Displaying publications 1 - 20 of 72 in total

Abstract:
Sort:
  1. Biswal BM, Sain AH, Othman NH, Baba A
    Trop Gastroenterol, 2002 Jul-Sep;23(3):134-7.
    PMID: 12693156
    Colorectal cancer is one of the most common malignancies in the West, but in Asia the incidence is low. However in Malaysia, colorectal cancer is increasing with a reported figure of 15% of all cancer cases. Adjuvant chemo and radiotherapy are now more frequently used in such patients. The present retrospective analysis was performed to document the effect of such therapy among patients with colorectal cancer in Malaysia.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  2. Chandramathi S, Suresh K, Anita ZB, Kuppusamy UR
    Trans R Soc Trop Med Hyg, 2012 Apr;106(4):267-9.
    PMID: 22340948 DOI: 10.1016/j.trstmh.2011.12.008
    Chemotherapy can cause immunosuppression, which may trigger latent intestinal parasitic infections in stools to emerge. This study investigated whether intestinal parasites can emerge as opportunistic infections in breast and colorectal cancer patients (n=46 and n=15, respectively) undergoing chemotherapy treatment. Breast cancer patients were receiving a 5-fluorouracil/epirubicin/cyclophosphamide (FEC) regimen (6 chemotherapy cycles), and colorectal cancer patients were receiving either an oxaliplatin/5-fluorouracil/folinic acid (FOLFOX) regimen (12 cycles) or a 5-fluorouracil/folinic acid (Mayo) regimen (6 cycles). Patients had Blastocystis hominis and microsporidia infections that were only present during the intermediate chemotherapy cycles. Thus, cancer patients undergoing chemotherapy should be screened repeatedly for intestinal parasites, namely B. hominis and microsporidia, as they may reduce the efficacy of chemotherapy treatments.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  3. Teh LK, Hamzah S, Hashim H, Bannur Z, Zakaria ZA, Hasbullani Z, et al.
    Ther Drug Monit, 2013 Oct;35(5):624-30.
    PMID: 23942539 DOI: 10.1097/FTD.0b013e318290acd2
    Dihydropyrimidine dehydrogenase (DPD) is a pyrimidine catabolic enzyme involved in the initial and rate-limiting step of the catabolic pathway of toxic metabolites of 5-fluorouracil (5-FU). Several studies have reported that deficiency of DPD and polymorphisms of its gene are related to 5-FU toxicities and death. Association between serum concentration of 5-FU and its related toxicity has also been previously demonstrated. Hence, this study aims to understand the role of DPYD variants in serum level of 5-FU and the risk of developing toxicity to prevent adverse reactions and maximize therapy outcome for personalized medicine.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  4. Wendy L, Radzi M
    Med J Malaysia, 2008 Sep;63 Suppl C:57-8.
    PMID: 19230248
    Colorectal cancer is emerging as one of the commonest cancers in Malaysia. Data on colorectal cancer from the National Cancer Registry is very limited. Comprehensive information on all aspects of colorectal cancer, including demographic details, pathology and treatment outcome are needed as the management of colorectal cancer has evolved rapidly over the years involving several disciplines including gastroenterology, surgery, radiology, pathology and oncology. This registry will be an important source of information that can help the development of guidelines to improve colorectal cancer care relevant to this country. The database will initially recruit all colorectal cancer cases from eight hospitals. The data will be stored on a customized web-based case report form. The database has begun collecting data from 1 October 2007 and will report on its first year findings at the end of 2008.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  5. Ryan ARA, Rosita ARA, Kamarul AK, Qureshi A
    Med J Malaysia, 1999 Sep;54(3):293-5.
    PMID: 11045053
    Colorectal cancer is currently the third most common cancer in Malaysia. Elevated expression of COX-2, an induced cyclooxygenase isoenzyme, has been seen in colonic adenomas and colorectal carcinoma. There is evidence that inhibition of this COX-2 can decrease the risk of colorectal cancer. Selective COX-2 inhibitors may have a role in reducing the risk of colorectal cancer in high-risk individuals.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  6. Lim GCC, Rampal KG, Fuad I, Lim AK
    Med J Malaysia, 1997 Jun;52(2):117-23.
    PMID: 10968068
    This study aims to evaluate the practice of adjuvant chemotherapy in colorectal cancer at the Institute of Radiotherapy and Oncology, Hospital Kuala Lumpur. A retrospective analysis of 320 patients' records from 1986 to 1994 was carried out. Adjuvant chemotherapy was given to 98 patients. Cancers of the rectum and sigmoid colon constituted over 60% of the patients. All the regimes used were 5-fluorouracil-based. The oral route was the most commonly used (55.1%). Toxicity was seldom the reason for stopping treatment (2%). The adjuvant treatment employed has been tolerable while the survival was comparable with other centres.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  7. Jafari SF, Khadeer Ahamed MB, Iqbal MA, Al Suede FS, Khalid SH, Haque RA, et al.
