of outer membrane channel protein (OM) and putative lipoprotein (PL) from S. flexneri 2a were computationally predicted using immunoinformatics approach and a chimeric construct (chimeric-OP) containing the immunogenic epitopes selected from OM and PL was designed, cloned and expressed in E. coli system. The immunogenicity of the recombinant chimeric-OP was assessed using Shigella antigen infected rabbit antibody. The result showed that the chimeric-OP was a synthetic peptide candidate suitable for the development of vaccine and immunodiagnostics against Shigella infection.
    Matched MeSH terms: Bacterial Vaccines/immunology*
  14. Thung, T. Y., Chin, Y. Z., Najwa, M. S., Ubong, A., New, C. Y., Ramzi, O. S. B., et al.
    MyJurnal
    Salmonellosis is an important public health problem and causes large economic losses in the poultry industry. The emergence of molecular technology has opened various possibilities for constructing tailor-made proteins, particularly protein E from bacteriophage PhiX174 for the
    production of bacterial ghosts (BGs) applied in vaccines purposes. In the present study, the plamdaPRcI-Elysis plasmid carrying the PhiX174 lysis gene E and thermo-sensitive lamda PR-cl857 regulatory system was constructed. Two Salmonella Enteritidis (SE-2 and SE- 4) and one Salmonella Typhimurium (ST-4) isolates were able to uptake the lysis plasmid via electrotransformation. Generation of ghosts was enhanced by increasing the incubation temperature up to 42˚C. Cell viability of SE-2, SE-4 and ST-4 decreased ranging in log 2.7 to log 4.1 cycles after lysis induction. Moreover, SE-2 and SE-4 exhibited the earliest reduction of CFU after 3 h of incubation. Our results may provide a promising avenue for the development of Salmonella BGs vaccines.
    Matched MeSH terms: Bacterial Vaccines
  15. Noraini O, Sabri MY, Siti-Zahrah A
    J Aquat Anim Health, 2013 Jun;25(2):142-8.
    PMID: 23724958 DOI: 10.1080/08997659.2013.781553
    An initial evaluation of spray vaccination was carried out with 60 hybrid Red Tilapia Oreochromis spp., divided into three groups that consisted of 10 fish per group with duplicates. The formalin-killed cells (FKCs) of Streptococcus agalactiae were administered once to group 1 by spray and once daily for five consecutive days to group 2. Group 3 remained as the untreated control group and was sprayed with normal saline. A booster was given twice to all the groups, once at the second week and again at the fourth week after the first vaccination. After this initial evaluation, a challenge study was conducted with 40 tilapia divided into two groups that consisted of 10 fish per group with duplicates. Group 1 was vaccinated with FKCs of S. agalactiae by a single spray administration while group 2 remained as the untreated control group. A booster was given twice using the same protocol as in the initial evaluation. After 6 weeks, fish from one of the duplicate tanks from each of groups 1 and 2 were challenged with pathogenic S. agalactiae by intraperitoneal (IP) injection, while fish in another tank were challenged through immersion. Based on the observations, serum immunoglobulin M (IgM) levels were significantly higher (P < 0.05) in the challenged fish than in the either the preexposed fish or the control group 1 week after the initial exposure. However, no significant differences (P > 0.05) were noted between challenged groups 1 and 2. In addition, no significant differences (P > 0.05) were observed between the frequencies of exposure. The mucus IgM level, however, remained high after each booster until the end of the 8-week study period. Meanwhile, serum IgM levels decreased after the challenge. A higher percentage of survival was noted for fish challenged through immersion (80%) compared with IP injection (70%). These results suggested that single spray exposure was able to induce IgM, which gave moderate to high protection during the challenge study.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/immunology*
  16. Shirajum Monir M, Yusoff SM, Mohamad A, Ina-Salwany MY
    J Aquat Anim Health, 2020 06;32(2):65-76.
    PMID: 32331001 DOI: 10.1002/aah.10099
    The production of tilapia Oreochromis spp. is rapidly growing throughout the world, but atypical motile aeromonad septicemia (MAS) is a current threat to the tilapia farming industry. The etiological agent of this disease is usually Aeromonas hydrophila. Mortality rates due to MAS are frequently high, resulting in a devastating negative impact on this industry worldwide; therefore, proper control measures regarding both prevention and treatment are necessary. Although vaccines against MAS for tilapia are available, their effectiveness is entirely dependent on the specific strain of problematic bacteria. Until now, whole-cell inactivated A. hydrophila vaccines for tilapia have exhibited the highest level of protection over live attenuated and recombinant vaccines. Among the various vaccine administration systems, only intraperitoneal (i.p.) injections of the A. hydrophila vaccine into tilapia were found to provide prominent immune protection. Vaccine efficacy was primarily measured by using the i.p. injection challenge model and estimating the relative percent survival of the immunized tilapia. Freund's incomplete adjuvant showed to be the most effective for tilapia MAS vaccines. In this review, multiple factors that directly or indirectly influence the efficacy of MAS vaccines for tilapia (adjuvants, challenge models, immunization doses and duration, and size of vaccinated fish) are discussed.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage*
  17. Kang TL, Chelliah S, Velappan RD, Kabir N, Mohamad J, Nor Rashid N, et al.
    Lett Appl Microbiol, 2019 Nov;69(5):366-372.
