Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Ong JEX, Blum IR
    Prim Dent J, 2024 Jun;13(2):58-64.
    PMID: 38888073 DOI: 10.1177/20501684241249558
    This clinical case report demonstrates the use of the Dahl Concept in the management of the repeated dislodgement of a posterior full coverage crown associated with a reduced restorative space. The described technique harnesses the addition of resin composite and a temporarily cemented provisional full coverage crown to create sufficient restorative space for the cementation of a definitive posterior full coverage crown restoration at the six-month review.
    Matched MeSH terms: Cementation
  2. Jogad N, Patil PG, Gade V, Patil S
    J Prosthet Dent, 2015 Sep;114(3):458-9.
    PMID: 26047801 DOI: 10.1016/j.prosdent.2015.04.005
    Matched MeSH terms: Cementation/economics*
  3. Ahmad, R., Wu, B.W., Morgano, S.M.
    Ann Dent, 2001;8(1):-.
    MyJurnal
    Polishing of dental ceramics has become an increasingly important procedure in restorative dentistry as allceramic restorations, which require post-cementation occlusal adjustment, are gaining in popularity. There are numerous studies in both dental and ceramic literature on polishing of dental ceramics and the effects of polishing on their mechanical properties. However, lack of standardization in polishing parameters, precludes comparison among these studies. A clear understanding is lacking of the relative roles and interdependence of handpiece speed, abrasive characteristic, and polishing load. This paper will discuss the mechanism of polishing and review the literature on polishing and its effect on the mechanical properties of ceramic restorations.
    Matched MeSH terms: Cementation
  4. Heboyan A, Vardanyan A, Karobari MI, Marya A, Avagyan T, Tebyaniyan H, et al.
    Molecules, 2023 Feb 08;28(4).
    PMID: 36838607 DOI: 10.3390/molecules28041619
    The cementation of indirect restoration is one of the most important steps in prosthetic and restorative dentistry. Cementation aims to bond the prosthetic restoration to the prepared enamel or enamel and dentine. Successful cementation protocols prevent biofilm formation at the margin between tooth and restoration and minimize mechanical and biological complications. With the advancements in dental cements, they have been modified to be versatile in terms of handling, curing, and bond strengths. This review presents updates on dental cements, focusing on the composition, properties, advantages, limitations, and indications of the various cements available. Currently, dental restorations are made from various biomaterials, and depending on each clinical case, an appropriate luting material will be selected. There is no luting material that can be universally used. Therefore, it is important to distinguish the physical, mechanical, and biological properties of luting materials in order to identify the best options for each case. Nowadays, the most commonly used dental cements are glass-ionomer and resin cement. The type, shade, thickness of resin cement and the shade of the ceramic, all together, have a tangible influence on the final restoration color. Surface treatments of the restoration increase the microtensile bond strength. Hence, the proper surface treatment protocol of both the substrate and restoration surfaces is needed before cementation. Additionally, the manufacturer's instructions for the thin cement-layer thickness are important for the long-term success of the restoration.
    Matched MeSH terms: Cementation/methods
  5. Mirzasadeghi A, Narayanan SS, Ng MH, Sanaei R, Cheng CH, Bajuri MY, et al.
    Biomed Mater Eng, 2014;24(6):2177-86.
    PMID: 25226916 DOI: 10.3233/BME-141029