    J Pharm Pharmacol, 2014 Oct;66(10):1394-409.
    PMID: 25039905 DOI: 10.1111/jphp.12272
    Recently, we have isolated koetjapic acid (KA) from Sandoricum koetjape and identified its selective anticancer potentiality against colorectal carcinoma. KA is quite likely to be useful as a systemic anticancer agent against colorectal malignancy. However, with extremely low solubility, KA has to be converted into a biocompatible solubilized form without compromising the bioefficacy. Objective of this study is to enhance solubility of KA and to evaluate anticancer efficacy of potassium koetjapate in human colorectal cancer cells.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  8. Ng CV
    Ann Pharmacother, 2005 Jun;39(6):1114-8.
    PMID: 15886290
    To report 2 cases of hypersensitivity reactions associated with oxaliplatin treatment in Asian patients.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  9. Biabanikhankahdani R, Alitheen NBM, Ho KL, Tan WS
    Sci Rep, 2016 11 24;6:37891.
    PMID: 27883070 DOI: 10.1038/srep37891
    Multifunctional nanocarriers harbouring specific targeting moieties and with pH-responsive properties offer great potential for targeted cancer therapy. Several synthetic drug carriers have been studied extensively as drug delivery systems but not much information is available on the application of virus-like nanoparticles (VLNPs) as multifunctional nanocarriers. Here, we describe the development of pH-responsive VLNPs, based on truncated hepatitis B virus core antigen (tHBcAg), displaying folic acid (FA) for controlled drug delivery. FA was conjugated to a pentadecapeptide containing nanoglue bound on tHBcAg nanoparticles to increase the specificity and efficacy of the drug delivery system. The tHBcAg nanoparticles loaded with doxorubicin (DOX) and polyacrylic acid (PAA) demonstrated a sustained drug release profile in vitro under tumour tissue conditions in a controlled manner and improved the uptake of DOX in colorectal cancer cells, leading to enhanced antitumour effects. This study demonstrated that DOX-PAA can be packaged into VLNPs without any modification of the DOX molecules, preserving the pharmacological activity of the loaded DOX. The nanoglue can easily be used to display a tumour-targeting molecule on the exterior surface of VLNPs and can bypass the laborious and time-consuming genetic engineering approaches.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  10. Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal R, Abu N
    Sci Rep, 2019 Nov 11;9(1):16497.
    PMID: 31712601 DOI: 10.1038/s41598-019-53063-y
    Chemo-resistance is associated with poor prognosis in colorectal cancer (CRC), with the absence of early biomarker. Exosomes are microvesicles released by body cells for intercellular communication. Circular RNAs (circRNAs) are non-coding RNAs with covalently closed loops and enriched in exosomes. Crosstalk between circRNAs in exosomes and chemo-resistance in CRC remains unknown. This research aims to identify exosomal circRNAs associated with FOLFOX-resistance in CRC. FOLFOX-resistant HCT116 CRC cells (HCT116-R) were generated from parental HCT116 cells (HCT116-P) using periodic drug induction. Exosomes were characterized using transmission electron microscopy (TEM), Zetasizer and Western blot. Our exosomes were translucent cup-shaped structures under TEM with differential expression of TSG101, CD9, and CD63. We performed circRNAs microarray using exosomal RNAs from HCT116-R and HCT116-P cells. We validated our microarray data using serum samples. We performed drug sensitivity assay and cell cycle analysis to characterize selected circRNA after siRNA-knockdown. Using fold change >2 and p 
    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  11. Song DSS, Leong SW, Ng KW, Abas F, Shaari K, Leong CO, et al.
    SLAS Discov, 2019 06;24(5):548-562.