    PMID: 31508837 DOI: 10.1111/lam.13215
    We evaluate the efficacy of recombinant DNA vaccine ABA392 against haemorrhagic septicaemia infection through intranasal administration route by targeting the mucosal immunity. The DNA vaccine was constructed and subjected to animal study using the Sprague Dawley (SD) rat. The study was divided into two major parts: (i) active and (ii) passive immunization studies, involving 30 animals for each part. Each group was then divided into five test groups: two test samples G1 and G2 with 50 and 100 µg ml-1 purified DNA vaccine; one positive control G5 with 106  CFU per ml formalin-killed PMB2; and two negative controls, G3 and G4 with normal saline and pVAX1 vector. Both studies were conducted for the determination of immunogenicity by total white blood cell count (TWBC), indirect ELISA and histopathological changes for the presence of the bronchus-associated lymphoid tissue (BALT). Our findings demonstrate that TWBC, IgA and IgG increased after each of the three vaccination regimes: groups G1, G2 and G5. Test samples G1 and G2 showed significant differences (P 
    Matched MeSH terms: Bacterial Vaccines/administration & dosage*; Bacterial Vaccines/genetics; Bacterial Vaccines/immunology
  18. Tobuse AJ, Ang CW, Yeong KY
    Life Sci, 2022 Aug 01;302:120660.
    PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660
    With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
    Matched MeSH terms: Bacterial Vaccines
  19. Leow CY, Chuah C, Abdul Majeed AB, Mohd Nor N, Leow CH
    Methods Mol Biol, 2022;2414:17-35.
    PMID: 34784029 DOI: 10.1007/978-1-0716-1900-1_2
    Reverse vaccinology (RV) was first introduced by Rappuoli for the development of an effective vaccine against serogroup B Neisseria meningitidis (MenB). With the advances in next generation sequencing technologies, the amount of genomic data has risen exponentially. Since then, the RV approach has widely been used to discover potential vaccine protein targets by screening whole genome sequences of pathogens using a combination of sophisticated computational algorithms and bioinformatic tools. In contrast to conventional vaccine development strategies, RV offers a novel method to facilitate rapid vaccine design and reduces reliance on the traditional, relatively tedious, and labor-intensive approach based on Pasteur"s principles of isolating, inactivating, and injecting the causative agent of an infectious disease. Advances in biocomputational techniques have remarkably increased the significance for the rapid identification of the proteins that are secreted or expressed on the surface of pathogens. Immunogenic proteins which are able to induce the immune response in the hosts can be predicted based on the immune epitopes present within the protein sequence. To date, RV has successfully been applied to develop vaccines against a variety of infectious pathogens. In this chapter, we apply a pipeline of bioinformatic programs for identification of Shigella flexneri potential vaccine candidates as an illustration immunoinformatic tools available for RV.
    Matched MeSH terms: Bacterial Vaccines
  20. Chung ELT, Abdullah FFJ, Marza AD, Saleh WMM, Ibrahim HH, Abba Y, et al.
    Microb Pathog, 2017 Jan;102:89-101.
    PMID: 27894962 DOI: 10.1016/j.micpath.2016.11.015
    The aim of this study was to investigate the clinico-pathology and haemato-biochemistry alterations in buffaloes inoculated with Pasteurella multocida type B:2 immunogen outer membrane protein via subcutaneous and oral routes. Nine buffalo heifers were divided equally into 3 treatment groups. Group 1 was inoculated orally with 10 mL of phosphate buffer saline (PBS); Group 2 and 3 were inoculated with 10 mL of outer membrane protein broth subcutaneously and orally respectively. Group 2 buffaloes showed typical haemorrhagic septicaemia clinical signs and were only able to survive for 72 h of the experiment. However, Group 3 buffaloes were able to survive throughout the stipulated time of 21 days of experiment. There were significant differences (p  0.05) in edema between groups except for the lung. This study was a proof that oral route infection of Pasteurella multocida type B:2 immunogen outer membrane protein can be used to stimulate host cell.
    Matched MeSH terms: Bacterial Vaccines/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links