    The application of bone substitutes and cements has a long standing history in augmenting fractures as a complement to routine fracture fixation techniques. Nevertheless, such use is almost always in conjunction with definite means of fracture fixation such as intramedullary pins or bone plates. The idea of using biomaterials as the primary fixation bears the possibility of simultaneous fixation and bone enhancement. Intramedullary recruitment of bone cements is suggested in this study to achieve this goal. However, as the method needs primary testings in animal models before human implementation, and since the degree of ambulation is not predictable in animals, this pilot study only evaluates the outcomes regarding the feasibility and safety of this method in the presence of primary bone fixators. A number of two sheep were used in this study. Tibial transverse osteotomies were performed in both animals followed by external skeletal fixation. The medullary canals, which have already been prepared by removing the marrow through proximal and distal drill holes, were then injected with calcium phosphate cement (CPC). The outcomes were evaluated postoperatively by standard survey radiographs, morphology, histology and biomechanical testings. Healing processes appeared uncomplicated until week four where one bone fracture recurred due to external fixator failure. The results showed 56% and 48% cortical thickening, compared to the opposite site, in the fracture site and proximal and distal diaphyses respectively. This bone augmentative effect resulted in 264% increase in bending strength of the fracture site and 148% increase of the same value in the adjacent areas of diaphyses. In conclusion, IMCO, using CPC in tibia of sheep, is safe and biocompatible with bone physiology and healing. It possibly can carry the osteopromotive effect of the CPCs to provide a sustained source of bone augmentation throughout the diaphysis. Although the results must be considered preliminary, this method has possible advantages over conventional methods of bone fixation at least in bones with compromised quality (i.e. osteoporosis and bone cysts), where rigid metal implants may jeopardize eggshell cortices.
    Matched MeSH terms: Cementation/methods*
  6. Razuin R, Effat O, Shahidan MN, Shama DV, Miswan MF
    Malays J Pathol, 2013 Jun;35(1):87-90.
    PMID: 23817399 MyJurnal
    Bone cement implantation syndrome (BCIS) is characterized by hypoxia, hypotension, cardiac arrhythmias, increased pulmonary vascular resistance and cardiac arrest. It is a known cause of morbidity and mortality in patients undergoing cemented orthopaedic surgeries. The rarity of the condition as well as absence of a proper definition has contributed to under-reporting of cases. We report a 59-year-old woman who sustained fracture of the neck of her left femur and underwent an elective hybrid total hip replacement surgery. She collapsed during surgery and was revived only to succumb to death twelve hours later. Post mortem findings showed multiorgan disseminated microembolization of bone marrow and amorphous cement material.
    Matched MeSH terms: Cementation/adverse effects*
  7. Al-Makramani BM, Razak AA, Abu-Hassan MI
    J Contemp Dent Pract, 2008;9(2):33-40.
    PMID: 18264523
    The objective of this study is to investigate the effect of different luting agents on the fracture strength of Turkom-Cera all-ceramic copings.
    Matched MeSH terms: Cementation*
  8. Razak AA, Abu-Hassan MI, Al-Makramani BM, Al-Sanabani FA, Al-Shami IZ, Almansour HM
    J Contemp Dent Pract, 2016 Nov 01;17(11):920-925.
    PMID: 27965501
    AIM: The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan).