    PMID: 30897027 DOI: 10.1177/2472555219831405
    DNA mismatch repair (MMR) deficiency has been associated with a higher risk of developing colorectal, endometrial, and ovarian cancer, and confers resistance in conventional chemotherapy. In addition to the lack of treatment options that work efficaciously on these MMR-deficient cancer patients, there is a great need to discover new drug leads for this purpose. In this study, we screened through a library of commercial and semisynthetic natural compounds to identify potential synthetic lethal drugs that may selectively target MLH1 mutants using MLH1 isogenic colorectal cancer cell lines and various cancer cell lines with known MLH1 status. We identified a novel diarylpentanoid analogue, 2-benzoyl-6-(2,3-dimethoxybenzylidene)-cyclohexenol, coded as AS13, that demonstrated selective toxicity toward MLH1-deficient cancer cells. Subsequent analysis suggested AS13 induced elevated levels of oxidative stress, resulting in DNA damage where only the proficient MLH1 cells were able to be repaired and hence escaping cellular death. While AS13 is modest in potency and selectivity, this discovery has the potential to lead to further drug development that may offer better treatment options for cancer patients with MLH1 deficiency.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  12. Al-Henhena N, Ying RP, Ismail S, Najm W, Najm W, Khalifa SA, et al.
    PLoS One, 2014;9(11):e111118.
    PMID: 25390042 DOI: 10.1371/journal.pone.0111118
    Andrographis paniculata is a grass-shaped medicinal herb, traditionally used in Southeast Asia. The aim of this study was to evaluate the chemoprotective effects of A. paniculata on colorectal cancer. A. paniculata ethanol extract was tested on azoxymethane (AOM)-induced aberrant crypt foci (ACF) in vivo and in vitro. A. paniculata treated groups showed a significant reduction in the number of ACF of the treated rats. Microscopically, ACF showed remarkably elongated and stratified cells, and depletion of the submucosal glands of AOM group compared to the treated groups. Histologically, staining showed slightly elevated masses above the surrounding mucosa with oval or slit-like orifices. Immunohistochemically, expression of proliferating cell nuclear antigen (PCNA) and β-catenin protein were down-regulated in the A. paniculata treated groups compared to the AOM group. When colon tissue was homogenized, malondialdehyde (MDA) and nitric oxide (NO) levels were significantly decreased, whereas superoxide dismutase (SOD) activity was increased in the treated groups compared to the AOM group. A. paniculata ethanol extract showed antioxidant and free radical scavenging activity, as elucidated by the measure of oxidative stress markers. Further, the active fractions were assessed against cell lines of CCD841 and HT29 colon cancer cells.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  13. Soon SS, Chia WK, Chan ML, Ho GF, Jian X, Deng YH, et al.
    PLoS One, 2014;9(9):e107866.
    PMID: 25250815 DOI: 10.1371/journal.pone.0107866
    Recent observational studies showed that post-operative aspirin use reduces cancer relapse and death in the earliest stages of colorectal cancer. We sought to evaluate the cost-effectiveness of aspirin as an adjuvant therapy in Stage I and II colorectal cancer patients aged 65 years and older.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  14. Hajrezaie M, Hassandarvish P, Moghadamtousi SZ, Gwaram NS, Golbabapour S, Najihussien A, et al.
    PLoS One, 2014;9(3):e91246.
    PMID: 24618844 DOI: 10.1371/journal.pone.0091246
    Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF).
    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  15. Soo HC, Chung FF, Lim KH, Yap VA, Bradshaw TD, Hii LW, et al.
    PLoS One, 2017;12(1):e0170551.
    PMID: 28107519 DOI: 10.1371/journal.pone.0170551
    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  16. Nassar ZD, Aisha AF, Idris N, Khadeer Ahamed MB, Ismail Z, Abu-Salah KM, et al.
    Oncol Rep, 2012 Mar;27(3):727-33.
    PMID: 22134768 DOI: 10.3892/or.2011.1569
    Deregulated cell signaling pathways result in cancer development. More than one signal transduction pathway is involved in colorectal cancer pathogenesis and progression. Koetjapic acid (KA) is a naturally occurring seco-A-ring oleanene triterpene isolated from the Sandoricum koetjape stem bark. We report the cellular and molecular mechanisms of anticancer activity of KA towards human colorectal cancer. The results showed that KA induces apoptosis in HCT 116 colorectal carcinoma cells by inducing the activation of extrinsic and intrinsic caspases. We confirmed that KA-induced apoptosis was mediated by DNA fragmentation, nuclear condensation and disruption in the mitochondrial membrane potential. Further studies on the effect of KA on cancer pathways show that the compound causes down-regulation of Wnt, HIF-1α, MAP/ERK/JNK and Myc/Max signaling pathways and up-regulates the NF-κB signaling pathway. The result of this study highlights the anticancer potential of KA against colorectal cancer.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  17. Ahamed MB, Aisha AF, Nassar ZD, Siddiqui JM, Ismail Z, Omari SM, et al.
    Nutr Cancer, 2012;64(1):89-99.