    MATERIALS AND METHODS: Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests.

    RESULTS: The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups.

    CONCLUSION: In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks.

    CLINICAL SIGNIFICANCE: The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations.

    Matched MeSH terms: Cementation/methods
  9. Saran R, Upadhya NP, Ginjupalli K, Amalan A, Rao B, Kumar S
    Int J Dent, 2020;2020:8896225.
    PMID: 33061975 DOI: 10.1155/2020/8896225
    Introduction: Glass ionomer cements (GICs) are commonly used for cementation of indirect restorations. However, one of their main drawbacks is their inferior mechanical properties.

    Aim: Compositional modification of conventional glass ionomer luting cements by incorporating two types of all-ceramic powders in varying concentrations and evaluation of their film thickness, setting time, and strength. Material & Methods. Experimental GICs were prepared by adding different concentrations of two all-ceramic powders (5%, 10, and 15% by weight) to the powder of the glass ionomer luting cements, and their setting time, film thickness, and compressive strength were determined. The Differential Scanning Calorimetry analysis was done to evaluate the kinetics of the setting reaction of the samples. The average particle size of the all-ceramic and glass ionomer powders was determined with the help of a particle size analyzer.

    Results: A significant increase in strength was observed in experimental GICs containing 10% all-ceramic powders. The experimental GICs with 5% all-ceramic powders showed no improvement in strength, whereas those containing 15% all-ceramic powders exhibited a marked decrease in strength. Setting time of all experimental GICs progressively increased with increasing concentration of all-ceramic powders. Film thickness of all experimental GICs was much higher than the recommended value for clinical application.

    Conclusion: 10% concentration of the two all-ceramic powders can be regarded as the optimal concentration for enhancing the glass ionomer luting cements' strength. There was a significant increase in the setting time at this concentration, but it was within the limit specified by ISO 9917-1:2007 specifications for powder/liquid acid-base dental cements. Reducing the particle size of the all-ceramic powders may help in decreasing the film thickness, which is an essential parameter for the clinical performance of any luting cement.

    Matched MeSH terms: Cementation
  10. Iqbal DM, Wong LS, Kong SY
    Materials (Basel), 2021 Apr 23;14(9).
    PMID: 33922871 DOI: 10.3390/ma14092175
    The rapid development of the construction sector has led to massive use of raw construction materials, which are at risk of exhaustion. The problem is aggravated by the high demand for cement as binding powder and the mass production of clay bricks for construction purposes. This scenario has led to high energy consumption and carbon emissions in their production. In this regard, bio-cementation is considered a green solution to building construction, because this technology is environmentally friendly and capable of reducing carbon emissions, thus slowing the global warming rate. Most of the previously published articles have focused on microbiologically induced calcium carbonate precipitation (MICP), with the mechanism of bio-cementation related to the occurrence of urea hydrolysis as a result of the urease enzymatic activity by the microbes that yielded ammonium and carbonate ions. These ions would then react with calcium ions under favorable conditions to precipitate calcium carbonate. MICP was investigated for crack repair and the surface treatment of various types of construction materials. Research on MICP for the production of binders in construction materials has become a recent trend in construction engineering. With the development of cutting edge MICP research, it is beneficial for this article to review the recent trend of MICP in construction engineering, so that a comprehensive understanding on microbial utilization for bio-cementation can be achieved.
    Matched MeSH terms: Cementation
  11. Lim, Siau Peng, Fazal Reza, Zaihan Ariffin
    MyJurnal
    The purpose of this study was to evaluate hardness (indicator for polymerization) and thickness of two types of resin cement at coronal, middle and apical level of tooth root canal. Ten extracted maxillary incisors were instrumented and post space was prepared for cementation of titanium post. Samples were divided into two groups and each group was cemented either of the two types of resin cements; Panavia F [dual-cured (PF)] and Rely X Luting 2 [self-cured (RL)]. The teeth were longitudinally sectioned; hardness and thickness was measured using Vickers hardness tester and a microscope (Leica DMLM). SEM observations along the cement line at the 3 different root levels were performed. Statistical analysis was performed to test significance of differences in hardness and thickness of the two types of cement (t-test; p= 0.05) and at different levels of the same type (one-way ANOVA followed by multiple comparison; p= 0.05). Significant difference of hardness was found at the apical level between the two groups and between the coronal and apical level of PF (p0.05). Moreover, voids were more obvious within the dual-cured group of cement. Dual-cured resin cement was found to be less polymerized than self-cured type at apical level. Increased thicknesses of resin cements in comparison to post space size were observed in both groups. Use of metallic post with resin cements needs further evaluation.
    Matched MeSH terms: Cementation
  12. Siti Mariam Ab Ghani, Lillywhite, Graeme
    Compendium of Oral Science, 2014;1(1):30-39.
    MyJurnal
    The management of patients with severely worn dentition is challenging due to the loss of occlusal vertical dimension and tooth structure creating an uneven plane of occlusion. This case report describes the importance of every step of the conventional and improvised methods in treating tooth wear patients. Stages from the initial work-up of tooth wear assessment, substantial surgical crown lengthening, the controlled method of increasing vertical dimension, the precise method of crown preparations, advanced impression techniques till the cementation procedure of final restorations.