    PMID: 22136553 DOI: 10.1080/01635581.2012.630160
    Cat's whiskers (Orthosiphon stamineus) is commonly used as Java tea to treat kidney stones including a variety of angiogenesis-dependent diseases such as tumorous edema, rheumatism, diabetic blindness, and obesity. In the present study, antitumor potential of standardized 50% ethanol extract of O. stamineus leaves (EOS) was evaluated against colorectal tumor in athymic mice and antiangiogenic efficacy of EOS was investigated in human umbilical vein endothelial cells (HUVEC). EOS at 100 mg/kg caused 47.62 ± 6.4% suppression in tumor growth, while at 200 mg/kg it caused 83.39 ± 4.1% tumor regression. Tumor histology revealed significant reduction in extent of vascularization. Enzyme-linked immunosorbent assay showed EOS (200 mg/kg) significantly reduced the vascular endothelial growth factor (VEGF) level in vitro (211 ± 0.26 pg/ml cell lysate) as well as in vivo (90.9 ± 2 pg/g tissue homogenate) when compared to the control (378 ± 5 and 135.5 ± 4 pg, respectively). However, EOS was found to be noncytotoxic to colon cancer and endothelial cells. In vitro, EOS significantly inhibited the migration and tube formation of human umbilical vein endothelial cells (HUVECs). EOS suppressed VEGF-induced phosphorylation of VEGF receptor-2 in HUVECs. High performance liquid chromatography (HPLC) analysis of EOS showed high rosmarinic acid contents, whereas phytochemical analysis revealed high protein and phenolic contents. These results demonstrated that the antitumor activity of EOS may be due to its VEGF-targeted antiangiogenicity.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  18. Golkhalkhali B, Paliany AS, Chin KF, Rajandram R
    Nutr Cancer, 2018 01 11;70(2):184-191.
    PMID: 29324050 DOI: 10.1080/01635581.2018.1412470
    The prevalence of colorectal cancer (CRC) is on a steady rise over the years, with the World Health Organization (WHO) reporting CRC as the fourth leading cause of cancer-related death worldwide. While treatment modalities may differ in accordance to the staging and severity of the disease itself, chemotherapy is almost unavoidable in most cases. Though effective in its mode of action, chemotherapy is commonly associated with undesirable side effects that negatively affects the patient in terms of quality of life, and in some cases may actually interfere with their treatment regimens, thus escalating to poor prognosis. Gastrointestinal disturbances is a major side effect of chemotherapy and in CRC, gastrointestinal disturbances may be further aggravated and grave in nature mainly due to the affected site, being the gastrointestinal tract. The use of complementary therapies as adjuncts to alleviate the side effects of chemotherapy in CRC patients is gaining prominence with dietary supplements being the most commonly employed adjunct. Some of the frequently used dietary supplements for CRC patients are probiotics, omega-3 fatty acid and glutamine. The successful crosstalk between these dietary supplements with important metabolic pathways is crucial in the alleviation of chemotherapy side effects.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  19. Ganesan T, Sinniah A, Chik Z, Alshawsh MA
    Nutrients, 2020 Aug 13;12(8).
    PMID: 32823596 DOI: 10.3390/nu12082430
    Punicalagin (PU), a polyphenol extracted from pomegranate (Punica granatum) husk is proven to have anti-cancer effects on different types of cancer including colorectal cancer (CRC). Its role in modulating endogenous protein as a means of eliciting its anti-cancer effects, however, has not been explored to date. Hence, this study aimed to investigate the role of PU in modulating the interplay between apoptosis and autophagy by regulating Annexin A1 (Anx-A1) expression in HCT 116 colorectal adenocarcinoma cells. In the study, selective cytotoxicity, pro-apoptotic, autophagic and Anx-A1 downregulating properties of PU were shown which indicate therapeutic potential that this polyphenol has against CRC. Autophagy flux analysis via flow cytometry showed significant autophagosomes degradation in treated cells, proving the involvement of autophagy. Proteome profiling of 35 different proteins in the presence and absence of Anx-A1 antagonists in PU-treated cells demonstrated a complex interplay that happens between apoptosis and autophagy that suggests the possible simultaneous induction and inhibition of these two cell death mechanisms by PU. Overall, this study suggests that PU induces autophagy while maintaining basal level of apoptosis as the main mechanisms of cytotoxicity via the modulation of Anx-A1 expression in HCT 116 cells, and thus has a promising translational potential.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  20. Chan ZCK, Leong KH, Kareem HS, Norazit A, Noor SM, Ariffin A
    Naunyn Schmiedebergs Arch Pharmacol, 2020 03;393(3):405-417.
    PMID: 31641820 DOI: 10.1007/s00210-019-01730-2
    The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 μM and HT-29 = 18.52 μM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links