    The whole treatment was in a reorganized approach such that the new inter-cuspal position (ICP) coincided with the retruded axial position (RAP). When restoring worn dentition, cl inician should always have a proper planning, decent implementation for each stages thus guarantee excellent performances. However maintenance and recall visits are the main keys to long term success.
    Matched MeSH terms: Cementation
  13. Mohamed Abdulmunem, Hadijah Binti Abdullah, Noor Hayaty Binti Abu Kasim, Ali Dabbagh
    Sains Malaysiana, 2015;44:1189-1194.
    The aim of this study was to investigate the simultaneous influence of various dental posts and cementation materials on the fracture resistance and failure mode of the endodontically-treated teeth. Sixty endodontically treated upper central incisors were randomly divided into two main groups, each consisted of three subgroups restored with titanium, fiber and stainless steel posts. The posts in the first and second groups were luted with zinc phosphate and composite resin cements, respectively. Composite cores were built-up over the specimens and then retained with nickel-chromium crowns. Specimens were thermocycled and then loaded at 135o until failures were observed. The obtained data of fracture resistances and failure modes were analyzed using Two-way ANOVA and the Chi-Square tests, respectively. The results showed that the zinc phosphate cement resulted in relatively higher fracture resistances. However, luting of dental posts with composite resin provided more restorable failures in endodontically-treated teeth. Moreover, the teeth restored by fiber posts exhibited desirable fracture resistances with more restorable failure modes, compared with those restored by titanium or stainless steel posts.
    Matched MeSH terms: Cementation
  14. Beh YH, Halim MS, Ariffin Z
    PeerJ, 2023;11:e16469.
    PMID: 38025677 DOI: 10.7717/peerj.16469
    BACKGROUND: This study aimed to evaluate the load capacity of maxillary central incisors with simulated flared root canal restored with different fiber-reinforced composite (FRC) post cemented with either self-adhesive or self-etch resin cement and its mode of fracture.

    METHODS: Sixty-five extracted maxillary incisors were decoronated, its canal was artificially flared and randomly categorized into group tFRC (tapered FRC post) (n = 22), mFRC (multi-FRC post) (n = 21), and DIS-FRC (direct individually shaped-FRC (DIS-FRC) post) (n = 22), which were further subdivided based on cementation resin. The posts were cemented and a standardized resin core was constructed. After thermocycling, the samples were loaded statically and the maximum load was recorded.

    RESULTS: The load capacity of the maxillary central incisor was influenced by the different FRC post system and not the resin cement (p = 0.289), and no significant interaction was found between them. Group mFRC (522.9N) yielded a significantly higher load capacity compared to DIS-FRC (421.1N). Overall, a 55% favorable fracture pattern was observed, and this was not statistically significant.

    CONCLUSION: Within the limitation of the study, it can be concluded that prefabricated FRC posts outperform DIS-FRC posts in terms of the load capacity of a maxillary central incisor with a simulated flared root canal. The cementation methods whether a self-adhesive or self-etch resin cement, was not demonstrated to influence the load capacity of a maxillary central incisor with a flared root canal. There were no significant differences between the favorable and non-favorable fracture when FRC post systems were used to restored a maxillary central incisor with a flared root canal.

    Matched MeSH terms: Cementation/methods
  15. Baig MR, Rajan G, Rajan M
    J Oral Implantol, 2009;35(6):295-9.
    PMID: 20017646 DOI: 10.1563/AAID-JOI-D-09-00012R1.1
    This article describes the rehabilitation of a completely edentulous patient using a milled titanium implant framework and cemented crowns. This combined approach significantly offsets unsuitable implant position, alignment, or angulation, while ensuring the easy retrievability, repair, and maintenance of the prosthesis. Hence, the dual advantage of cemented-retained crowns reproducing appropriate esthetics and function, irrespective of where the screw access openings are located in the substructure, can be obtained, along with the splinting effect and management of soft and hard tissue deficits achievable with a screw-retained framework.
    Matched MeSH terms: Cementation/methods
  16. Wazir NN, Mukundala VV, Choon DS
    J Orthop Surg (Hong Kong), 2006 Apr;14(1):43-6.
    PMID: 16598086 DOI: 10.1177/230949900601400110
    PURPOSE: To evaluate the short-term clinical and functional outcomes of total hip arthroplasty performed for physiologically active elderly patients with Garden type-3 or -4 femoral neck fracture.
    METHODS: Records of 47 consecutive patients (40 female, 7 male) with type-3 or -4 femoral neck fracture (Garden classification) who underwent cemented total hip arthroplasty at our hospital during January 1999 to December 2002 were reviewed. Radiological and clinical (Harris functional hip score and Oxford hip score) assessments of 38 patients were measured with a mean follow-up period of 21 months (range, 4-48 months).
    RESULTS: The mean age of the 47 patients was 75 years (range, 62-89 years). Records of 9 patients were excluded because of death, lost to follow-up, and development of deep infection that necessitated implant removal and excision arthroplasty. The mean Harris hip score of the 38 patients was 83 (range, 59-97), whereas the mean Oxford hip score was 25.2 (range, 14-33). Pain in the hips was absent in 30 patients, 6 had slight pain occasionally, and 2 patients had mild-to-moderate hip discomfort. No signs of aseptic loosening or change in implant position were noted on radiographic assessment. Two cases of dislocation were reduced by closed reduction. Two patients had deep wound infection and were treated with debridement, implant removal, and conversion to girdle stone.
    CONCLUSION: This short-term study showed that total hip arthroplasty for femoral neck fracture had good postoperative results in functional hip and pain scores. More attention should be paid to coexisting medical illness (e.g. diabetes mellitus, hypertension, and ischaemic heart disease) and prevention of infection.
    Matched MeSH terms: Cementation
  17. Toh CG
    Asian J Aesthet Dent, 1994;2(1):11-7.
    PMID: 9063109
    The development of porcelain laminate veneers has added a new dimension to dentistry in the treatment of unsightly anterior teeth. It is a less invasive procedure than the conventional crown restoration in the treatment of aesthetic problems. This paper highlights some of the considerations in the successful use of porcelain veneers.
    Matched MeSH terms: Cementation
  18. Baig MR, Gunaseelan R
    J Oral Implantol, 2012 Apr;38(2):149-53.
    PMID: 20932151 DOI: 10.1563/AAID-JOI-D-09-00089
    Passive fit of a long-span screw-retained implant prosthesis is an important criteria for the success of the restoration. This article describes a technique for fabricating a ceramometal implant fixed dental prosthesis (FDP) for a long-span partially edentulous situation by altering the conventional screw-retained design. The possibility of a passive fit is maximized by intraoral luting of the cast frame to milled abutments, and the potential framework distortion during fabrication is compensated to a major extent. Retrievability is ensured by screw retention of the prosthesis to the implants. Compared with conventional porcelain fused to metal screw-retained FDP, this prosthesis is relatively inexpensive to fabricate.
    Matched MeSH terms: Cementation/methods
  19. Baig MR, Rajan G
    J Oral Implantol, 2010;36(1):31-5.
    PMID: 20218868 DOI: 10.1563/AAID-JOI-D-09-00062
    This article describes the dental implant-based rehabilitation of a partially edentulous patient with a unilateral maxillary dento-alveolar defect. A screw-retained prosthesis with a modified design was fabricated on zygomatic and regular dental implants. One section of the implant prosthesis has cemented crowns and the other section is conventional screw-retained. The design of the prosthesis overcame the hard and soft tissue deficit and provided the desired esthetics.
    Matched MeSH terms: Cementation
  20. Baharuddin MY, Salleh ShH, Hamedi M, Zulkifly AH, Lee MH, Mohd Noor A, et al.
    Biomed Res Int, 2014;2014:478248.
    PMID: 24800230 DOI: 10.1155/2014/478248
    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.
    Matched MeSH terms: Cementation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links